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1 Introduction

When doing backtracking tree search, as in the Davis-Putnam-Logemann-Loveland [4, 3] proce-
dure, there is a well known tradeoff between doing more reasoning at each node of the search tree
and exploring more nodes. At the extreme one could invoke a complete reasoner at each node,
backtracking if the reasoner says the formula at that node is unsatisfiable. Such a procedure would
explore zero nodes for unsatisfiable problems and at mostdes for satisfiable problems with
variables. However, such a procedure has no potential for improving problem solving efficiency.

In the constraints literature a large collection of polynomial time reasoning procedures that
can be executed at each node of a backtracking search have been defined under the name “local
propagation” (e.g., [5]). These procedures have two properties: they are able to detect some forms
of inconsistency which allows the search to backtrack immediately without having to search the
subtree under the inconsistent node, and they are able to simplify the problem so that even if
inconsistency is not detected useful work can still be accomplished. Furthermore, there is a large
family of propagation techniques with the property that one can monotonically gain inconsistency
detection power for a monotonic increase in computational cost [7]. As a result a large amount
of research in the Constraints field has focused on identifying the local propagation procedures
that offer the best tradeoff between reducing the number of nodes searched and the time it takes at
each node to run the procedure. The aim, of course, being to reduce the total time required by the
backtracking procedure.

In DPLL solvers, on the other hand, unit propagation has dominated, and to date other more



expensive forms of reasoning at each node has not proved to be cost effdétivexample, the
2cIsVER system of van Gelder [13] generally explores many fewer nodes than its unit propagating
alternatives, but it is generally slower. In this case the additional reasoning being done (computing
a closure over the binary clauses) is not achieving a good tradeoff between time spent per node and
the reduction in the number of nodes searched.

This result would seem to indicate that less reasoning is better. However, that is not necessarily
the case. There are two factors to consider. First, additional polynomial time reasoning has the
potential to allow the search to avoid searching subtrees that might take it exponential time to
explore. Thus it is always possible to contrive examples where even very expensive polynomial
time reasoning pays off because it allows the search to avoid the exponential cost of searching a
particularly expensive subtree. The issue in practice is how often this happens and how much work
is saved (e.g., the extra reasoning might only avoid subtrees that are easy to refute with simpler
reasoning). Second, additional reasoning might sufficiently simplify the theory that the bulk of the
nodes, i.e., those at the deeper levels of the tree, involve very simple formulas and can be searched
very quickly. This might have the effect that the net nodes/second search rate is actually increased
by doing more reasoning.

In this paper we demonstrate that both of these phenomena can occur. In particular, we show
that using an even more expensive form of reasoning than performed by 2clsVER can achieve a
better tradeoff between reasoning time and search reduction and thus achieve significantly better
performance. In some cases, we will also see that the net rate of nodes/seconds can also be im-
proved due to the additional simplification being done at the top of the search tree. In the sequel
we explain the reasoning that we employ, and show some empirical results.

2 Hyper Resolution with Binary Clauses in DPLL

We will view the DPLL procedure as being a recursive algorithm taking as ingatira(F, A ),
whereF is a CNF formula, andA is a set of literals that have already been assigrrRde by
previous invocations. Initially DPLL is called with the input formulaand A = 0, i.e., with
(F,0).

DPLL performs various reductions on the formula component of its input prior to invoking
itself recursively. The most fundamental of these is to compute the reduction of its input by a
literal £ (also calledorcing (), denoted byF, A)[€]. (F, A)[{] =(F’, A’) whereF’ is generated from
F by removing fromF all clauses containinand then removing from all the remaining clauses,
andA’ is simply A U {{}.

Second, it can use various forms of reasoning to further reduce its input formula. The most
important of these is unit clause reduction. Unit clause reduction selects a unit clause from the

We are not considering here specialized reasoning techniques that can be implemented efficiently for specific types
of sub-theories. Such specialized techniques can be cost effective as shown, e.gedsathgystem [8]. Specialized
reasoners is also heavily utilized in the constraints field. The most well known probably being the specialized reasoning
employed in the all-difference constraint [11].



input formula and performs a reduction of the input by the literal in that clause. Unit clause
reduction can generate new unit clausesamtiPropagationUP) is the iterative process of doing
unit clause reductions until either (a) a contradiction is achieved, or (b) there are no more unit
clauses in the input. Aontradictionis achieved when the set of assigned literalscontains both
¢ and{ for some literak.

The basic implementation of DPLL is to first perform unit propagation on the input formula.
If the resulting formula is empty, i.e., all clauses have been satisfied Ahsra satisfying truth
assignment. Otherwise, A contains a contradiction then this particular collection of assigned
literals cannot be extended to a solution, and we backtrack. Otherwise, DPLL chooses & literal
to split on and recursively searches for a satisfying truth assignment contéismgf none exist,
for one that containé If neither extension succeeds DPLL backtracks.

DPLL (T,A)

1. (T",A)=UP(T,A)
2. if A’ contains a contradiction
3 return(FALSE)

4. elseif T' is empty

5. return(TRUE)

6. | := selectVarNotInA(T,A)

7. if(DPLL((T,A))

8 return(TRUE)

9. else B
10.  return(DPL((T,A) 1])

Except for the 2clsVER system of [13], most current DPLL solvers use this basic algorithm
(along with other orthogonal improvements). In particular, unit propagation is all that is used in
the formula reduction phase.

In many problems the initial formula can contain many binary clauses, and even if it doesn't
many binary clauses will be created as DPLL reduces the formula during its splitting process.
2cIsVER performs all possible resolutions of pairs of binary clauses. Such resolutions yield only
new binary clauses or new unit clauges$Ve denote by BinRes the transformation of the input
that consists of repeatedly (a) adding to the formula all new binary or unit clauses producible
by resolving pairs of binary clauses, and (b) performing UP on any new unit clauses that appear
(which in turn might produce more binary clauses causing another iteration of (a)), until either (1)
a contradiction is achieved, or (2) nothing new can be added by a step of (a) or (b).

Another common technique used in DPLL solvers is failed literal detection [6]. Failed literal
detection is a one-step lookahead with UP. If forcing litérahd then performing UP yields a
contradiction thert is in fact entailed by the current input and we can force it (and then perform
UP). DPLL solvers often perform failed literal detection on a set of likely literals at each node.

22cIsVER also has the option of resolving away a variable rather than splitting on it, but this additional form of
reasoning is still not sufficient to make it competitive with state of the art UP based DPLL solvers.



OBSERVATION 1 If BinRes forces the literdl, then failed literal detection ofiwould also detect
that{ is entailed.

This observation can be proved by examining the implication graph representation of the binary
clauses.

OBSERVATION 2 Failed literal detection is able to detect entailed literals that cannot be detected
by BinRes.

For example, if we test with failed literal detection in the formul&(c, a), (c,b), (c,d),
(a,b,d)}, [1), we will detect a contradiction and thus thais entailed. BinRes on the other hand,
does not force: BinRes does not consider the non-binary clauses.

We have found in our experiments that ignoring the non-binary clauses tends to produce a
binary clause sub-theory that is relatively isolated from the rest of the theory. Hence, computing
its closure produces fewer contradictions than might be expected.

To remedy this we have investigated hyper-resolution. Hyper-resolution is a resolution step that
involves more than two clauses. Here we define a hyper-resolution step to take amieptary
clause v > 2) (14,15, ...,14) andn — 1 binary clauses each of the forfy},¢) 1 =1,...,n—1).

It produces as output the new binary clayégd,). For example, using hyper-resolution on the
inputs(a, b, c,d), (h,a), (h,c), and(h, d), produces the new binary clauge b). Note that the
standard resolution of two binary clauses is covered by this definition ¢with2).

We denote by HypBinRes the transformation of the input that is exactly like BinRes except
that it performs the above hyper-resolution instead of simply resolving binary clauses. DPLL-
HypBinRes is then defined to be DPLL with HypBinRes substituted for UP, similarly DPLL-
BinRes is DPLL with BinRes substituted for UP.

OBSERVATION 3 HypBinRes detects the same set of forced literals as repeatedly (a) doing a failed
literal test onall literals, and (b) performing UP on all detected entailed literals, until either (1) a
contradiction is achieved, or (2) no more entailed literals are detected.

This observation can be proved by showing that every literal that HypBinRes forces can be detected
by the failed literal test. The requirement for repeating the failed literal test follows from fact that
HypBinRes is run to closure. Note that simply performing the failed literal test on every literal is
not as powerful as HypBinRes. One would have to retest every literal every time an entailed literal
is unit propagated until no new entailed literals are detected. As a result it is much more efficient to
perform HypBinRes rather than repeated failed literal tests—HypBinRes does not need to repeat
work in the same way.

HypBinRes is also very useful when it comes to computing heuristics. A very useful heuristic
is to rank literals by the number of new literals they would force under UP. This is the heuristic
used bysATz [9]. However, this heuristic is costly to compute, and can usually only be estimated.
SaTz for example evaluates this heuristic on some set of candidate literals by unit propagating each
one and then counting the number of newly forced literals. (Failed literal detection is an important
side effect of this process). HypBinRes has the following property:

OBSERVATION 4 A literal £ will force a literal ¢’ under UP if and only if the binary cIaus(éT, £



is in the formula after performing HypBinRes.

Thus after performing HypBinRes a simple count of the number of binary clauses a literal’s nega-
tion participates in yields the precise number of literals that would be forced by unit propagating
that literal. This observation is a direct corollary of Observation 3.

Finally, if one is reasoning with binary clauses, equality reduction can be performed. If a for-
mulaF containsg(a, b) as well ag a, b), then we can form a new formula EqRed(ieegby equality
reduction. Equality reduction involves (a) replacing all instancésiafF by a (or vice versa), (b)
removing all clauses which now contain batrand a, (c) removing all duplicate instances af
(or a) from all clauses. This process might generate new binary clauses.

EqgReduce can be added to HypBinRes (HypBinRes+eq) by repeatedly doing (a) equality re-
duction, (b) hyper-resolution, and (c) unit propagation, until nothing new is added or a contradic-
tion is found. DPLL-HypBinRes+eq is then defined to be DPLL using HypBinRes+eq instead of
UP

OBSERVATION 5 HypBinRes+eq detects the same set of forced literals as HypBinRes.

The two binary clausegi, b) and(a, b) allow HypBinRes to deduce everything that HypBinRes+eq
can.

This means that modulo changes in the heuristic choices it might make DPLL-HypBinRes+eq
does not have the potential to produce exponential savings over DPLL-HypBinRes since it cannot
detect any further inconsistenci€g.he benefit of using equality reduction is that for many prob-
lems equality reduction significantly simplifies the formula. This can have a dramatic effect on the
time it takes to compute HypBinRes.

3 The Sat Solver2cLsS+EQ

We have implemented DPLL-HypBinRes+eq in a system c&leds+EQ. And here we present
some results comparir@cLs+EQ when it uses hyper-resolution, when only BinRes is being used,
and when equality reduction is turned on or off. In our tests we used some of the benchmark suites
utilized on the Sat-Ex web site [12]. The details of which problems these suites contain can be
found at this web site.

In Table 1 the first 5 problem suites are random 3-SAT problems drawn from the hard region
(4.26 clausel/variable ratio). The data indicates that equality processing is not helpful, that hyper-
resolution saves about a factor 5 in nodes searched and a factor of 2 in time. More extensive data
is provided in Table 3 in the appendix. This data indicates that a range of different behaviors
are possible, but overall there is strong evidence for the superiority of using the defined hyper-
resolution step over simply computing the closure of the binary sub-theory. Some of the key points
are illustrated in Table 1.

¢ In the “bf” family of problems, hyper-resolution is able to save a factor of 1000 in nodes
searched and a factor of 300 in time.

3Note that equality reduction when added to plain BinRes does add inconsistency detection power.
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¢ In the ucsc-bf family equality processing allows nodes to be processed about 30 times as fast

(when hyper-resolution is used). This is an example of more reasoning speeding up the rate
at which nodes can be processed.

¢ In the (pigeon) hole problems neither equality reduction nor hyper-resolution pay off. For-
tunately, it seems that the penalty paid when things are slower is significantly less than the
gain received when things are faster. (See the data in Table 3 for further verification of this

claim.)

Family (#problems) Binary | Binary+Eq Hyper | Hyper+EQ
3Sat50 (100) Fails 0 0 0 0
Time 1.2 15 11 11

Nodes 2,877 2,809 679 680

3Sat 100 (100) Fails 0 0 0 0
Time 12.7 13.0 8.9 8.8

Nodes 20,308 20,277 3,926 3,918

3Sat 150 (100) Fails 0 0 0 0
Time 148.7 156.8 92.8 93.0

Nodes 152,275 151,719 27,406 27,629

3Sat 200 (100) Fails 0 0 0 0
Time 1,590.5 1,639.5 858.8 854.1

Nodes| 1,016,073 1,018,201 157,026 158,865

3Sat 250 (100) Fails 0 0 0 0
Time 13,427 13,277.5 6,949.5 6,883.3

Nodes| 5,914,397| 5,929,868 892,623.0 900,056

bf (4) | Fails 2 0 0 0
Time 1321.2 346.5 11.6 3.3

Nodes| 2,318,380 3,255,878 1,138.0 2,648.0

hole (5)| Fails 0 0 0 0
Time 98.7 108.5 123.0 130.2

Nodes| 4,519,272 4,519,272| 2,887,456.0f 2,887,456

ucsc-bf (223)| Fails 76 33 1 1
Time 47,334.2 27,694 2,206.3 700.4

Nodes| 57,622,001 331,321,831 623,802| 8,244,040

Table 1: Comparison of performance on various benchmarks. All problems were run with a time
limit of 500 CPU Sec. Figures shown are totals over all problems in the family, counting the time
(500 sec) for failed problems. Tests were on a 500MHz PIII.

Although these results are an improvement over simply computing the binary closure, they are
still not competitive with the best UP DPLL solvers. However, there are two orthogonal improve-
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Family (#problems) 2CLS+EQ | 2CLS+EQ RELSAT-2000 SATO-v3.00 ZCHAFF
ranking
hfo4(40) 1,602.90 10th 569.51 33,785.92 6,506.10
eg-checking(34 24.75 3rd 13.88 (1) 10,007.25 2.45
facts(15) 92.37 5th 75.46 12.78 13.45
quasigroup(22 1996.20 6th 2,347.83 1,087.70 845.89
queueinvar(10 139.59 4th 236.04 (2) 20,400.45 15.39
des-encryption(32) (8) 80230.66 3rd | (8)80,729.42 (8) 80,402.84| (2) 22,726.43
fvp(4) | (3) 30003.68 2nd | (3)30,006.79] (3)30,006.35 1,224.86
Beijing(16) | (8) 80773.51 12th | (2) 24024.57 (4) 44078.88| (2) 20268.12
barrel(8) 6415.63 3rd | (1)11,872.80] (1)10,417.70 912.22
longmult(16) 3234.24 1st 41,243.77| (1) 22,270.98 4,502.49
miters(25) 737.44 1st| (7) 86,670.25| (20) 209,123.33 (2) 21,289.77

Table 2: Results of the best general purpose Sat Solvers on various problem suites. Bracketed
numbers indicate number of failures for that family. Ranking is with respect to all 23 solvers on
Sat-Ex. The best times arelold and times have been standardized to the Sat-Ex machine times.

ments that are useful in any DPLL solver: intelligent backtracking and clause recording. We have
implemented intelligent backtracking #tLs+EQ, and a simplified (and low-overhead) version of
clause recording by adapting the pruneback techniques described in [1].

With these two improvemen@cLs+EQ becomes one of the most powerful SAT solvers. For
example, with these additions it can solve all 722 of the non-random problems in Tables 1 and 3
in a total of 494 sec. The performancezufLs+EQ against three of the best UP DPLL solvers on
harder families of problems is given in Table¢ 2n Table 2 all times have been standardized to
the Sat-Ex machine times (using the Dimacs machine scale), and we use the Sat-Ex convention of
counting 10,000 seconds for each failed run. All of the results quoted in this paper were generated
using the same variable choice heuristic: count the number of binary clauses each value of the
variable participates in, combine these scores using a multiplicative function, and then choose the
top scoring variable.

The miters family is wher@cLs+EQ has its best performance. Itis the only solver among those
reported on in the Sat-Ex site that is able to solve all of these problems. In manRwassEQ is
superior to every other DPLL solver except mrHAFF [10]. On a number of problenBCHAFF is
in a class of its own. However, there is much room for improvemefcirs+EQ. In particular, the
simplified version of clause recording we have implemented is not as powerful as normal clause
learning: our technique forgets the learned clause as soon as we backtrack far enough that 3 of
the clause’s literals are unassigned. We expect that once we have implemented full clause learning
2cLs+EQ will be superior tozCHAFF on a much larger set of problems, and more competitive
with it on an even larger set. AdditionallgzcHAFF was very carefully engineered and highly

4These three solvergELSAT-2000[2], SATO-v3.00 [14], and zchaff [10] were the only other solvers capable of
solving all of the 722 “easy”problems mentioned in Tables 1 and 3.
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optimized. Although we have put a fair effort into implement2gLs+EQ, there is considerable
room for further optimization.

4 Conclusions

Our results indicate that the space of tradeoffs between more reasoning and less search is far from
being fully explored. Unfortunately, the function relating the amount of reasoning and solving time

is not monotonic. So considerable further experimentation will be required to learn more about this
space.
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(F;pnr]cl)lglems) Binary | Binary+Eq Hyper | Hyper+EQ
aim (72)| Fails 12 12 7 7
Time 7375.2 7353.5 3,540.0 3,538.7

Nodes| 375,292,163 371,062,385 57,372,302 57,514,005

ais (4)| Fails 0 0 0 0
Time 0.1 0.2 26.1 35.6

Nodes 48 40 17,266 31,690

blocksworld (7)| Fails 1 1 0 0
Time 1,336.6 674.8 155.6 95.8

Nodes 6,482 4,403 201 25

hole (5)| Fails 0 0 0 0
Time 98.7 108.5 123.0 130.2

Nodes| 4,519,272| 4,519,272| 2,887,456.0 2,887,456

ii8/16 (24) | Fails 0 0 0 0
Time 630.8 628.0 36.0 33.3

Nodes 177,411 177,441 1,246 1,249

jhn (50) | Falils 0 0 0 0
Time 2.0 2.1 2.0 1.9

Nodes 973 972 121 128

morphed (200) Fails 1 1 1 1
Time 522.9 523.2 525.1 5249

Nodes| 8,017,261| 6,517,103 5,260,416| 3,068,016

par8 (10)| Fails 0 0 0 0
Time 0.5 0.5 0.7 0.5

Nodes 192 84 47 50

ssa (8)| Fails 1 0 0 0
Time 712.3 42.0 27.6 4.2

Nodes 490,476 410,294 4,604 214

ucsc-ssa (102) Fails 6 5 0 0
Time 4,027.3 2,687.9 507.8 40.2

Nodes| 2,737,423| 59,997,666 60,779 3,085

dubois (13)| Fails 6 1 6 1.0
Time 3,717.8 505.8 3,879.8 506.0

Nodes| 335,081,656/ 19,388,444| 287,940,696 19,130,396

Table 3: Comparison of performance on various benchmarks. All problems were run with a time
limit of 500 CPU Sec. Figures shown are totals over all problems in the family, counting the time
(500 sec) for failed problems. Tests were on a 500MHz PIII.
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