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Why Control Intensive Planning?

Planning with, e.g., STRIPS operators is
computationally hard (PSPACE-complete or worse).

Hence “domain-independent” control of planning
algorithms cannot always be effective.

Furthermore, we often have knowledge about the
planning domain that goes beyond what is expressed
in typical domain encodings.

Such knowledge can yield great gains in efficiency.

Why not utilize that knowledge!
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Goals

Control Intensive planning involves finding ways to
build and utilize richer domain models so as to
support more effective problem solving.

Such an approach is common in many other areas of
AI, e.g., Constraint Programming.

In this lecture I will discuss some ways of
accomplishing this within AI planning.

I will not attempt to be comprehensive, and I will
utilize simple example domains with out regard for
their practical significance.
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Control Intensive Planning—Costs

A critical question is how much more effort is required
to build better domain models, and is the effort
worthwhile?

Difficult to answer definitively, but the aim is:

Planning
Control Intensive ProgramsAction

Computation Costs

Development Costs

Descriptions
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Costs. . .

The aim is to develop methods for building richer
domain models that can support the construction of
robust, efficient, and cost effective, domain planners.

The challenge for the field is to systematize and extend
such methods so as to make planning a practical and
effective way of solving problems in real applications.
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Lecture Outline

Background

how to get the most of our of planning
representations.

Paradigms for Control Intensive Planning

Knowledge of state sequences.

Lifted decision making.
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Getting the Most from Planning
Representations
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Relational Databases

A key element in control intensive planning is the
inherent flexibility and representational power of the
STRIPS representation.

The initial state is represented as a relational
database: we have a list of all tuples satisfying each
relation.

Actions operate by adding and deleting tuples from
relations, thus preserving the state’s status as a
relational database (its completeness ).

Goals are represented as partially specified relations.
But it also is complete (all relations that must be
achieved are specified).
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Forward Chaining. . .

Control Intensive Planners almost exclusively utilize
Forward Chaining.

B
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pickup(A)

unstack(B)
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Forward Chaining. . .

We start at the initial state and search for a plan in the
space of plan prefixes.

This means that for every candidate plan considered
we have a complete description of the world that arises
from that plan.

This information along with information about the goal
can be utilized to control planning (search).
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Querying the Current State

The most important thing about relational databases is
that they support the efficient evaluation of complex
queries.

This allows us to define complex concepts specified
as queries against the primitive relations and the goal,
and then use these concepts to build richer domain
models for controlling planning.

The query mechanism can also be used to evaluate
quantitative measures, e.g., heuristic functions.
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First-Order Logic as a Query Language

A relational database is a first-order model.
Hence, we can evaluate first-order formulas against
this model. That is, we can use first-order logic as our
query language.
To facilitate various examples used in the rest of the
talk, I will present a particular mechanism for
evaluating first-order formulas.

The mechanism is simple and easy to implement
(used in my own TLPLAN system).
It is quite efficient on small databases like those
encountered in planning problems.

This is not the only query language nor the only
evaluation mechanism that can be used.
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Evaluating First-Order formulas

Say we have a first-order language generated by some
finite set of constant symbols , c1, . . . , cn, predicate
symbols , P1, . . . , Pm (of varying arity), and function
symbols , f1, . . . , fo (of varying arity).

In a STRIPS database

1. The domain of the first-order model consists
precisely the set of constant symbols.

2. For every tuple satisfying a predicate we have that
tuple of constants in the predicate’s relation.

3. The value of every function on every tuple of
arguments is specified in table.
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Example: the Blocks World

Predicates on(x,y), ontable(x), clear(x), holding(x), and
handempty().

Functions onTop(x).

on(x,y) (red,blue)
(blue,green)

ontable(x) (green)

clear(x) (red)

holding(x) (yellow)

handempty()

onTop(x) onTop(green) = blue
onTop(blue) = red
onTop(red) = nil
onTop(yellow) = nil

Control Intensive Planning/F. Bacchus – p.14/131



Eval(φ,s,V )

Evaluate a formula φ on a state s given some current
variable bindings V .
Eval(φ,s,V )

φ is Pi(t1, . . . , tn)
if Pi(evalT(t1, s, V ), . . . , evalT(tn, s, V )) ∈ s

return(true)
else return(false).

φ = ¬ψ
if Eval(ψ,s,V ) return(false)
else return(true).

φ = θ ∧ ψ
if Eval(θ, s, V ) return(Eval(ψ, s, v))
else return(false).

φ = ∀x.ψ

for C = c1, . . . , cn
V ′ := V ∪ {x = C}
if Eval(ψ,s,V ′) = false return(false)

return(true)
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Eval. . .

Evaluation is done left to right with early termination . This
allow recursive queries to be evaluated (as in PROLOG).
Eval(φ,s,V )

φ is Pi(t1, . . . , tn)
if Pi(evalT(t1, s, V ), . . . , evalT(tn, s, V )) ∈ s

return(true)
else return(false).

φ = ¬ψ
if Eval(ψ,s,V ) return(false)
else return(true).

φ = θ ∧ ψ
if Eval(θ, s, V ) return(Eval(ψ, s, v))
else return( false).

φ = ∀x.ψ

for C = c1, . . . , cn
V ′ := V ∪ {x = C}
if Eval(ψ,s,V ′) = false return( false)

return(true)
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Eval. . .

Quantification is replaced by iteration .
Eval(φ,s,V )

φ is Pi(t1, . . . , tn)
if Pi(evalT(t1, s, V ), . . . , evalT(tn, s, V )) ∈ s

return(true)
else return(false).

φ = ¬ψ
if Eval(ψ,s,V ) return(false)
else return(true).

φ = θ ∧ ψ
if Eval(θ, s, V ) return(Eval(ψ, s, v))
else return(false).

φ = ∀x.ψ

for C = c1, . . . , cn
V ′ := V ∪ {x = C}
if Eval(ψ,s,V ′) = false return(false)

return(true)
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Eval. . .

evalT evaluates:

Variables are replaced by their binding.

Functions are looked up recursively, e.g,
onTop(onTop(green)) = onTop(blue) = red.

A bit of notation for bounded quantification:

(forall (?x) (clear ?x) φ) is
∀x.clear (x) ⇒ φ

(exists (?x) (clear ?x) φ) is
∃x.clear (x) ∧ φ
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z))))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green)
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z))

==>eval(on blue green)
<==true
==>eval(above red blue)

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z))))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green))
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z))

==>eval(on blue green)
<==true
==>eval(above red blue)

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z))))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green)
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z)))

==>eval(on blue green)
<==true
==>eval(above red blue)

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z))))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green)
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z))

==>eval(on blue green))
<==true
==>eval(above red blue)

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z) )))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green)
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z))

==>eval(on blue green)
<==true
==>eval(above red blue))

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Example
(def-defined-predicate (above ?x ?y)

(or (on ?x ?y)
(exists ?z (on ?z ?y) (above ?x ?z))))

on(x,y) (red,blue)
(blue,green)

==>eval(above red green)
==>eval(on red green)
<==false
==>eval(exists (?z) (on ?z ?y) (above ?x ?z))

==>eval(on blue green)
<==true
==>eval(above red blue)

==>eval(on red blue)
<==true

<==true
<==true

<==true
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Numerics

Along with the STRIPS database representing the
current state, there is the domain of numbers which is
never changed by actions.

Standard numeric predicates and functions can be
evaluated by computations over this “numeric domain.”
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Other types of Queries

Queries can be made against the set of predicates
listed in the goal:

(goal (on red blue ))

(exists (?z) (goal (on red ?z)))

Finally “pseudo-predicates” can be defined that are
evaluated for their side-effects only.

(forall (?z) (on green ?z)
(print "˜A˜%" ?z))

==>blue
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Examples and Demo

(forall (?x) (ontable ?x)
(implies (clear ?x) (print 0 "˜A˜%" ?x)))

(def-defined-function (depth ?x)
(and

(implies (clear ?x)
(:= depth 0))

(implies (not (clear ?x))
(exists (?y) (on ?y ?x)

(:= depth (+ 1 (depth ?y)))))))
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Examples and Demo

(forall (?x) (ontable ?x)
(implies (clear ?x) (print 0 "˜A˜%" ?x)))

(def-defined-function (depth ?x)
(and

(implies (clear ?x)
(:= depth 0))

(implies (not (clear ?x))
(exists (?y) (on ?y ?x)

(:= depth (+ 1 (depth ?y))) ))))
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Examples and Demo

(def-defined-predicate (prime ?i)
(not (exists (?j) (is-between ?j 2 (floor (sqrt ?i)))

(= 0 (mod ?i ?j)))))

(def-defined-function (count-primes ?x ?y)
(local-vars ?count)
(and

(:= ?count 0)
(forall (?z) (is-between ?z ?x ?y)

(implies (prime ?z) (:= ?count (+ ?count 1))))
(:= count-primes ?count)

))
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Conclusions

The relational representation commonly used in
planning supports rich and expressive query
languages.

We can test complex conditions and compute complex
functions on the states using mostly declarative
specifications.

We can also use these ideas determine all applicable
actions in a forward chaining planner (without having to
propositionalize prior to planning).
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Knowledge of Sequences
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Knowledge of Sequences

We often know about sequences of states that do not
make sense.

For example, it makes no sense for a plan to load a
package onto a truck and then immediately unload it.

Such a sequence of actions would produce a cycle in
the plan—the same state will be visited twice. Such
cycles can be pruned with standard techniques in
search.
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Knowledge of Sequences

However, more elaborate versions persist. Load
package A; then package B; then unload package A.
The final state is not identical to the start state.
Nevertheless, this sequence does not make sense.

This idea was first identified by Morris & Kibler, in their
paper “Don’t be stupid” (IJCAI 81).
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Knowledge of Sequences

Their idea can be generalized so that more knowledge
about sequences can be utilized. The generalization
consists of

Developing a formalism for expressing general
knowledge about sequences.

Developing an algorithm for utilizing this
knowledge.
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Linear Temporal Logic

LTL (Linear temporal logic) is a logic designed to
express information about state infinite sequences.

We can generalize it to the first-order context.

The resulting language is very useful for expressing
domain knowledge.
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First-Order Linear Temporal Logic

Terms
constant symbols , c1, . . . , cn, and function
symbols , f1, . . . , fo (of varying arity).

All of the ci as well as all variables from an infinite
set of variables {x, y, z, . . .}, are terms .

If t1, . . . , tk, then fi(t1, . . . , tk) is a term for any k-ary
function symbol fi.
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First-Order Linear Temporal Logic

Formulas
1. If t1, . . . , tk are terms then for any k-ary predicate

symbol Pi, Pi(t1, . . . , tk) is a formula (an atomic
formula).

2. If φ and ψ are formulas then so are ¬φ, φ ∧ ψ, and
φ ∨ ψ.

3. If φ is a formula then so are ∀x.φ and ∃x.φ.
4. Temporal Modalities: if φ and ψ are formulas then

so are ©φ (next ), �φ (always ), ♦φ (eventually )
and φU ψ (until ).

Note that we are free to nest quantification and the
temporal modalities as we wish. Nesting temporal
modalities is how LTL gains significant expressive
power.
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Semantics

LTL formulas are interpreted over infinite sequences of
states S = 〈s0, s1, . . . 〉.

Each s ∈ S is a model for the underlying first-order
language.
1. Each s contains the same domain of objects.
2. Maps each constant symbol to a domain object,

each k-ary function symbol to a k-ary function over
the domain, and each k-ary predicate to a k-ary
relation over the domains.

An atemporal formula (no temporal modalities) is true
in a suffix of S iff that formula is true in the first state s
of that suffix. The formula is an arbitrary first-order
formula.
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Semantics

φ1 U φ2 is true in a suffix of S iff φ1 is true until φ2

becomes true.
• • • •
φ1 φ1 φ1 φ2

♦φ1 is true in a suffix of S iff φ1 eventually becomes
true.

• • · · · •
φ1

�φ1 is true in a suffix of S iff φ1 is always true.

• • • · · ·
φ1 φ1 φ1 φ1

©φ1 is true in a suffix of S iff φ1 is true in the next state.

• • · · ·
φ1

Control Intensive Planning/F. Bacchus – p.39/131



Semantics

∀x.φ is true in a suffix of S iff φ1 is true for all possible
assignments of domain values to x.

∃x.φ is true in a suffix of S iff φ1 is true at least one
possible assignment of domain values to x.
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Examples

©©ontable(red): red is on the table in state s2.

�¬holding(green): holding(green) is never true.

�(on(green, red) ⇒ on(green, red) U on(blue, green):
whenever green is on red it remains on red until blue is
on green.

Control Intensive Planning/F. Bacchus – p.41/131



Examples

�(∃x.on(x, red)) ⇒ ©∃x.on(x, red)):

whenever there is a block on red there after there
always exists a block on red (but not necessarily the
same block).

∀x.ontable(x) ⇒ �ontable(x):

all objects that are on the table in the current state
remain on the table in all future states. This time they
are the same blocks. (Quantifying into modal contexts).
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Notes

That each state has the same domain of objects is
essential for arbitrary nesting of quantification and the
modalities.

∃x.P (x) ∧ ©(P (x))

If x exists in s but not in s’s successor state, there is
no easy way to make sense of this formula.
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Expressing Control Knowledge

We express planning knowledge as LTL formulas, and
use these formulas to prune the forward chaining
search space.

In the forward chaining search we have a complete
plan prefix, yielding a state sequence 〈s0, . . . , sn〉.

We can sometimes determine that the LTL formula has
been falsified by this sequence: hence all extensions
of the sequence will also falsify the LTL formula.

We prune these falsifying sequences from the search
space.
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Checking LTL formulas

Given an LTL formula φ and a finite sequence of states
〈s0, s1, . . . , sn〉 we could use the semantic definition,
and our query engine for checking the atemporal
formulas, to determine whether or not φ is falsified.

Example, if s0 |= P (a) and s1 |= ¬Q(a), then
�(P (a) ⇒ ©Q(a)) is falsified.

Falsification by the finite sequence means that there is
no way to extend 〈s0, s1〉 to a model of the formula (an
infinite sequence).
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Progressing LTL formulas

We want to check the LTL formula incrementally

State sequences are being built up incrementally, and
each prefix is extended in a number of different ways.

A2

A4 A3 A4

S0

S1 S2

S3 S4 S5 S6

A1

A3

In the four sequences, the subsequence 〈S0〉 is
repeated 4 times. We don’t want to repeatedly check
the formula on S0.

One method is via various caching schemes
(Kvarnström). Another method is progression.

Control Intensive Planning/F. Bacchus – p.46/131



Progressing LTL Formulas

Say we have an LTL formula φ and we want to check
whether or not it is falsified by a state sequence
〈s0, s1, . . .〉.

The idea is to compute a new formula φ+ by
progressing φ through s0. φ+ has the property that it
will be falsified by 〈s1, . . .〉 if and only if φ is falsified by
〈s0, s1, . . .〉.

That is, progression captures all of the impact of s0, so
that subsequently we can ignore s0.
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Progressing LTL Formulas

Algorithm Prog (φ,s)
case :
1. φ is atemporal: φ+ := Eval(φ, s)
2. φ = φ1 ∧ φ2: φ+ := Prog (φ1, s) ∧ Prog (φ2, s)
3. φ = ¬φ1: φ+ := ¬Prog (φ1, s)
4. φ = ©φ1: φ+ := φ1

5. φ = φ1 U φ2: φ+ := Prog (φ2, s) ∨ (Prog (φ1, s) ∧ φ)
6. φ = ♦φ1: φ+ := Prog (φ1, s) ∨ φ
7. φ = �φ1: φ+ := Prog (φ1, s) ∧ φ
8. φ = ∀x.π(x) ⇒ φ1: φ+ :=

∧
c∈π

Prog (φ1(x/c), s)
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Example

Say our control formula is �ontable(A), and the current
state s satisfies ontable(A).

Prog (�ontable(A)) = Prog (ontable(A), s) ∧ �ontable(A)

= true ∧ �ontable(A)

= �ontable(A)

On the other hand if the current state does not satisfy
ontable(A) we obtain

Prog (�ontable(A)) = Prog (ontable(A), s) ∧ �ontable(A)

= false∧ �ontable(A)

= false
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Notes

Theorem 1 Let M = 〈s0, s1, . . . 〉 be any LTL model, and let si be
the i-th state in the sequence of states. Then, we have for any LTL
formula φ, 〈M, si〉 |= φ if and only if 〈M, si+1〉 |= Prog(φ, si).

This theorem says that we can check if the sequence
we generate satisfies an LTL formula by incrementally
progressing our formula through the sequence.

If the LTL formula progresses to true, the sequence
definitely satisfies the formula, if it progresses to false,
it definitely falsifies the formula. In the falsecase we
can prune this sequence from the search space.

Hence, we can prune partial sequences of actions.
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Notes

The progression algorithm uncovers the properties that
must be true of the current state, and uses Eval to test
them.

Additionally, it computes a representation of the
“future” constraints.

Eventualities offer no pruning power.
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Example: the Blocks World

The standard 4 operator description of this world:

Operator Preconditions and Deletes Adds

pickup(x) ontable(x), clear(x),

handempty.

holding(x).

putdown(x) holding(x). ontable(x), clear(x),

handempty.

stack(x, y) holding(x), clear(y). on(x, y), clear(x),

handempty.

unstack(x, y) on(x, y), clear(x),

handempty.

holding(x), clear(y).
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Blind Search
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Final Position Blocks

Consider the situation:
Initial state Goal

D
B

C D C
A B A

We can solve this problem without unstacking C from A. C
and A are already in their final position.

A block is in its final position if it and the tower below
it do not violate any of the goal’s on requirements.
Neither D nor B are in their final position: B is on the
table but it is required to be on C, and D is on a block
that has to be moved.
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y)))))
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y)))))
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y))))))
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y)))))
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y)))))
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First-Order Definition

We can write a recursive first-order formula that
defines when a block is in its final position.

(def-defined-predicate (in-final-position ?x)
(or (and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y)))))

(exists (?y) (on ?x ?y)
(and (not (goal (ontable ?x)))

(forall (?z) (goal (on ?x ?z))
(= ?z ?y))

(forall (?z) (goal (on ?z ?y))
(= ?z ?x))

(in-final-position ?y) ))))
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Preserving GoodTowers

A goodtower is a tower of blocks whose top block is in its
final position
(always

(forall (?x) (clear ?x)
(implies

(in-final-position ?x)
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))))

This formula says that every good tower should be pre-

served. Action sequences in which an action destroys a ex-

istent good tower should be be pruned.
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Bad Towers

What about towers that aren’t good towers.

(def-defined-predicate (badtower ?x)
(and (clear ?x) (not (in-final-position ?x))))

Clearly these towers need to be dismantled. Hence, it is

never useful to stack new blocks on top of such towers. This

yields the augmented control formula:
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Bad Towers

(always
(forall (?x) (clear ?x)

(and
(implies

(in-final-position ?x)
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

(implies
(badtower ?x)
(next (not (exists (?y) (on ?y ?x)))))) ))
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Singleton Towers

Finally, a single block that is on the table that is
required to be on another block is also a bad tower.

The above control formula allows the planner to pickup
such blocks. Clearly, such blocks should not be picked
up unless their final position is ready. This gives the
final control formula:
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BlocksWorld Control

(always
(forall (?x) (clear ?x)

(and
(implies

(in-final-position ?x)
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

(implies
(badtower ?x)
(next (not (exists (?y) (on ?y ?x))))))

(implies
(and (ontable ?x)

(not (exists (?y) (goal (on ?x ?y))
(goodtower ?y))))

(next (not (holding ?x)))) ))
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Further Optimizations

Random reconfigurations of 300 blocks with the final
control rule requires about 135 sec. on a 1GHz
machine.

Note that blocks world is not an easy domain for
domain independent planners: none can reliably solve
problems even of size 50.

7 years ago this would have been great. However, now
the following speeds can be achieved on these types
of problems:
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Achievable Speeds

# Blocks Unoptimized Optimized
300 135 sec. 0.08
350 192 sec. 0.14
400 0.19
450 0.12
500 0.14

1,000 0.85
5,000 13.10

Almost 20,000 steps in the 5,000 block plan.
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Mechanisms for Speedups

These speedup can be achieved with general purpose
mechanisms.
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Materialized Views

In Databases there is the concept of Views: a view is a
set of tuples that satisfies a query, e.g., the set of all
blocks that satisfy the query (and (ontable ?x)
(clear ?x)) .

These are the blocks that can be picked up.

The observation is that since database transactions
only makes local changes to the database, it can be
more efficient to materialize the view.

That is, we build the relation containing all satisfying
tuples, and when the database is updated we compute
the incremental update to the materialized view.
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Materialized Views

It is not that difficult to achieve: there is a way of
automatically analyzing the query to compute how it
should be updated.

For example, (and (ontable ?x) (clear ?x)) :
If ontable and clear are unchanged, then so is
the view.
If (ontable c) is added, then check if (clear
c) is true, and if so add c to the view.
If (ontable c) is deleted, then delete c from the
view (if it is in the view).

These incremental changes are much more efficient
than recomputing the entire query.
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Optimizing Precondition Checking

This kind of analysis is easy to do with STRIPS actions.

1. We define a set of new predicates, representing the
preconditions of the actions.

2. We create a set of initialization steps that are executed
prior to planning. These steps initialize the views.

3. We analyze the action effects and add extra effects to
maintain the views.

4. We substitute the views for the preconditions.
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The Blocks World

Operator Preconditions and Deletes Adds

pickup(x) ontable(x), clear(x),

handempty.

holding(x).

putdown(x) holding(x). ontable(x), clear(x),

handempty.

stack(x, y) holding(x), clear(y). on(x, y), clear(x),

handempty.

unstack(x, y) on(x, y), clear(x),

handempty.

holding(x), clear(y).
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canUnstack—2. Initialization

(canUnstack ?x ?y) = (and (clear ?x) (on ?x ?y))

(set-initialization-sequence

(forall (?x ?y) (on ?x ?y)
(implies (clear ?x)

(add (canUnstack ?x ?y))))

)
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canUnstack—3. Maintaining

Operator Preconditions and Deletes Adds

pickup (x) ontable(x), clear(x),

handempty.

holding(x).

pickup deletes (clear x) but in the blocks world
(ontable ?x) implies

(not (exists (?y) (on ?x ?y)))

so pickup cannot cause any changes to canUnstack .
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canUnstack—3. Maintaining

Operator Preconditions and Deletes Adds

putdown (x) holding(x). ontable(x), clear(x),

handempty.

putdown adds (clear x) but again (ontable ?x)
implies

(not (exists (?y) (on ?x ?y)))

so putdown also cannot cause any changes to

canUnstack .
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canUnstack—3. Maintaining

Operator Preconditions and Deletes Adds

stack (x, y) holding(x), clear(y). on(x, y), clear(x),

handempty.

canunstack(x,y)

stack adds canUnstack .

Control Intensive Planning/F. Bacchus – p.77/131



canUnstack—3. Maintaining

Operator Preconditions and Deletes Adds

unstack (x, y) on(x, y), clear(x),

handempty.

canUnstack(x,y)

holding(x), clear(y).

unstack deletes canUnstack .
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canUnstack—4. Substituting

Operator Preconditions and Deletes Adds

unstack (x, y) handempty.

canUnstack(x,y)

holding(x), clear(y).

unstack can remove other preconditions.
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Benefits

In problems involving 5,000 blocks, materializing the
preconditions can yield a tremendous computational
savings—each action makes very few changes.

Even greater computational gain can be achieved by
materializing in-final-position .

Note that materializing preconditions can benefit any
forward chaining planner, including domain
independent ones. (Graphplan and other backwards
chaining planners?)
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Open Research Problem

Can this process be fully automated?

1. Requires using domain information for full
simplification: e.g., realizing that ontable is
incompatible with being on another block.

2. Requires identifying subsets of the preconditions
that are worth materializing. E.g., consider
materializing

(and (handempty) (clear ?x) (on ?x ?y))
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Removing LTL formulas

In the blocks world, and many other domains the
control is in the form

(always (implies φ (next ψ)))

where φ and ψ are atemporal (no modalities).

Any operator O takes a state s and maps it into a next
state t.

s must satisfy O’s preconditions, and t is a modification
of s by O’s effects.

We can ask the question “under what circumstances
will O cause a state satisfying φ to falsify ψ.”

Control Intensive Planning/F. Bacchus – p.82/131



Example

A simple transformation of the BlocksWorld Control
yields the following rule:

(always
(implies

(and (clear ?x) (in-final-position ?x))
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

It is obvious that we should not pickup nor unstack a
block that is in its final position, as both cause holding
in the next state. putdown cannot falsify this rule. And
stack must be restricted so that if it stacks unto a block
in its final position, it must stack the right block.
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Example

A simple transformation of the BlocksWorld Control
yields the following rule:

(always
(implies

(and (clear ?x) (in-final-position ?x))
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

Should not pickup nor unstack a block that is in its
final position —as both cause holding in the next
state.
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Example

A simple transformation of the BlocksWorld Control
yields the following rule:

(always
(implies

(and (clear ?x) (in-final-position ?x))
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

putdown cannot falsify this rule —its precondition
holding is incompatible with (and (clear ?x)
(in-final-position ?x)) .
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Example

A simple transformation of the BlocksWorld Control
yields the following rule:

(always
(implies

(and (clear ?x) (in-final-position ?x))
(next (and (not (holding ?x))

(forall (?y) (on ?y ?x)
(in-final-position ?y)))))

stack must be restricted —it creates (on ?y ?x) so
it must ensure that it stacks the right block.
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Benefits

It is not difficult to encode the entire control rule into
extra action preconditions.

These preconditions ensure that the control rule is
never violated.

The benefit is that we no longer have to generate the
progressed formula, and instead of generating the
world then determining that it is bad, we never
generate the world at all.

Control Intensive Planning/F. Bacchus – p.87/131



Open Research Problems

Can this process be fully automated?

1. The simplest cases of (always φ (next ψ))
have been treated (Kvarnström).

2. Can more general cases be automated?

3. Can be cast as a theorem proving problem, and
again it requires utilizing extra domain information.
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Pandora’s Box
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Preconditions

We have seen that in some cases we can convert LTL
control formulas into action preconditions.

This can be done automatically, potentially in more
general cases.

But remember that our aim was to develop methods for
effectively expressing and using control knowledge.

In some cases it can be just as easy (easier?) to write
domain control knowledge directly as preconditions.
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Logistic Domain

(def-adl-operator ( load ?obj ?v ?loc)
(pre (?obj ?loc) (at ?obj ?loc)

(?v) (at ?v ?loc)
(and (vehicle ?v) (object ?obj)))

(add (in ?obj ?v))
(del (at ?obj ?loc)))

(def-adl-operator ( unload ?obj ?v ?loc)
(pre (?obj ?v) (in ?obj ?v)

(?loc) (at ?v ?loc))
(add (at ?obj ?loc))
(del (in ?obj ?v)))

Control Intensive Planning/F. Bacchus – p.91/131



Logistic Domain

(def-adl-operator ( load ?obj ?v ?loc)
(pre (?obj ?loc) (at ?obj ?loc)

(?v) (at ?v ?loc)
(and (vehicle ?v) (object ?obj)))

(add (in ?obj ?v))
(del (at ?obj ?loc)))

(def-adl-operator ( unload ?obj ?v ?loc)
(pre (?obj ?v) (in ?obj ?v)

(?loc) (at ?v ?loc))
(add (at ?obj ?loc))
(del (in ?obj ?v)))
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Logistic Domain

def-adl-operator ( drive ?t ?from ?to)
(pre (?t) (truck ?t)

(?from) (at ?t ?from)
(?city) (in-city ?from ?city)
(?to) (in-city ?to ?city)
(not (= ?from ?to)))

(add (at ?t ?to))
(del (at ?t ?from)))

(def-adl-operator ( fly ?p ?from ?to)
(pre (?p) (airplane ?p)

(?from) (at ?p ?from)
(?to) (airport ?to)
(not (= ?from ?to)))

(add (at ?p ?to))
(del (at ?p ?from)))
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Logistic Domain

def-adl-operator ( drive ?t ?from ?to)
(pre (?t) (truck ?t)

(?from) (at ?t ?from)
(?city) (in-city ?from ?city)
(?to) (in-city ?to ?city)
(not (= ?from ?to)))

(add (at ?t ?to))
(del (at ?t ?from)))

(def-adl-operator ( fly ?p ?from ?to)
(pre (?p) (airplane ?p)

(?from) (at ?p ?from)
(?to) (airport ?to)
(not (= ?from ?to)))

(add (at ?p ?to))
(del (at ?p ?from)))
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Logistic Domain

There are a collection of objects in various locations in
various cities.

The goal involves changing the locations of these
objects to other cities or in the same city.

To move to another city might involve moving by truck
to an airport, then by plane to the other city, then by
truck to the final destination.
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Control Knowledge

There are a number of obvious controls for this domain.

Complete all loads and unloads of a vehicle prior to
moving it.

Don’t move a vehicle to a irrelevant location.

Don’t load or unload objects from a vehicle unless we
need to.
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Useful Definitions

(def-defined-predicate ( vehicle ?v)
(or (truck ?v) (airplane ?v)))

(def-predicate ( wrong-city ?obj ?c-loc)
;;?obj at ?c-loc is in the wrong city
(exists (?g-loc) (goal (at ?obj ?g-loc))

(?city) (in-city ?c-loc ?city)
(not (in-city ?g-loc ?city))))
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Useful Definitions

(def-predicate ( move-by-truck ?obj ?c-loc)
;;?obj at ?c-loc needs to be moved by a truck
(or

(and (wrong-city ?obj ?c-loc)
(not (airport ?c-loc))

(and (not (wrong-city ?obj ?c-loc))
(exists (?g-loc) (goal (at ?obj ?g-loc))

(not (= ?g-loc ?c-loc)))))

(def-predicate ( move-by-plane ?obj ?c-loc)
;;?obj at ?c-loc needs to be moved by a plane
(wrong-city ?obj ?c-loc))
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Useful Definitions

(def-predicate ( unload-from-truck ?obj ?c-loc)
;;?obj needs to be unloaded at ?c-loc
(or

(goal (at ?obj ?c-loc))
(and (wrong-city ?obj ?c-loc)

(airport ?c-loc))))

(def-predicate ( unload-from-plane ?obj ?c-loc)
;;?obj needs to be unloaded at ?c-loc
(not (wrong-city ?obj ?c-loc)))
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Precondition Control

(def-adl-operator ( load ?obj ?v ?loc)
(pre (?obj ?loc) (at ?obj ?loc)

(?v) (at ?v ?loc)
(and (vehicle ?v) (object ?obj)

(implies (truck ?v)
(move-by-truck ?obj ?loc))

(implies (airplane ?v)
(move-by-plane ?obj ?loc))))

(add (in ?obj ?v))
(del (at ?obj ?loc)))
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Precondition Control

(def-adl-operator ( unload ?obj ?v ?loc)
(pre (?obj ?v) (in ?obj ?v)

(?loc) (at ?v ?loc)
(and (implies (truck ?v)

(unload-from-truck ?obj ?loc))
(implies (airplane ?v))

(unload-from-plane ?obj ?loc))))
(add (at ?obj ?loc))
(del (in ?obj ?v)))
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Precondition Control

def-adl-operator ( drive ?t ?from ?to)
(pre (?t) (truck ?t)

(?from) (at ?t ?from)
(?city) (in-city ?from ?city)
(?to) (in-city ?to ?city)
(and (not (= ?from ?to))

(not (exists (?obj) (at ?obj ?from)
(move-by-truck ?obj ?from)))

(not (exists (?obj) (in ?obj ?t)
(unload-from-truck ?obj ?from)))

(or (goal (at ?t ?to))
(exists (?obj) (at ?obj ?to)

(move-by-truck ?obj ?to))
(exists (?obj) (in ?obj ?t)

(unload-from-truck ?obj ?to)))))

(add (at ?t ?to))
(del (at ?t ?from)))
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Precondition Control

(def-adl-operator ( fly ?p ?from ?to)
(pre (?p) (airplane ?p)

(?from) (at ?p ?from)
(?to) (airport ?to)
(and (not (= ?from ?to))

(not (exists (?obj) (at ?obj ?from)
(move-by-plane ?obj ?from)))

(not (exists (?obj) (in ?obj ?p)
(unload-from-plane ?obj ?from)))

(or (goal (at ?p ?from))
(exists (?obj) (at ?obj ?to)

(move-by-plane ?obj ?to))
(exists (?obj) (in ?obj ?p)

(unload-from-plane ?obj ?to)))))

(add (at ?p ?to))
(del (at ?p ?from)))
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Notes

Is any harder to write precondition control? For many
domains it is simpler.

Nevertheless, the issue of automatically
generating/computing control is an important research
topic.

LTL is probably a better target for automatically
generated control.
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Lifting Decision Making
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Introduction

The notion of lifted decision making is less well
understood and it is currently harder to see how it can
be made systematic or automated.

Nevertheless, it can make a tremendous difference to
the ease of writing control knowledge.

I will introduce the idea mainly through an example.
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Timed Satellite World

The Satellite domain was created as part of the 2002
International Planning Competition.

There are various versions of the domain, I will talk
about the timed version.

1. Action durations vary.

2. No resources other than time.
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Timed Satellite World

The domain contains a collection of satellites, each
with some group of instruments. Each instrument
supports some set of image collection modes.

The instruments must be powered up, and calibrated
prior to use. Once calibrated it instrument can be used
in any of its modes.

The satellite must be slewed to a particular direction in
order to calibrate an instrument or to take an image.

The goal is to collect some set of images, each of a
particular mode in a particular direction.
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Actions

(turn to satellite new dir old dir
...

The satellite starts off pointing at old_dir and after
(slew_time old_dir new_dir) time ends up
pointing at new_dir
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Actions

(switch on instrument satellite
...

If the satellite has power available it powers on an on
board instrument in two time units.

The satellite no longer has power available (only one
on board instrument can be on at a time).

The instrument is no longer calibrated.
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Actions

(switch off instrument satellite
...

If instrument is on, it powers it off in one time unit.

The satellite then has power available.
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Actions

(calibrate satellite instrument
direction

...

The instrument must have power on, the satellite must
be pointing in direction, and direction must be a
calibration target for the instrument

After time (calibration_time instrument
direction) the instrument is calibrated.

The instrument must stay powered on for the entire
duration of the action.
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Actions

(take image satellite direction
instrument mode

...

The instrument must be calibrated during the duration
of the action. The satellite must be pointing in direction,
and the instrument must support images of mode.

After time 7 time units we (have_image direction
mode) .
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Control

The domain is very hard for domain-independent
planners. Such planners have problems computing
good heuristics since many different satellites can
acquire the same data.

Writing control using the previously presented ideas is
also hard.
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Lifted Decision Making

The fundamental decisions to be made in this domain
is the choice of which satellite is to acquire what data
and in what sequence.

Once we know that satellite A is to acquire data item
D, the rest of the control is relatively easy:
1. Power up the instrument.
2. Calibrate the instrument by first slewing the satellite

to point at a calibration target.
3. Slew the satellite to the data direction.
4. Take the image.
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Lifted Decision Making

Concurrency is relatively easy:
1. Don’t choose more than one satellite to acquire the

same data.
2. Finish acquiring the data before using the satellite

to acquire more data.
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Achieving the Lifted Control

Introduce a new action
(allocate-instrument ?sat ?inst)

Pick an unallocated satellite, an instrument on board, a
direction, and a set of data items that can be acquire
by the instrument in that direction.

The choice between the different allocate actions
yields a search space in which all acquisition
sequences can be explored.
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Achieving the Lifted Control

allocate-instrument adds to the state space two
new predicates:
1. (sat-control ?sat ?dir ?inst) to indicate

that the satellite is being controlled to acquire data
with ?inst in direction ?dir .

2. A collection of
(to-be-collected ?sat ?dir ?mode)
assertions, each one indicating that the satellite is
going to acquire an image of ?mode in direction
?dir

Control Intensive Planning/F. Bacchus – p.119/131



Power on/off Control

We only switch-off an instrument on a satellite if
the satellite is being controlled to acquire data with a
different instrument.

We only switch-on an instrument on a satellite if the
satellite is being controlled to acquire data with that
instrument.
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Calibration Control

We only slew the satellite to a calibration target if the
instrument is not yet calibrated and it is to be used to
acquire data.

No other slew directions are allowed until the
instrument is powered up and calibrated.

We only calibrate an instrument if the instrument is
not yet calibrated and the satellite is being controlled to
acquire data with that instrument.
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Take Image Control

We only slew the satellite to the control direction if the
instrument is calibrated and powered up.

No other slew directions are allowed.

We only allow (to-be-collected) images to be
taken.
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Short Duration Plans

There are two types of slew operations needed in a
plan, one to slew a satellite to a calibration target, and
another to slew the satellite to take an image.

It turns out that the slew times are non-Euclidean, i.e.,
a direct slew from A to B might take more time than a
slew from A to C then from C to B.

To get short duration plans, we need to control the
satellite so that it slews by using a series of slew steps
over the shortest path.

Although unnatural for this domain, “shortest path”
sub-problems are common in many planning domains.
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Short Duration Plans

The set of directions form the vertices of a graph, and
the slew time between each pair of direction form the
edge costs. (In this case every pair of directions is
connected).

There are well know algorithms for finding shortest
paths in finite graphs, it would be wasteful for the
planner to engage in search to try to find short paths.
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Controlling for Shortest Paths

First we initialize two binary functions (Mslew_times
?x ?y) and (Mslew_next ?x ?y) by using a
Floyd-Warshall all pairs shortest path algorithm.

(set-initialization-sequence
(forall (?d1 ?d2 ?cost ?next)

(all-pairs-shortest-path
direction ;;vertex predicate
slew time ;;edge cost function
?d1 ?d2 ;;bind to all pairs
?cost ;;bind to cost
?next) ;;bind to next edge on

;; shortest path
(and

(add (= (Mslew times ?d1 ?d2) ?cost))
(add (= (Mslew next ?d1 ?d2) ?next)))))
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Controlling for Shortest Paths

Then force the planner to use the shortest plan we add
two new actions

(Mturn to calibrate ?sat ?d new ?d prev)
(Mturn to takeimage ?sat ?d new ?d prev)

The first action requires that an instrument needs to be
calibrated, and ?d_new is the closest calibration target
enroute to the final image direction.

The second requires that the instrument is calibrated
and ?d_new is the final image direction.

These actions add the predicate
(Expand_turn_to ?sat ?d_new ?d_prev) .
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Controlling for Shortest Paths

Finally, the primitive
(turn_to ?sat ?d_next ?d_prev)
requires
(Expand_turn_to ?sat ?d_new ?d_prev)
as a precondition and that ?d_prev be the satellite’s
current direction and that ?d_new be equal to
(Mslew_next ?d_prev ?d_new) ,
i.e., the next step on the shortest path to the final
destination.
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Greedy Search for Plans

Greedy heuristics are used to determine which
allocations to explore first—in the competition Tlplan
planner only reported the first greedy discovered plan.
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Conclusions

We need not be restricted to “physical” actions and
predicates when model domains for planning.

Instead actions can represent “meta-level” decisions,
or reasons for action choices.

The issue of utilizing know efficient algorithms like
shortest path to solve subproblems is an important
one—how to integrate the use of such algorithms in a
clean way?

The notion of lifted decision making is very related to
HTN planners (Hierarchical Task Networks).

HTN planners use hierarchical decompositions of the
domain, but they have some difficulty interfacing with
goals specified as collections of predicates.
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