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Abstract

This thesis develops a method for automatically constructing, visualizing and describ-
ing a large class of models, useful for forecasting and finding structure in domains such
as time series, geological formations, and physical dynamics. These models, based on
Gaussian processes, can capture many types of statistical structure, such as periodicity,
changepoints, additivity, and symmetries. Such structure can be encoded through ker-
nels, which have historically been hand-chosen by experts. We show how to automate
this task, creating a system that explores an open-ended space of models and reports
the structures discovered.

To automatically construct Gaussian process models, we search over sums and prod-
ucts of kernels, maximizing the approximate marginal likelihood. We show how any
model in this class can be automatically decomposed into qualitatively different parts,
and how each component can be visualized and described through text. We combine
these results into a procedure that, given a dataset, automatically constructs a model
along with a detailed report containing plots and generated text that illustrate the
structure discovered in the data.

The introductory chapters contain a tutorial showing how to express many types of
structure through kernels, and how adding and multiplying different kernels combines
their properties. Examples also show how symmetric kernels can produce priors over
topological manifolds such as cylinders, toruses, and Mobius strips, as well as their
higher-dimensional generalizations.

This thesis also explores several extensions to Gaussian process models. First, build-
ing on existing work that relates Gaussian processes and neural nets, we analyze natural
extensions of these models to deep kernels and deep Gaussian processes. Second, we ex-
amine additive Gaussian processes, showing their relation to the regularization method
of dropout. Third, we combine Gaussian processes with the Dirichlet process to produce
the warped mixture model: a Bayesian clustering model having nonparametric cluster
shapes, and a corresponding latent space in which each cluster has an interpretable

parametric form.
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Notation

Unbolded z represents a single number, boldface x represents a vector, and capital
boldface X represents a matrix. An individual element of a vector is denoted with a
subscript and without boldface. For example, the ith element of a vector x is z;. A bold

lower-case letter with an index such as x; represents a particular row of matrix X.

Symbol  Description

The squared-exponential kernel, also known as the radial-basis

SE function (RBF) kernel, the Gaussian kernel, or the exponentiated
quadratic.

RQ The rational-quadratic kernel.

Per The periodic kernel.

Lin The linear kernel.

WN The white-noise kernel.

C The constant kernel.

The changepoint kernel, o (z,2') = o(x)o(2'), where o(z) is a sig-
7 moidal function such as the logistic function.
ko + Ky Addition of kernels, shorthand for k,(x,x") + ky(x, x')
ko X ky Multiplication of kernels, shorthand for k,(x,x") x ky(x,x’)
kE(X,X)  The Gram matrix, whose 4, jth element is k(x;,x;).
K Shorthand for the Gram matrix k(X, X)
Ff(X) A vector of function values, whose ith element is given by f(x;).
mod(7,j) The modulo operator, giving the remainder after dividing i by j.
o(+) The big-O asymptotic complexity of an algorithm.

Y. 4 the dth column of matrix Y.

Precise definitions of all kernels listed here are given in appendix B.



Chapter 1
Introduction

“All models are wrong, but yours are stupid too.”
@ML_ Hipster (2013)

Prediction, extrapolation, and induction are all examples of learning a function from
data. There are many ways to learn functions, but one particularly elegant way is by
probabilistic inference. Probabilistic inference takes a group of hypotheses (a model),
and weights those hypotheses based on how well their predictions match the data. This
approach is appealing for two reasons. First, keeping all hypotheses that match the
data helps to guard against over-fitting. Second, comparing how well a dataset is fit by
different models gives a way of finding which sorts of structure are present in that data.

This thesis focuses on constructing models of functions. Chapter 2 describes how to
model functions having many different types of structure, such as additivity, symmetry,
periodicity, changepoints, or combinations of these, using Gaussian processes (GPs).
Chapters 3 and 4 show how such models can be automatically constructed from data,
and then automatically described. Later chapters explore several extensions of these
models. This short chapter introduces the basic properties of GPs, and provides an

outline of the thesis.

1.1 (aussian process models

Gaussian processes are a simple and general class of models of functions. To be pre-
cise, a GP is any distribution over functions such that any finite set of function values
f(x1), f(x2),... f(xn) have a joint Gaussian distribution (Rasmussen and Williams,

2006, chapter 2). A GP model, before conditioning on data, is completely specified by
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T T

Figure 1.1: A visual representation of a Gaussian process modeling a one-dimensional
function. Different shades of red correspond to deciles of the predictive density at each
input location. Coloured lines show samples from the process — examples of some of the
hypotheses included in the model. Top left: A GP not conditioned on any datapoints.
Remaining plots: The posterior after conditioning on different amounts of data. All
plots have the same axes.

its mean function,

E[f(x)] = p(x) (1.1)

and its covariance function, also called the kernel:

Cov [f (%), f(X)] = k(x,x') (1.2)

It is common practice to assume that the mean function is simply zero everywhere, since
uncertainty about the mean function can be taken into account by adding an extra term
to the kernel.

After accounting for the mean, the kind of structure that can be captured by a
GP model is entirely determined by its kernel. The kernel determines how the model

generalizes, or extrapolates to new data.
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There are many possible choices of covariance function, and we can specify a wide
range of models just by specifying the kernel of a GP. For example, linear regression,
splines, and Kalman filters are all examples of GPs with particular kernels. However,
these are just a few familiar examples out of a wide range of possibilities. One of the
main difficulties in using GPs is constructing a kernel which represents the particular

structure present in the data being modelled.

1.1.1 Model selection

The crucial property of GPs that allows us to automatically construct models is that
we can compute the marginal likelihood of a dataset given a particular model, also
known as the evidence (MacKay, 1992). The marginal likelihood allows one to compare
models, balancing between the capacity of a model and its fit to the data (MacKay,
2003; Rasmussen and Ghahramani, 2001). The marginal likelihood under a GP prior of
a set of function values [f(x1), f(X2), ... f(xn)] := f(X) at locations X is given by:

p(F (X)X, (), k() = N (F(X) (X)), (X, X)) (1.3)
= (2m)7% x [R(X,X)|"2
controls model capacity

X exp { = (F0X) — ()" KX, X) (F(X) — (X))

encourages fit with data

This multivariate Gaussian density is referred to as the marginal likelihood because it
implicitly integrates (marginalizes) over all possible functions values f(X), where X is

the set of all locations where we have not observed the function.

1.1.2 Prediction

We can ask the model which function values are likely to occur at any location, given the

observations seen so far. By the formula for Gaussian conditionals (given in appendix A),
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the predictive distribution of a function value f(x*) at a test point x* has the form:

P(OOFX), X, (), k() = N (£ | p(x) + k(xS X)R(X, X) 7 (F(X) = p(X)),

predictive mean follows observations
k(x*,x*) — k(x*, X)k(X, X) k(X x"))

predictive variance shrinks given more data

(1.4)

These expressions may look complex, but only require a few matrix operations to
evaluate.

Sampling a function from a GP is also straightforward: a sample from a GP at a finite
set of locations is just a single sample from a single multivariate Gaussian distribution,
given by equation (1.4). Figure 1.1 shows prior and posterior samples from a GP, as
well as contours of the predictive density.

Our use of probabilities does not mean that we are assuming the function being
learned is stochastic or random in any way; it is simply a consistent method of keeping

track of uncertainty.

1.1.3 Useful properties of Gaussian processes

There are several reasons why GPs in particular are well-suited for building a language

of regression models:

o Analytic inference. Given a kernel function and some observations, the predic-
tive posterior distribution can be computed exactly in closed form. This is a rare

property for nonparametric models to have.

« Expressivity. Through the choice of covariance function, we can express a wide

range of modeling assumptions. Some examples will be shown in chapter 2.

« Integration over hypotheses. The fact that a GP posterior, given a fixed kernel,
lets us integrate exactly over a wide range of hypotheses means that overfitting
is less of an issue than in comparable model classes. For example, compared to
neural networks, relatively few parameters need to be estimated, which lessens the

need for the complex optimization or regularization schemes.

e Model selection. A side benefit of being able to integrate over all hypotheses

is that we can compute the marginal likelihood of the data given a model. This
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gives us a principled way of comparing different models.

o Closed-form predictive distribution. The predictive distribution of a GP at a
set of test points is simply a multivariate Gaussian distribution. This means that

GPs can easily be composed with other models or decision procedures.

o Easy to analyze. It may seem unsatisfying to restrict ourselves to a limited
model class, as opposed to trying to do inference in the set of all computable
functions. However, simple models can be used as well-understood building blocks

for constructing more interesting models.

For example, consider linear models. Although they form an extremely limited
model class, they are simple, easy to analyze, and easy to incorporate into other
models or procedures. Gaussian processes can be seen as an extension of linear
models which retain these attractive properties (Rasmussen and Williams, 2006,

chapter 2).

1.1.4 Limitations of Gaussian processes

There are several issues which make GPs sometimes difficult to use:

« Slow inference. Computing the matrix inverse in equations (1.3) and (1.4) takes
O(N?) time, making exact inference prohibitively slow for more than a few thou-
sand datapoints. However, this problem can be addressed by approximate inference
schemes (Hensman et al., 2013; Quinonero-Candela and Rasmussen, 2005; Snelson

and Ghahramani, 2006).

o Light tails of the predictive distribution. The predictive distribution of a
standard GP model is Gaussian. We may sometimes with to use non-Gaussian
predictive likelihoods, for example in order to be robust to outliers, or to perform
classification. Using non-Gaussian likelihoods requires approximate inference. For-
tunately, mature software packages exist (Hensman et al., 2014b; Rasmussen and
Nickisch, 2010; Vanhatalo et al., 2013) which can automatically perform approxi-
mate inference for a wide variety of non-Gaussian likelihoods, and also implement

sparse approximations.

o The need to choose a kernel. The flexibility of GP models raises the question
of which kernel to use for a given problem. Choosing a useful kernel is equivalent

to learning a useful representation of the input. Kernel parameters can be set
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automatically by maximizing the marginal likelihood, but until recently, human
experts were required to choose the parametric form of the kernel. Chapter 3 will

show a way in which kernels can be automatically constructed for a given dataset.

1.2 Outline and contributions of thesis

The main contribution of this thesis is to develop a method to automatically model,
visualize, and describe a variety of statistical structures in data, by searching through
an open-ended language of regression models. This thesis also includes a set of related
results showing how Gaussian processes can be extended or composed with other models.

Chapter 2 is a tutorial showing how to build a wide variety of structured models
of functions by constructing appropriate covariance functions. We will also show how
GPs can produce nonparametric models of manifolds with diverse topological structures,
such as cylinders, toruses and Mobius strips.

Chapter 3 shows how to search over an open-ended language of models, built by
adding and multiplying different kernels. Since we can evaluate each model by the
marginal likelihood, we can automatically construct custom models for each dataset
by a straightforward search procedure. We will show how the nature of GPs allow
the resulting models to be visualized by decomposing them into diverse, interpretable
components, each capturing a different type of structure. Our experiments show that
capturing such high-level structure sometimes allows one to extrapolate beyond the range
of the data.

One benefit of using a compositional model class is that the resulting models are
relatively interpretable. Chapter 4 demonstrates a system which automatically describes
the structure implied by a given kernel on a given dataset, generating reports with graphs
and English-language text describing the resulting model. Combined with the automatic
model search developed in chapter 3, this system represents the beginnings of what could
be called an “automatic statistician”, capable of some aspects of model-building and
explanation currently performed by experts.

Chapter 5 analyzes deep neural network models by characterizing the prior over
functions obtained by composing GP priors to form deep Gaussian processes. We show
that, as the number of layers increase, the amount of information retained about the
original input diminishes to a single degree of freedom. A simple change to the network
architecture fixes this pathology. We relate these models to neural networks, and as a

side effect derive several forms of infinitely deep kernels.
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Chapter 6 examines a more limited, but much faster way of discovering structure
using GPs. Specifying a kernel having many different types of structure, we use kernel
parameters to discard whichever types of structure are not found in the current dataset.
The particular model class we examine is called additive Gaussian processes, a model
summing over exponentially-many GPs, each depending on a different subset of the
input variables. We give a polynomial-time inference algorithm for this model, and
relate it to other model classes. For example, additive GPs are shown to have the same
covariance as a GP that uses dropout, a recently developed regularization technique for
neural networks.

Chapter 7 develops a Bayesian clustering model in which the clusters have nonpara-
metric shapes, called the infinite warped mixture model. The density manifolds learned
by this model follow the contours of the data density, and have interpretable, parametric
forms in the latent space. The marginal likelihood lets us infer the effective dimension

and shape of each cluster separately, as well as the number of clusters.



Chapter 2
Expressing Structure with Kernels

This chapter shows how to use kernels to build models of functions with many different
kinds of structure: additivity, symmetry, periodicity, interactions between variables,
and changepoints. We also show several ways to encode group invariants into kernels.
Combining a few simple kernels through addition and multiplication will give us a rich,
open-ended language of models.

The properties of kernels discussed in this chapter are mostly known in the literature.
The original contribution of this chapter is to gather them into a coherent whole and
to offer a tutorial showing the implications of different kernel choices, and some of the

structures which can be obtained by combining them.

2.1 Definition

A kernel (also called a covariance function, kernel function, or covariance kernel), is
a positive-definite function of two inputs x,x’. In this chapter, x and x’ are usually
vectors in a Euclidean space, but kernels can also be defined on graphs, images, discrete
or categorical inputs, or even text.

Gaussian process models use a kernel to define the prior covariance between any two

function values:

Cov [f(x), f(x)] = k(x,x') (2.1)

Colloquially, kernels are often said to specify the similarity between two objects. This is
slightly misleading in this context, since what is actually being specified is the similarity

between two values of a function evaluated on each object. The kernel specifies which
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functions are likely under the GP prior, which in turn determines the generalization

properties of the model.

2.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 2.1.

Kernel name: | Squared-exp (SE) Periodic (Per) Linear (Lin)
k(z,2") = | ofexp (— (m;g)Q) oFexp (_z% sin? (W%)) oz —c)(z' =)
Plot of k(z,'): 0
0 0
x—a x—a x (with 2/ = 1)
! 3
Functions f(x) MNNNMN —
sampled from T——
GP prior:
x T T
Type of structure: local variation repeating structure linear functions

Figure 2.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a different set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly different assumptions

about the smoothness of the function being modeled.

Kernel parameters FEach kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of

being parameters which specify a function directly. An example would be the lengthscale
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parameter ¢ of the SE kernel, which specifies the width of the kernel and thereby the

smoothness of the functions in the model.

Stationary and Non-stationary The SE and Per kernels are stationary, meaning
that their value only depends on the difference x — 2’. This implies that the probability
of observing a particular dataset remains the same even if we move all the x values by
the same amount. In contrast, the linear kernel (Lin) is non-stationary, meaning that
the corresponding GP model will produce different predictions if the data were moved

while the kernel parameters were kept fixed.

2.3 Combining kernels

What if the kind of structure we need is not expressed by any known kernel? For many
types of structure, it is possible to build a “made to order” kernel with the desired
properties. The next few sections of this chapter will explore ways in which kernels can
be combined to create new ones with different properties. This will allow us to include

as much high-level structure as necessary into our models.

2.3.1 Notation

Below, we will focus on two ways of combining kernels: addition and multiplication. We

will often write these operations in shorthand, without arguments:

ko + ky = ko(x,X') + ky(x, %) (2.2)
ko X ky = ko(x,X') X ky(x, %) (2.3)

All of the basic kernels we considered in section 2.2 are one-dimensional, but kernels
over multi-dimensional inputs can be constructed by adding and multiplying between
kernels on different dimensions. The dimension on which a kernel operates is denoted
by a subscripted integer. For example, SE, represents an SE kernel over the second
dimension of vector x. To remove clutter, we will usually refer to kernels without

specifying their parameters.
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Lin x Lin SE X Per Lin x SE Lin x Per
Wlth:(: =1) Wltha: =1) Wlthx =1)

MWMM

quadratic functions locally periodic  increasing variation growing amplitude

Figure 2.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 2.1.

2.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 2.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple

parametric form. Here, we discuss a few examples:

o Polynomial Regression. By multiplying together T' linear kernels, we obtain a
prior on polynomials of degree T'. The first column of figure 2.2 shows a quadratic

kernel.

e Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per x SE corresponds to locally

periodic structure, as shown in the second column of figure 2.2.

e Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter ¢. The third and fourth columns

of figure 2.2 show two examples.
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One can multiply any number of kernels together in this way to produce kernels
combining several high-level properties. For example, the kernel SE x Lin x Per specifies
a prior on functions which are locally periodic with linearly growing amplitude. We will

see a real dataset having this kind of structure in chapter 3.

2.3.3 Building multi-dimensional models

A flexible way to model functions having more than one input is to multiply together
kernels defined on each individual input. For example, a product of SE kernels over
different dimensions, each having a different lengthscale parameter, is called the SE-ARD

kernel:

D 1(xd—x’)2 1D(xd—x’)2

Figure 2.3 illustrates the SE-ARD kernel in two dimensions.

A ~-Aih

l »

- v

f(zq,x2) drawn from
QP(O, SE; x SEQ)
Figure 2.3: A product of two one-dimensional kernels gives rise to a prior on functions
which depend on both dimensions.

X

SEI(JIl, .Tll) SEs (.TQ, .I‘/2) SE; X SE,

ARD stands for automatic relevance determination, so named because estimating
the lengthscale parameters ¢, (s, ..., {p, implicitly determines the “relevance” of each
dimension. Input dimensions with relatively large lengthscales imply relatively little
variation along those dimensions in the function being modeled.

SE-ARD kernels are the default kernel in most applications of GPs. This may be
partly because they have relatively few parameters to estimate, and because those pa-
rameters are relatively interpretable. In addition, there is a theoretical reason to use
them: they are universal kernels (Micchelli et al., 2006), capable of learning any contin-

uous function given enough data, under some conditions.
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However, this flexibility means that they can sometimes be relatively slow to learn,
due to the curse of dimensionality (Bellman, 1956). In general, the more structure we
account for, the less data we need - the blessing of abstraction (Goodman et al., 2011)
counters the curse of dimensionality. Below, we will investigate ways to encode more

structure into kernels.

2.4 Modeling sums of functions

An additive function is one which can be expressed as f(x) = f,(x) + fp(x). Additivity
is a useful modeling assumption in a wide variety of contexts, especially if it allows us
to make strong assumptions about the individual components which make up the sum.
Restricting the flexibility of component functions often aids in building interpretable

models, and sometimes enables extrapolation in high dimensions.

Lin + Per SE + Per SE + Lin Ellong) | gp(short)
WlthfL' =1) Wlthl‘ =1)

MWNW

periodic plus trend periodic plus noise linear plus variation slow & fast variation

Figure 2.4: Examples of one-dimensional structures expressible by adding kernels. Rows
have the same meaning as in figure 2.1. SE(°"®) denotes a SE kernel whose lengthscale
is long relative to that of SE(hert)

It is easy to encode additivity into GP models. Suppose functions f,, f, are drawn

independently from GP priors:

fa ~ gP(Nmka> (25)
fo ~ GP(pw, ks) (2.6)
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Then the distribution of the sum of those functions is simply another GP:

Jat fo ~ GP(tta + pio, ka + Fo). (2.7)

Kernels k, and k;, can be of different types, allowing us to model the data as a sum
of independent functions, each possibly representing a different type of structure. Any

number of components can be summed this way.

2.4.1 Modeling noise

Additive noise can be modeled as an unknown, quickly-varying function added to the
signal. This structure can be incorporated into a GP model by adding a local kernel such
as an SE with a short lengthscale, as in the fourth column of figure 2.4. The limit of the
SE kernel as its lengthscale goes to zero is a “white noise” (WN) kernel. Function values
drawn from a GP with a WN kernel are independent draws from a Gaussian random

variable.

Given a kernel containing both signal and noise components, we may wish to isolate
only the signal components. Section 2.4.5 shows how to decompose a GP posterior into

each of its additive components.

In practice, there may not be a clear distinction between signal and noise. For
example, section 3.6 contains examples of models having long-term, medium-term, and
short-term trends. Which parts we designate as the “signal” sometimes depends on the
task at hand.

2.4.2 Additivity across multiple dimensions

When modeling functions of multiple dimensions, summing kernels can give rise to addi-
tive structure across different dimensions. To be more precise, if the kernels being added
together are each functions of only a subset of input dimensions, then the implied prior

over functions decomposes in the same way. For example,

f(x1,m2) ~ GP(0, ki1, 7)) + ka(22,25)) (2.8)



2.4 Modeling sums of functions 15

“\ "v‘

'T27x2 :L‘lrrl +k2 x2,$2

l l !
o

P
ey
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Figure 2.5: A sum of two orthogonal one-dimensional kernels. Top row: An additive
kernel is a sum of kernels. Bottom row: A draw from an additive kernel corresponds to
a sum of draws from independent GP priors, each having the corresponding kernel.

is equivalent to the model

filzr) ~ GP(0, ky(z1, 71)) (2.9)
fg(l’z) ~ QP(O, k’g(l’z,l‘;)) (210)
f(ﬂi’l,.QTg) = fl(l'l) + fg(ﬂfg) . (211)

Figure 2.5 illustrates a decomposition of this form. Note that the product of two

kernels does not have an analogous interpretation as the product of two functions.

2.4.3 Extrapolation through additivity

Additive structure sometimes allows us to make predictions far from the training data.
Figure 2.6 compares the extrapolations made by additive versus product-kernel GP mod-
els, conditioned on data from a sum of two axis-aligned sine functions. The training
points were evaluated in a small, L-shaped area. In this example, the additive model is
able to correctly predict the height of the function at an unseen combinations of inputs.

The product-kernel model is more flexible, and so remains uncertain about the function
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GP mean using GP mean using
True function: sum of SE kernels: product of SE kernels:
f(zq,x9) = sin(xq) + sin(z2) ki(xq1,2)) + ko(xe,xh) ki(xq, ) X ko(z2, 2h)

Figure 2.6: Left: A function with additive structure. Center: A GP with an additive
kernel can extrapolate away from the training data. Right: A GP with a product kernel
allows a different function value for every combination of inputs, and so is uncertain
about function values away from the training data. This causes the predictions to revert
to the mean.

away from the data.

These types of additive models have been well-explored in the statistics literature.
For example, generalized additive models (Hastie and Tibshirani, 1990) have seen wide
adoption. In high dimensions, we can also consider sums of functions of multiple input

dimensions. Chapter 6 considers this model class in more detail.

2.4.4 Example: An additive model of concrete strength

To illustrate how additive kernels give rise to interpretable models, we built an addi-
tive model of the strength of concrete as a function of the amount of seven different
ingredients (cement, slag, fly ash, water, plasticizer, coarse aggregate and fine aggre-
gate), and the age of the concrete (Yeh, 1998). Our simple model is a sum of 8 different

one-dimensional functions, each depending on only one of these quantities:

f(x) = fi(cement) + fa(slag) + f5(fly ash) + fy(water)
+ fs(plasticizer) + fg(coarse) + f(fine) + fs(age) + noise (2.12)

where noise ~ N(0,02). Each of the functions fi, fa, ..., fs was modeled using a GP
with an SE kernel. These eight SE kernels plus a white noise kernel were added together

as in equation (2.8) to form a single GP model whose kernel had 9 additive components.
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After learning the kernel parameters by maximizing the marginal likelihood of the

data, one can visualize the predictive distribution of each component of the model.

strength

X
X
< L 8
'§D x 5 x §x§<x x x: x
& x %X XX . x
- X X x. §x X
” X§( §< X X
X X
) X x X % )exx e %&
coarse (kg/m?)
X
f‘: X );:( >§$< x X Data
o0 XX x X X Xx x?i?‘ ) -
% X ):< xx Xa X X * - Posterior denS|ty
= X e I IS = .
” * — Posterior samples
% xzt%" Xy X
X XX X xx X
fine (kg/m?) age (days)

Figure 2.7: The predictive distribution of each one-dimensional function in a multi-
dimensional additive model. Blue crosses indicate the original data projected on to each
dimension, red indicates the marginal posterior density of each function, and colored lines

are samples from the marginal posterior distribution of each one-dimensional function.
The vertical axis is the same for all plots.

Figure 2.7 shows the marginal posterior distribution of each of the eight one-dimensional
functions in the model. The parameters controlling the variance of two of the functions,
fe(coarse) and fr(fine) were set to zero, meaning that the marginal likelihood preferred
a parsimonious model which did not depend on these inputs. This is an example of the
automatic sparsity that arises by maximizing marginal likelihood in GP models, and is
another example of automatic relevance determination (ARD) (Neal, 1995).

The ability to learn kernel parameters in this way is much more difficult when using
non-probabilistic methods such as Support Vector Machines (Cortes and Vapnik, 1995),

for which cross-validation is often the best method to select kernel parameters.
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2.4.5 Posterior variance of additive components

Here we derive the posterior variance and covariance of all of the additive components

of a GP. These formulas allow one to make plots such as figure 2.7.

First, we write down the joint prior distribution over two functions drawn indepen-
dently from GP priors, and their sum. We distinguish between f(X) (the function values
at training locations [x1, X, ..., Xy|" := X) and f(X*) (the function values at some set
of query locations [x},x3, ..., xy]T = X*).

Formally, if f; and f; are a priori independent, and f; ~ GP(u1, k1) and fo ~ GP(pe, ko),
then

[ F1(X) " K. Ki 0 0 K K; ‘
J1(X) 74 Ki" K* 0 0 Kj K7
f2(X) Y 2 0 0 K, K K K3
f2(X) pso |0 0 KT Ky Kj K3*
F1(X) + fo(X) mte| |Ki KT Ky Kb Ki+K, Ki+K;
| f1(X) + fo(XF) pitps | | K7TOKP OK:T Ky KiK' K+ K3
(2.13)

where we represent the Gram matrices, whose ¢, jth entry is given by k(x;,x;) by

K = ki (X, X*) (2.15)
K™ = k;(X*, X*) (2.16)

The formula for Gaussian conditionals A.2 can be used to give the conditional distri-
bution of a GP-distributed function conditioned on its sum with another GP-distributed

function:

J1(X%)

J1X) + £o(X) ~ N (a4 K70+ Ko) 7 [£1(X) + £o(X) = par — ],

K — K (K, + Kg)lK;) (2.17)

These formulas express the model’s posterior uncertainty about the different components
of the signal, integrating over the possible configurations of the other components. To
extend these formulas to a sum of more than two functions, the term K; +Kj can simply

be replaced by >, K; everywhere.
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Figure 2.8: Posterior correlations between the heights of different one-dimensional func-
tions in equation (2.12), whose sum models concrete strength. Red indicates high corre-
lation, teal indicates no correlation, and blue indicates negative correlation. Plots on the
diagonal show posterior correlations between different evaluations of the same function.
Correlations are evaluated over the same input ranges as in figure 2.7. Correlations with
fe(coarse) and fr(fine) are not shown, because their estimated variance was zero.

Posterior covariance of additive components

One can also compute the posterior covariance between the height of any two functions,
conditioned on their sum:

Cov | £1(X*), £2(X)

F(X)] = —K} (K + Ky) K3 (2.18)

If this quantity is negative, it means that there is ambiguity about which of the two
functions is high or low at that location. For example, figure 2.8 shows the posterior

correlation between all non-zero components of the concrete model. This figure shows
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that most of the correlation occurs within components, but there is also negative corre-

lation between the height of f(cement) and fa(slag).

2.5 Changepoints

An example of how combining kernels can give rise to more structured priors is given by
changepoint kernels, which can express a change between different types of structure.
Changepoints kernels can be defined through addition and multiplication with sigmoidal

functions such as o(x) = Yitexp(—a):
CP(ky1, ko) (x,2') = o(x)ky(z, 2" )o(2") + (1 — o(2))ka(x, 2") (1 — o(2)) (2.19)
which can be written in shorthand as
CP(ky, ko) = ki X0 + kox& (2.20)

where o = o(z)o(2') and & = (1 — o(z))(1 — o(2')).
This compound kernel expresses a change from one kernel to another. The parameters

of the sigmoid determine where, and how rapidly, this change occurs. Figure 2.9 shows

some examples.

SE Per SE Per SE SE Per Per

Dl e

Figure 2.9: Draws from different priors on using changepoint kernels, constructed by
adding and multiplying together base kernels with sigmoidal functions.

We can also build a model of functions whose structure changes only within some
interval — a change-window — by replacing o(z) with a product of two sigmoids, one

increasing and one decreasing.
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2.5.1 Multiplication by a known function

More generally, we can model an unknown function that’s been multiplied by any fixed,

known function a(z), by multiplying the kernel by a(x)a(x’). Formally,

f(x) =ax)g(x), g~GP(0,k(x,x)) <= [f~GP(0,ax)k(x,x)a(x’)).
(2.21)

2.6 Feature representation of kernels

By Mercer’s theorem (Mercer, 1909), any positive-definite kernel can be represented as

the inner product between a fixed set of features, evaluated at x and at x':
k(x,x') = h(x)Th(x') (2.22)

For example, the squared-exponential kernel (SE) on the real line has a representation
in terms of infinitely many radial-basis functions of the form h;(z) o exp(— gz (z — ¢;)?).
More generally, any stationary kernel can be represented by a set of sines and cosines - a
Fourier representation (Bochner, 1959). In general, any particular feature representation

of a kernel is not necessarily unique (Minh et al., 2006).

In some cases, the input to a kernel, x, can even be the implicit infinite-dimensional
feature mapping of another kernel. Composing feature maps in this way leads to deep

kernels, which are explored in section 5.5.

2.6.1 Relation to linear regression

Surprisingly, GP regression is equivalent to Bayesian linear regression on the implicit

features h(x) which give rise to the kernel:
fx)=whx), w~NOI) <<= f~GP(0h(x) hx)) (2.23)

The link between Gaussian processes, linear regression, and neural networks is explored

further in section 5.1.
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2.6.2 Feature-space view of combining kernels

We can also view kernel addition and multiplication as a combination of the features of

the original kernels. For example, given two kernels

their addition has the form:
! AN T / T N __ a(x) ! a(x’)
ko(x,x") + ky(x,x") = a(x) a(x’) + b(x) 'b(x') = ) ) (2.26)

meaning that the features of k, + k; are the concatenation of the features of each kernel.

We can examine kernel multiplication in a similar way:

ka(x, %) x ky(x, %) = [a(x)Ta(x')] x [b(x)"b(x)] (2.27)

=2 [0 ()b, (%) [a; (x')b; (x| (2.29)

In words, the features of k, x k; are made of up all pairs of the original two sets of
features. For example, the features of the product of two one-dimensional SE kernels

(SE; X SE3) cover the plane with two-dimensional radial-basis functions of the form:

1 (ZL‘l — Ci)z 1 (ZL‘Q — Cj)2

hes (1, W G) S B 2,
(1 xg)ocexp< AT )exp( T ) (2.30)

2.7 Expressing symmetries and invariances

When modeling functions, encoding known symmetries can improve predictive accuracy.
This section looks at different ways to encode symmetries into a prior on functions. Many
types of symmetry can be enforced through operations on the kernel.

We will demonstrate the properties of the resulting models by sampling functions
from their priors. By using these functions to define smooth mappings from R? — R3,
we will show how to build a nonparametric prior on an open-ended family of topological

manifolds, such as cylinders, toruses, and Mobius strips.
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2.7.1 Three recipes for invariant priors

Consider the scenario where we have a finite set of transformations of the input space

{91, g2, ...} to which we wish our function to remain invariant:
) = flgx)) VxeX, Vged (231)

As an example, imagine we wish to build a model of functions invariant to swapping
their inputs: f(x1,22) = f(x2,21), V21,25. Being invariant to a set of operations is
equivalent to being invariant to all compositions of those operations, the set of which
forms a group. (Armstrong et al., 1988, chapter 21). In our example, the elements of the

group Ggywap containing all operations the functions are invariant to has two elements:

gi([x1,22]) = [22,21]  (swap) (2.32)
g2([z1, x2]) = |21, 9] (identity) (2.33)

How can we construct a prior on functions which respect these symmetries? Gins-
bourger et al. (2012) and Ginsbourger et al. (2013) showed that the only way to construct
a GP prior on functions which respect a set of invariances is to construct a kernel which

respects the same invariances with respect to each of its two inputs:
k(x,x') = k(g(x),9(x)), vx,x' €X, Vg, €qG (2.34)

Formally, given a finite group G whose elements are operations to which we wish our
function to remain invariant, and f ~ GP(0, k(x,x’)), then every f is invariant under
G (up to a modification) if and only if k(-,-) is argument-wise invariant under G. See
Ginsbourger et al. (2013) for details.

It might not always be clear how to construct a kernel respecting such argument-wise

invariances. Fortunately, there are a few simple ways to do this for any finite group:

1. Sum over the orbit. The orbit of x with respect to a group G is {g(z) : g € G},
the set obtained by applying each element of G' to z. Ginsbourger et al. (2012)
and Kondor (2008) suggest enforcing invariances through a double sum over the

orbits of x and x’ with respect to G:

Faum(x,x) = 30 > k(g(x),4'(x)) (2.35)

g9,€G g'€G
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Figure 2.10: Functions drawn from three distinct GP priors, each expressing symmetry
about the line x1 = x5 using a different type of construction. All three methods introduce
a different type of nonstationarity.

For the group Gsyap, this operation results in the kernel:

kswitan (X, %) = D >0 k(9(x),9'(X)) (2.36)

QGGswap gleGswap
/ / / /
= k(x1, X, ¥, x5) + k(x1, T2, 4, 27)

+ k(z2, x1, 27, %) + k(z2, 21, 25, 27) (2.37)

For stationary kernels, some pairs of elements in this sum will be identical, and
can be ignored. Figure 2.10(left) shows a draw from a GP prior with a product of
SE kernels symmetrized in this way. This construction has the property that the

marginal variance is doubled near x; = x5, which may or may not be desirable.

2. Project onto a fundamental domain. Ginsbourger et al. (2013) also explored
the possibility of projecting each datapoint into a fundamental domain of the

group, using a mapping Ag:
kproj (%, X') = k(Ac(x), Ac(x')) (2.38)

For example, a fundamental domain of the group Ggwap is all {x1, 29 1 21 < 22},
a set which can be mapped to using Aq,,.,(71,22) = [min(xhxg),max(xl,xg)}.
Constructing a kernel using this method introduces a non-differentiable “seam”

along x; = x9, as shown in figure 2.10(center).
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3. Multiply over the orbit. Ryan P. Adams (personal communication) suggested

a construction enforcing invariances through a double product over the orbits:

koum(x,x") = [ I k(g (x) (2.39)

geG g'eG

This method can sometimes produce GP priors with zero variance in some regions,
as in figure 2.10(right).

There are often many possible ways to achieve a given symmetry, but we must be careful
to do so without compromising other qualities of the model we are constructing. For
example, simply setting k(x,x’) = 0 gives rise to a GP prior which obeys all possible

symmetries, but this is presumably not a model we wish to use.

2.7.2 Example: Periodicity

Periodicity in a one-dimensional function corresponds to the invariance

f(x)=f(z+71) (2.40)

where 7 is the period.
The most popular method for building a periodic kernel is due to MacKay (1998),
who used the projection method in combination with an SE kernel. A fundamental

domain of the symmetry group is a circle, so the kernel
Per(z,2’) = SE (sin(z), sin(x")) x SE (cos(x), cos(z")) (2.41)

achieves the invariance in equation (2.40). Simple algebra reduces this kernel to the

form given in figure 2.1.

2.7.3 Example: Symmetry about zero

Another example of an easily-enforceable symmetry is symmetry about zero:

f(@) = f(=2). (2.42)
This symmetry can be enforced using the sum over orbits method, by the transform

kreﬁect(xv .Z’/) = k(l', lj) + k(l', —LC/) + k(—l', .I'/) + k'(—ilj', _xl>' (243)
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2.7.4 Example: Translation invariance in images

Many models of images are invariant to spatial translations (LeCun and Bengio, 1995).
Similarly, many models of sounds are also invariant to translation through time.

Note that this sort of translation invariance is completely distinct from the station-
arity of kernels such as SE or Per. A stationary kernel implies that the prior is invariant
to translations of the entire training and test set. In contrast, here we use translation
invariance to refer to situations where the signal has been discretized, and each pixel
(or the audio equivalent) corresponds to a different input dimension. We are interested
in creating priors on functions that are invariant to swapping pixels in a manner that

corresponds to shifting the signal in some direction:

f(ﬁ ):f( ﬁ) (2.44)

For example, in a one-dimensional image or audio signal, translation of an input vector

by 7 pixels can be defined as

. . T
Shlft(X, 2) - [xmod(i—‘rl,D)u Tmod(i+2,D)s - + - s Lmod(i+D,D) (245)

As above, translation invariance in one dimension can be achieved by a double sum over

the orbit, given an initial translation-sensitive kernel between signals k:
D D
Kinvariant (X, X) = Z Z k(shift(x, 1), shift(x, 7)) . (2.46)

The extension to two dimensions, shift(x,1,j), is straightforward, but notationally
cumbersome. Kondor (2008) built a more elaborate kernel between images that was

approximately invariant to both translation and rotation, using the projection method.

2.8 Generating topological manifolds

In this section we give a geometric illustration of the symmetries encoded by different
compositions of kernels. The work presented in this section is based on a collaboration
with David Reshef, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. The
derivation of the Mébius kernel was my original contribution.

Priors on functions obeying invariants can be used to create a prior on topological
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Euclidean (SE; x SE,) Cylinder (SE; x Pery) Toroid (Per; X Persy)

Figure 2.11: Generating 2D manifolds with different topologies. By enforcing that the
functions mapping from R? to R3 obey certain symmetries, the surfaces created have
corresponding topologies, ignoring self-intersections.

manifolds by using such functions to warp a simply-connected surface into a higher-
dimensional space. For example, one can build a prior on 2-dimensional manifolds
embedded in 3-dimensional space through a prior on mappings from R? to R3. Such
mappings can be constructed using three independent functions [f(x), fa(x), f3(x)],
each mapping from R? to R. Different GP priors on these functions will implicitly give
rise to different priors on warped surfaces. Symmetries in [fi, fo, f3] can connect different

parts of the manifolds, giving rise to non-trivial topologies on the sampled surfaces.

Figure 2.11 shows 2D meshes warped into 3D by functions drawn from GP priors
with various kernels, giving rise to a different topologies. Higher-dimensional analogues
of these shapes can be constructed by increasing the latent dimension and including
corresponding terms in the kernel. For example, an N-dimensional latent space using
kernel Per; x Pery X ... X Pery will give rise to a prior on manifolds having the topology

of N-dimensional toruses, ignoring self-intersections.

This construction is similar in spirit to the GP latent variable model (GP-LVM) of
Lawrence (2005), which learns a latent embedding of the data into a low-dimensional

space, using a GP prior on the mapping from the latent space to the observed space.
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Draw from GP with kernel:
Per(xq, ) X Per(xq, 74) Mébius strip drawn from Sudanese Mobius strip
+Per(xy, xh) x Per(xy, 7)) R? — R?® GP prior generated parametrically

usq

T

Figure 2.12: Generating Mobius strips. Left: A function drawn from a GP prior obeying
the symmetries given by equations (2.47) to (2.49). Center: Simply-connected surfaces
mapped from R? to R? by functions obeying those symmetries have a topology corre-
sponding to a Mobius strip. Surfaces generated this way do not have the familiar shape
of a flat surface connected to itself with a half-twist. Instead, they tend to look like
Sudanese Mobius strips (Lerner and Asimov, 1984), whose edge has a circular shape.
Right: A Sudanese projection of a Mdbius strip. Image adapted from Wikimedia Com-
mons (2005).

2.8.1 Mobius strips

A space having the topology of a Mébius strip can be constructed by enforcing invariance

to the following operations (Reid and Szendréi, 2005, chapter 7):

Gp, ([71, 22]) = [x1 + T, 2] (periodic in 1) (2.47)
Gy ([T1, 22]) = [21, T2 + 7] (periodic in x3) (2.48)
9s([z1, x2]) = [w9, 21] (symmetric about x; = z5) (2.49)

Section 2.7 already showed how to build GP priors invariant to each of these types of
transformations. We’ll call a kernel which enforces these symmetries a Mdbius kernel.

An example of such a kernel is:
k(xy, x9, 2, 25) = Per(xy, x)) x Per(xa, 25) + Per(w1, 25) X Per(xq, x}) (2.50)

Moving along the diagonal x; = x5 of a function drawn from the corresponding GP prior

is equivalent to moving along the edge of a notional Mobius strip which has had that
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function mapped on to its surface. Figure 2.12(left) shows an example of a function
drawn from such a prior. Figure 2.12(center) shows an example of a 2D mesh mapped
to 3D by functions drawn from such a prior. This surface doesn’t resemble the typical
representation of a Mobius strip, but instead resembles an embedding known as the

Sudanese Mobius strip (Lerner and Asimov, 1984), shown in figure 2.12(right).

2.9 Kernels on categorical variables

Categorical variables are variables which can take values only from a discrete, unordered
set, such as {blue,green,red}. A simple way to construct a kernel over categorical
variables is to represent that variable by a set of binary variables, using a one-of-k
encoding. For example, if x can take one of four values, = € {A,B,C,D}, then a one-of-k
encoding of z will correspond to four binary inputs, and one-of-k(C) = [0, 0, 1,0]. Given
a one-of-k encoding, we can place any multi-dimensional kernel on that space, such as
the SE-ARD:

Ecategorical (2, ') = SE-ARD (one-of-k(z), one-of-k(z")) (2.51)

Short lengthscales on any particular dimension of the SE-ARD kernel indicate that the
function value corresponding to that category is uncorrelated with the others. More

flexible parameterizations are also possible (Pinheiro and Bates, 1996).

2.10 Multiple outputs

Any GP prior can easily be extended to the model multiple outputs: f;(x), f2(x), ..., fr(x).
This can be done by building a model of a single-output function which has had an ex-
tra input added that denotes the index of the output: f;(x) = f(x,i). This can be
done by extending the original kernel k(x,x’) to have an extra discrete input dimension:
k(x,i,x',i).

A simple and flexible construction of such a kernel multiplies the original kernel

k(x,x’) with a categorical kernel on the output index (Bonilla et al., 2007):

k(x,1,x',4") = kye(x,x") x k;(,7") (2.52)
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2.11 Building a kernel in practice

This chapter outlined ways to choose the parametric form of a kernel in order to express
different sorts of structure. Once the parametric form has been chosen, one still needs to
choose, or integrate over, the kernel parameters. If the kernel relatively few parameters,
these parameters can be estimated by maximum marginal likelihood, using gradient-
based optimizers. The kernel parameters estimated in sections 2.4.3 and 2.4.4 were
optimized using the GPML toolbox (Rasmussen and Nickisch, 2010), available at
http://www.gaussianprocess.org/gpml/code.

A systematic search over kernel parameters is necessary when appropriate parameters
are not known. Similarly, sometimes appropriate kernel structure is hard to guess.
The next chapter will show how to perform an automatic search not just over kernel

parameters, but also over an open-ended space of kernel expressions.

Source code

Source code to produce all figures and examples in this chapter is available at

http://wwuw.github.com/duvenaud/phd-thesis.


http://www.gaussianprocess.org/gpml/code
http://www.github.com/duvenaud/phd-thesis

Chapter 3
Automatic Model Construction

“It would be very nice to have a formal apparatus that gives us some
‘optimal” way of recognizing unusual phenomena and inventing new classes
of hypotheses that are most likely to contain the true one; but this remains
an art for the creative human mind.”

— E. T. Jaynes (1985)

In chapter 2, we saw that the choice of kernel determines the type of structure that
can be learned by a GP model, and that a wide variety of models could be constructed
by adding and multiplying a few base kernels together. However, we did not answer the
difficult question of which kernel to use for a given problem. Even for experts, choosing
the kernel in GP regression remains something of a black art.

The contribution of this chapter is to show a way to automate the process of building
kernels for GP models. We do this by defining an open-ended space of kernels built by
adding and multiplying together kernels from a fixed set. We then define a procedure
to search over this space to find a kernel which matches the structure in the data.

Searching over such a large, structured model class has two main benefits. First,
this procedure has good predictive accuracy, since it tries out a large number of different
regression models. Second, this procedure can sometimes discover interpretable structure
in datasets. Because GP posteriors can be decomposed (as in section 2.4.4), the resulting
structures can be examined visually. In chapter 4, we also show how to automatically
generate English-language descriptions of the resulting models.

This chapter is based on work done in collaboration with James Robert Lloyd, Roger
Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. It was published in Duvenaud
et al. (2013) and Lloyd et al. (2014). Myself, James Lloyd and Roger Grosse jointly de-

veloped the idea of searching through a grammar-based language of GP models, inspired
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by Grosse et al. (2012), and wrote the first versions of the code together. James Lloyd

ran most of the experiments, and I constructed most of the figures.

3.1 Ingredients of an automatic statistician

Gelman (2013) asks: “How can an artificial intelligence do statistics? ...It needs not
just an inference engine, but also a way to construct new models and a way to check
models. Currently, those steps are performed by humans, but the Al would have to do
it itself”. This section will discuss the different parts we think are required to build an

artificial intelligence that can do statistics.

1. An open-ended language of models. Many learning algorithms consider all
models in a class of fixed size. For example, graphical model learning algorithms
(Eaton and Murphy, 2007; Friedman and Koller, 2003) search over different con-
nectivity graphs for a given set of nodes. Such methods can be powerful, but
human statisticians are sometimes capable of deriving novel model classes when
required. An automatic search through an open-ended class of models can achieve

some of this flexibility, possibly combining existing structures in novel ways.

2. A search through model space. Every procedure which eventually considers
arbitrarily-complex models must start with relatively simple models before moving
on to more complex ones. Thus any search strategy capable of building arbitrarily
complex models is likely to resemble an iterative model-building procedure. Just
as human researchers iteratively refine their models, search procedures can propose

new candidate models based on the results of previous model fits.

3. A model comparison procedure. Search strategies requires an objective to
optimize. In this work, we use approximate marginal likelihood to compare models,
penalizing complexity using the Bayesian Information Criterion as a heuristic.
More generally, an automatic statistician needs to somehow check the models it has

constructed. Gelman and Shalizi (2012) review the literature on model checking.

4. A model description procedure. Part of the value of statistical models comes
from helping humans to understand a dataset or a phenomenon. Furthermore,
a clear description of the statistical structure found in a dataset helps a user to

notice when the dataset has errors, the wrong question was asked, the model-
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building procedure failed to capture known structure, a relevant piece of data or

constraint is missing, or when a novel statistical structure has been found.

In this chapter, we introduce a system containing simple examples of all the above
ingredients. We call this system the automatic Bayesian covariance discovery (ABCD)
system. The next four sections of this chapter describe the mechanisms we use to
incorporate these four ingredients into a limited example of an artificial intelligence

which does statistics.

3.2 A language of regression models

As shown in chapter 2, one can construct a wide variety of kernel structures by adding
and multiplying a small number of base kernels. We can therefore define a language of

GP regression models simply by specifying a language of kernels.

Kernel name: | Rational quadratic (RQ) Cosine (cos) White noise (Lin)

k(x,2") = UJ% 1 + (x2a§2)2 - o7 COS 27T(x x) 036(x — ')

Plot of kernel: M V\/\/\/\/\
x — :1: x — x
7
Functions f(x) m :!:: : ” :!’ !I
sampled from ~\-"\,
GP prior: ’\/\'\

x
Type of structure: multiscale variation sinusoidal uncorrelated noise

Figure 3.1: New base kernels introduced in this chapter, and the types of structure
they encode. Other types of kernels can be constructed by adding and multiplying base
kernels together.

Our language of models is specified by a set of base kernels which capture different
properties of functions, and a set of rules which combine kernels to yield other valid

kernels. In this chapter, we will use such base kernels as white noise (WN), constant
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(C), linear (Lin), squared-exponential (SE), rational-quadratic (RQ), sigmoidal (o) and
periodic (Per). We use a form of Per due to James Lloyd (personal communication)
which has its constant component removed, and cos(x — z’) as a special case. Figure 3.1
shows the new kernels introduced in this chapter. For precise definitions of all kernels,
see appendix B.

To specify an open-ended language of structured kernels, we consider the set of all
kernels that can be built by adding and multiplying these base kernels together, which

we write in shorthand by:

]{?1 + k’g = kl(X, X,) -+ kQ(X, X,) (31)
]{?1 X kz = k’l(X, X/) X kQ(X,X/) (32)

The space of kernels constructable by adding and multiplying the above set of kernels
contains many existing regression models. Table 3.1 lists some of these, which are

discussed in more detail in section 3.7.

Regression model ‘ Kernel structure ‘ Example of related work
Linear regression C + Lin + WN

Polynomial regression C + [[Lin + WN

Semi-parametric Lin + SE + WN Ruppert et al. (2003)
Multiple kernel learning | > SE + WN Gonen and Alpaydm (2011)

Fourier decomposition C + > cos + WN
Trend, cyclical, irregular | > SE + Y Per + WN | Lind et al. (2006)

Sparse spectrum GPs Y. cos + WN Lazaro-Gredilla et al. (2010)
Spectral mixture > SExcos + WN Wilson and Adams (2013)
Changepoints e.g. CP(SE,SE) + WN | Garnett et al. (2010)
Time-changing variance | e.g. SE + Linx WN

Interpretable + flexible | >°;SEs + [I;SEq Plate (1999)

Additive GPs e.g. [14(1 + SEq) Chapter 6

Table 3.1: Existing regression models expressible by sums and products of base kernels.
cos(+, ) is a special case of our reparametrized Per(-,-).

3.3 A model search procedure

We explore this open-ended space of regression models using a simple greedy search. At

each stage, we choose the highest scoring kernel, and propose modifying it by applying
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| No structure |

SE + RQ Per + RQ Per x RQ)
SE + Per + RQ SE x (Per + RQ)

Figure 3.2: An example of a search tree over kernel expressions. Figure 3.3 shows the
corresponding model increasing in sophistication as the kernel expression grows.

an operation to one of its parts, that combines or replaces that part with another base

kernel. The basic operations we can perform on any part k£ of a kernel are:

Replacement: k& — k'
Addition: k& — (k+Fk)
Multiplication: k& — (k x k')
where k' is a new base kernel. These operators can generate all possible algebraic
expressions involving addition and multiplication of base kernels. To see this, observe
that if we restricted the addition and multiplication rules to only apply to base kernels,
we would obtain a grammar which generates the set of algebraic expressions.

Figure 3.2 shows an example search tree followed by our algorithm. Figure 3.3 shows
how the resulting model changes as the search is followed. In practice, we also include
extra operators which propose commonly-occurring structures, such as changepoints. A
complete list is contained in appendix C.

Our search operators have rough parallels with strategies used by human researchers

to construct regression models. In particular,

e One can look for structure in the residuals of a model, such as periodicity, and
then extend the model to capture that structure. This corresponds to adding a

new kernel to the existing structure.
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Level 1: Level 2: Level 3:
RQ Per + RQ SE x (Per + RQ)
60 40 : 50 ‘
40 | 30 | 40 }
\
20 /\M\ 20 } 30 \
\
0 \ 10 } 20 }
—20 0 l 10
2000 2005 2010 2000 2005 2010 2000 2005 2010

Figure 3.3: Posterior mean and variance for different depths of kernel search on the
Mauna Loa dataset, described in section 3.6.1. The dashed line marks the end of the
dataset. Left: First, the function is only modeled as a locally smooth function, and the
extrapolation is poor. Middle: A periodic component is added, and the extrapolation
improves. Right: At depth 3, the kernel can capture most of the relevant structure, and
is able to extrapolate reasonably.

e One can start with structure which is assumed to hold globally, such as linear-
ity, but find that it only holds locally. This corresponds to multiplying a kernel

structure by a local kernel such as SE.

« One can incorporate input dimensions incrementally, analogous to algorithms like
boosting, back-fitting, or forward selection. This corresponds to adding or multi-

plying with kernels on dimensions not yet included in the model.

Hyperparameter initialization

Unfortunately, optimizing the marginal likelihood over parameters is not a convex op-
timization problem, and the space can have many local optima. For example, in data
having periodic structure, integer multiples of the true period (harmonics) are often local
optima. We take advantage of our search procedure to provide reasonable initializations:
all parameters which were part of the previous kernel are initialized to their previous
values. Newly introduced parameters are initialized randomly. In the newly proposed
kernel, all parameters are then optimized using conjugate gradients. This procedure
is not guaranteed to find the global optimum, but it implements the commonly used

heuristic of iteratively modeling residuals.



3.4 A model comparison procedure 37

3.4 A model comparison procedure

Choosing a kernel requires a method for comparing models. We choose marginal likeli-
hood as our criterion, since it balances the fit and complexity of a model (Rasmussen
and Ghahramani, 2001). Conditioned on kernel parameters, the marginal likelihood of
a GP can be computed analytically by equation (1.3). In addition, if one compares GP
models by the maximum likelihood value obtained after optimizing their kernel param-
eters, then all else being equal, the model having more free parameters will be chosen.
This introduces a bias in favor of more complex models.

We could avoid overfitting by integrating the marginal likelihood over all free param-
eters, but this integral is difficult to do in general. Instead, we loosely approximate this

integral using the Bayesian information criterion (BIC) (Schwarz, 1978):
1
BIC(M) = logp(D | M) — §|M|logN (3.3)

where p(D|M) is the marginal likelihood of the data evaluated at the optimized kernel
parameters, | M| is the number of kernel parameters, and NN is the number of data points.
BIC simply penalizes the marginal likelihood in proportion to how many parameters the
model has. Because BIC is a function of the number of parameters in a model, we did
not count kernel parameters known to not affect the model. For example, when two
kernels are multiplied, one of their output variance parameters becomes redundant, and
can be ignored.

The assumptions made by BIC are clearly inappropriate for the model class being
considered. For instance, BIC assumes that the data are i.i.d. given the model param-
eters, which is not true except under a white noise kernel. Other more sophisticated
approximations are possible, such as Laplace’s approximation. We chose to try BIC first

because of its simplicity, and it performed reasonably well in our experiments.

3.5 A model description procedure

As discussed in chapter 2, a GP whose kernel is a sum of kernels can be viewed as a sum
of functions drawn from different GPs. We can always express any kernel structure as a

sum of products of kernels by distributing all products of sums. For example,

SEx (RQ + Lin) = SEXRQ + SExLin. (3.4)
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When all kernels in a product apply to the same dimension, we can use the formulas in
section 2.4.5 to visualize the marginal posterior distribution of that component. This
decomposition into additive components provides a method of visualizing GP models
which disentangles the different types of structure in the model.

The following section shows examples of such decomposition plots. In chapter 4, we
will extend this model visualization method to include automatically generated English

text explaining types of structure discovered.

3.6 Structure discovery in time series

To investigate our method’s ability to discover structure, we ran the kernel search on
several time-series. In the following example, the search was run to depth 10, using SE,
RQ, Lin, Per and WN as base kernels.

3.6.1 Mauna Loa atmospheric CO,

First, our method analyzed records of carbon dioxide levels recorded at the Mauna Loa
observatory (Tans and Keeling, accessed January 2012). Since this dataset was analyzed
in detail by Rasmussen and Williams (2006, chapter 5), we can compare the kernel chosen
by our method to a kernel constructed by human experts.

Figure 3.3 shows the posterior mean and variance on this dataset as the search depth
increases. While the data can be smoothly interpolated by a model with only a single
base kernel, the extrapolations improve dramatically as the increased search depth allows
more structure to be included.

Figure 3.4 shows the final model chosen by our method together with its decompo-
sition into additive components. The final model exhibits plausible extrapolation and
interpretable components: a long-term trend, annual periodicity, and medium-term de-
viations. These components have similar structure to the kernel hand-constructed by
Rasmussen and Williams (2006, chapter 5):

SE + SExPer + 59 + SE+ WN  (3.5)

long-term trend yearly periodic medium-term irregularities short-term noise

We also plot the residuals modeled by a white noise (WN) component, showing that
there is little obvious structure left in the data. More generally, some components capture

slowly-changing structure while others capture quickly-varying structure, but often there
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Complete model: LinxSE + SEx (Per + RQ) + WN
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Figure 3.4: First row: The full posterior on the Mauna Loa dataset, after a search of
depth 10. Subsequent rows: The automatic decomposition of the time series. The model
is a sum of long-term, yearly periodic, medium-term components, and residual noise,
respectively. The yearly periodic component has been rescaled for clarity.

is no hard distinction between “signal” components and “noise” components.

3.6.2 Airline passenger counts

Figure 3.5 shows the decomposition produced by applying our method to monthly totals
of international airline passengers (Box et al., 1970). We observe similar components to
those in the Mauna Loa dataset: a long term trend, annual periodicity, and medium-
term deviations. In addition, the composite kernel captures the near-linearity of the

long-term trend, and the linearly growing amplitude of the annual oscillations.
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Complete Model: SExLin 4+ PerxLin XxSE + LinxSE 4+ WN X Lin
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Figure 3.5: First row: The airline dataset and posterior after a search of depth 10.
Subsequent rows: Additive decomposition of posterior into long-term smooth trend,
yearly variation, and short-term deviations. Due to the linear kernel, the marginal
variance grows over time, making this a heteroskedastic model.

The model search can be run without modification on multi-dimensional datasets (as

in sections 3.8.4 and 6.6), but the resulting structures are more difficult to visualize.

3.7 Related work

Building kernel functions by hand

Rasmussen and Williams (2006, chapter 5) devoted 4 pages to manually constructing
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a composite kernel to model the Mauna Loa dataset. Other examples of papers whose
main contribution is to manually construct and fit a composite GP kernel are Preotiuc-
Pietro and Cohn (2013), Lloyd (2013), and Klenske et al. (2013). These papers show
that experts are capable of constructing kernels, in one or two dimensions, of similar
complexity to the ones shown in this chapter. However, a more systematic search can
consider possibilities that might otherwise be missed. For example, the kernel structure
SE x Per x Lin, while appropriate for the airline dataset, had never been considered by

the authors before it was chosen by the automatic search.

Nonparametric regression in high dimensions

Nonparametric regression methods such as splines, locally-weighted regression, and GP
regression are capable of learning arbitrary smooth functions from data. Unfortunately,
they suffer from the curse of dimensionality: it is sometimes difficult for these models
to generalize well in more than a few dimensions.

Applying nonparametric methods in high-dimensional spaces can require imposing
additional structure on the model. One such structure is additivity. Generalized additive
models (Hastie and Tibshirani, 1990) assume the regression function is a transformed
sum of functions defined on the individual dimensions: E[f(x)] = ¢ (X1, fa(xa)).
These models have a restricted form, but one which is interpretable and often generalizes
well. Models in our grammar can capture similar structure through sums of base kernels
along different dimensions, although we have not yet tried incorporating a warping
function g(-).

It is possible to extend additive models by adding more flexible interaction terms
between dimensions. Chapter 6 considers GP models whose kernel implicitly sums over
all possible interactions of input variables. Plate (1999) constructs a special case of this
model class, summing an SE kernel along each dimension (for interpretability) plus a
single SE-ARD kernel over all dimensions (for flexibility). Both types of model can be
expressed in our grammar.

A closely related procedure is smoothing-splines ANOVA (Gu, 2002; Wahba, 1990).
This model is a weighted sum of splines along each input dimension, all pairs of dimen-
sions, and possibly higher-dimensional combinations. Because the number of terms to
consider grows exponentially with the number of dimensions included in each term, in
practice, only one- and two-dimensional terms are usually considered.

Semi-parametric regression (e.g. Ruppert et al., 2003) attempts to combine inter-

pretability with flexibility by building a composite model out of an interpretable, para-
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metric part (such as linear regression) and a “catch-all” nonparametric part (such as a
GP having an SE kernel). This model class can be represented through kernels such as
SE + Lin.

Kernel learning

There is a large body of work attempting to construct rich kernels through a weighted
sum of base kernels, called multiple kernel learning (MKL) (e.g. Bach et al., 2004; Génen
and Alpaydin, 2011). These approaches usually have a convex objective function. How-
ever the component kernels, as well as their parameters, must be specified in advance.
We compare to a Bayesian variant of MKL in section 3.8, expressed as a restriction of

our language of kernels.

Salakhutdinov and Hinton (2008) use a deep neural network with unsupervised pre-
training to learn an embedding ¢g(x) onto which a GP with an SE kernel is placed:
Cov [f(x), f(x')] = k(g(x),g(x’)). This is a flexible approach to kernel learning, but
relies mainly on finding structure in the input density p(x). Instead, we focus on domains

where most of the interesting structure is in f(x).

Sparse spectrum GPs (Lazaro-Gredilla et al., 2010) approximate the spectral density
of a stationary kernel function using sums of Dirac delta functions, which corresponds
to kernels of the form Y cos. Similarly, Wilson and Adams (2013) introduced spectral
mixture kernels, which approximate the spectral density using a mixture of Gaussians,
corresponding to kernels of the form ) SE x cos. Both groups demonstrated, using
Bochner’s theorem (Bochner, 1959), that these kernels can approximate any stationary
covariance function. Our language of kernels includes both of these kernel classes (see
table 3.1).

Changepoints

There is a wide body of work on changepoint modeling. Adams and MacKay (2007)
developed a Bayesian online changepoint detection method which segments time-series
into independent parts. This approach was extended by Saatci et al. (2010) to Gaus-
sian process models. Garnett et al. (2010) developed a family of kernels which modeled
changepoints occurring abruptly at a single point. The changepoint kernel (CP) pre-

sented in this work is a straightforward extension to smooth changepoints.
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Equation learning

Todorovski and Dzeroski (1997), Washio et al. (1999) and Schmidt and Lipson (2009)
learned parametric forms of functions, specifying time series or relations between quan-
tities. In contrast, ABCD learns a parametric form for the covariance function, allowing
it to model functions which do not have a simple parametric form but still have high-
level structure. An examination of the structure discovered by the automatic equation-
learning software Eureqa (Schmidt and Lipson, accessed February 2013) on the airline
and Mauna Loa datasets can be found in Lloyd et al. (2014).

Structure discovery through grammars

Kemp and Tenenbaum (2008) learned the structural form of graphs that modeled human
similarity judgements. Their grammar on graph structures includes planes, trees, and
cylinders. Some of their discrete graph structures have continuous analogues in our
language of models. For example, SE; x SE; and SE; X Pery can be seen as mapping the
data onto a Euclidean surface and a cylinder, respectively. Section 2.8 examined these
structures in more detail.

Diosan et al. (2007) and Bing et al. (2010) learned composite kernels for support
vector machines and relevance vector machines, respectively, using genetic search algo-
rithms to optimize cross-validation error. Similarly, Kronberger and Kommenda (2013)
searched over composite kernels for GPs using genetic programming, optimizing the un-
penalized marginal likelihood. These methods explore similar languages of kernels to
the one explored in this chapter. It is not clear whether the complex genetic searches
used by these methods offer advantages over the straightforward but naive greedy search
used in this chapter. Our search criterion has the advantages of being both differentiable
with respect to kernel parameters, and of trading off model fit and complexity automat-
ically. These related works also did not explore the automatic model decomposition,
summarization and description made possible by the use of GP models.

Grosse et al. (2012) performed a greedy search over a compositional model class for
unsupervised learning, using a grammar of matrix decomposition models, and a greedy
search procedure based on held-out predictive likelihood. This model class contains
many existing unsupervised models as special cases, and was able to discover diverse
forms of structure, such as co-clustering or sparse latent feature models, automatically
from data. Our framework takes a similar approach, but in a supervised setting.

Similarly, Steinruecken (2014) showed to automatically perform inference in arbitrary
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compositions of discrete sequence models. More generally, Dechter et al. (2013) and
Liang et al. (2010) constructed grammars over programs, and automatically searched

the resulting spaces.

3.8 Experiments

3.8.1 Interpretability versus accuracy

BIC trades off model fit and complexity by penalizing the number of parameters in a
kernel expression. This can result in ABCD favoring kernel expressions with nested
products of sums, producing descriptions involving many additive components after
expanding out all terms. While these models typically have good predictive performance,
their large number of components can make them less interpretable. We experimented
with not allowing parentheses during the search, discouraging nested expressions. This
was done by distributing all products immediately after each search operator was applied.
We call this procedure ABCD-interpretability, in contrast to the unrestricted version of

the search, ABCD-accuracy.

3.8.2 Predictive accuracy on time series

We evaluated the performance of the algorithms listed below on 13 real time-series from
various domains from the time series data library (Hyndman, accessed July 2013). The
pre-processed datasets used in our experiments are available at

http://github.com/jamesrobertlloyd/gpss-research/tree/master/data/tsdlr

Algorithms

We compare ABCD to equation learning using Eureqa (Schmidt and Lipson, accessed
February 2013), as well as six other regression algorithms: linear regression, GP regres-
sion with a single SE kernel (squared exponential), a Bayesian variant of multiple kernel
learning (MKL) (e.g. Bach et al., 2004; Génen and Alpaydin, 2011), changepoint model-
ing (e.g. Fox and Dunson, 2013; Garnett et al., 2010; Saatci et al., 2010), spectral mixture
kernels (Wilson and Adams, 2013) (spectral kernels), and trend-cyclical-irregular models
(e.g. Lind et al., 2006).

We set Eureqa’s search objective to the default mean-absolute-error. All algorithms

besides Eureqa can be expressed as restrictions of our modeling language (see table 3.1),
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so we performed inference using the same search and objective function, with appropriate
restrictions to the language.

We restricted our experiments to regression algorithms for comparability; we did not
include models which regress on previous values of times series, such as auto-regressive or
moving-average models (e.g. Box et al., 1970). Constructing a language of autoregressive

time-series models would be an interesting area for future research.

Extrapolation experiments

To test extrapolation, we trained all algorithms on the first 90% of the data, predicted
the remaining 10% and then computed the root mean squared error (RMSE). The
RMSEs were then standardised by dividing by the smallest RMSE for each data set, so

the best performance on each data set has a value of 1.
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Figure 3.6: Box plot (showing median and quartiles) of standardised extrapolation RMSE
(best performance = 1) on 13 time-series. Methods are ordered by median.

Figure 3.6 shows the standardised RMSEs across algorithms. ABCD-accuracy usually
outperformed ABCD-interpretability. Both algorithms had lower quartiles than all other
methods.

Overall, the model construction methods having richer languages of models per-
formed better: ABCD outperformed trend-cyclical-irregular, which outperformed Bayesian
MKL, which outperformed squared-exponential. Despite searching over a rich model
class, Eureqa performed relatively poorly. This may be because few datasets are parsi-
moniously explained by a parametric equation, or because of the limited regularization

ability of this procedure.
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Not shown on the plot are large outliers for spectral kernels, Eureqa, squared expo-

nential and linear regression with normalized RMSEs of 11, 493, 22 and 29 respectively.

3.8.3 Multi-dimensional prediction

ABCD can be applied to multidimensional regression problems without modification.
An experimental comparison with other methods can be found in section 6.6, where it

has the best performance on every dataset.

3.8.4 Structure recovery on synthetic data

The structure found in the examples above may seem reasonable, but we may wonder to
what extent ABCD is consistent — that is, does it recover all the structure in any given
dataset? It is difficult to tell from predictive accuracy alone if the search procedure is
finding the correct structure, especially in multiple dimensions. To address this question,
we tested our method’s ability to recover known structure on a set of synthetic datasets.

For several composite kernel expressions, we constructed synthetic data by first sam-
pling 300 locations uniformly at random, then sampling function values at those loca-
tions from a GP prior. We then added i.i.d. Gaussian noise to the functions at various

signal-to-noise ratios (SNR).

Table 3.2: Kernels chosen by ABCD on synthetic data generated using known kernel
structures. D denotes the dimension of the function being modeled. SNR indicates the
signal-to-noise ratio. Dashes (—) indicate no structure was found. Each kernel implicitly
has a WN kernel added to it.

True kernel D SNR = 10 SNR =1 SNR =0.1

SE + RQ 1 SE SE x Per SE

Lin X Per 1 Lin x Per Lin x Per SE

SE; + RQs 2 SE; + SE» Lin; 4+ SEo Ling

SE; + SEo X Per; + SEj3 3 SE; + SE5 xPer; + SEj3 SEs X Per; + SEg3 —

SE{ XSE» 4 SE{ X SE» Liny X SE» Ling

SE1 xSEo 4+ SEg xSEg3 4 SE1 xXSE9 + SE9 X SEg SE1 + SE9 xSEg SEq

(SE; + SE»)x (SE3 + SE4) 4 (SE1 + SEg2)x ... (SE1 + SEg2)x ...
(SE3 x Ling x Lin; + SE4) SE3 x SE4

Table 3.2 shows the results. For the highest signal-to-noise ratio, ABCD usually
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recovers the correct structure. The reported additional linear structure in the last row
can be explained the fact that functions sampled from SE kernels with long length-scales
occasionally have near-linear trends. As the noise increases, our method generally backs

off to simpler structures rather than reporting spurious structure.

Source code

All GP parameter optimization was performed by automated calls to the GPML tool-
box (Rasmussen and Nickisch, 2010). Source code to perform all experiments is available

at http://www.github.com/jamesrobertlloyd/gp-structure-search.

3.9 Conclusion

This chapter presented a system which constructs a model from an open-ended language,
and automatically generates plots decomposing the different types of structure present
in the model.

This was done by introducing a space of kernels defined by sums and products of a
small number of base kernels. The set of models in this space includes many standard
regression models. We proposed a search procedure for this space of kernels, and argued
that this search process parallels the process of model-building by statisticians.

We found that the learned structures enable relatively accurate extrapolation in
time-series datasets. The learned kernels can yield decompositions of a signal into di-
verse and interpretable components, enabling model-checking by humans. We hope that
this procedure has the potential to make powerful statistical model-building techniques
accessible to non-experts.

Some discussion of the limitations of this approach to model-building can be found in
section 4.4, and discussion of this approach relative to other model-building approaches
can be found in section 8.3. The next chapter will show how the model components

found by ABCD can be automatically described using English-language text.


http://www.github.com/jamesrobertlloyd/gp-structure-search

Chapter 4
Automatic Model Description

“Not a wasted word. This has been a main point to my literary thinking
all my life.”
— Hunter S. Thompson

The previous chapter showed how to automatically build structured models by search-
ing through a language of kernels. It also showed how to decompose the resulting models
into the different types of structure present, and how to visually illustrate the type of
structure captured by each component. This chapter shows how automatically describe
the resulting model structures using English text.

The main idea is to describe every part of a given product of kernels as an adjective,
or as a short phrase that modifies the description of a kernel. To see how this could
work, recall that the model decomposition plots of chapter 3 showed that most of the
structure in each component was determined by that component’s kernel. Even across
different datasets, the meanings of individual parts of different kernels are consistent in
some ways. For example, Per indicates repeating structure, and SE indicates smooth
change over time.

This chapter also presents a system that generates reports combining automatically
generated text and plots which highlight interpretable features discovered in a data sets.
A complete example of an automatically-generated report can be found in appendix D.

The work appearing in this chapter was written in collaboration with James Robert
Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani, and was published
in Lloyd et al. (2014). The procedure translating kernels into adjectives developed out
of discussions between James and myself. James Lloyd wrote the code to automatically
generate reports, and ran all of the experiments. The paper upon which this chapter is

based was written mainly by both James Lloyd and I.
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4.1 Generating descriptions of composite kernels

There are two main features of our language of GP models that allow description to be
performed automatically. First, any kernel expression in the language can be simplified
into a sum of products. As discussed in section 2.4, a sum of kernels corresponds to a
sum of functions, so each resulting product of kernels can be described separately, as part
of a sum. Second, each kernel in a product modifies the resulting model in a consistent
way. Therefore, one can describe a product of kernels by concatenating descriptions of
the effect of each part of the product. One part of the product needs to be described
using a noun, which is modified by the other parts.

For example, one can describe the product of kernels Per x SE by representing Per
by a noun (“a periodic function”) modified by a phrase representing the effect of the SE
kernel (“whose shape varies smoothly over time”). To simplify the system, we restricted
base kernels to the set {C, Lin, WN, SE, Per, and o}. Recall that the sigmoidal kernel

o(z,2') = o(x)o(x') allows changepoints and change-windows.

4.1.1 Simplification rules

In order to be able to use the same phrase to describe the effect of each base kernel
in different circumstances, our system converts each kernel expression into a standard,
simplified form.

First, our system distributes all products of sums into sums of products. Then, it

applies several simplification rules to the kernel expression:

o Products of two or more SE kernels can be equivalently replaced by a single SE

with different parameters.

o Multiplying the white-noise kernel (WN) by any stationary kernel (C, WN, SE, or
Per) gives another WN kernel.

o Multiplying any kernel by the constant kernel (C) only changes the parameters of

the original kernel, and so can be factored out of any product in which it appears.

After applying these rules, any composite kernel expressible by the grammar can be

written as a sum of terms of the form:

K[[tin™ o™, (4.1)
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where K is one of {WN, C, SE, [T, Per®®} or {SE x [T, Per®™}, and []; £® denotes a prod-
uct of kernels, each having different parameters. Superscripts denote different instances
of the same kernel appearing in a product: SE") can have different kernel parameters
than SE®.

4.1.2 Describing each part of a product of kernels

Each kernel in a product modifies the resulting GP model in a consistent way. This
allows one to describe the contribution of each kernel in a product as an adjective, or
more generally as a modifier of a noun.

We now describe how each of the kernels in our grammar modifies a GP model:

« Multiplication by SE removes long range correlations from a model, since SE(z, z’)
decreases monotonically to 0 as |z — 2/| increases. This converts any global corre-

lation structure into local correlation only.

e Multiplication by Lin is equivalent to multiplying the function being modeled
by a linear function. If f(z) ~ GP(0,k), then xx f(z) ~ GP(0,Linxk). This
causes the standard deviation of the model to vary linearly, without affecting the

correlation between function values.

o Multiplication by o is equivalent to multiplying the function being modeled by

a sigmoid, which means that the function goes to zero before or after some point.

o Multiplication by Per removes correlation between all pairs of function values
not close to one period apart, allowing variation within each period, but maintain-

ing correlation between periods.

o Multiplication by any kernel modifies the covariance in the same way as mul-
tiplying by a function drawn from a corresponding GP prior. This follows from

the fact that if fi(x) ~ GP(0,k;) and fo(x) ~ GP(0, kq) then

Cov|fi(2) fa(2), fu(2)fol@)] = ka(w, a') x ko, 7). (4.2)

Put more plainly, a GP whose covariance is a product of kernels has the same
covariance as a product of two functions, each drawn from the corresponding GP
prior. However, the distribution of f;xf, is not always GP distributed — it can have

third and higher central moments as well. This identity can be used to generate
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a cumbersome “worst-case” description in cases where a more concise description
of the effect of a kernel is not available. For example, it is used in our system to

describe products of more than one periodic kernel.

Table 4.1 gives the corresponding description of the effect of each type of kernel in a

product, written as a post-modifier.

Kernel ‘ Postmodifier phrase

SE whose shape changes smoothly
Per modulated by a periodic function
Lin with linearly varying amplitude

[T, Lin® | with polynomially varying amplitude
[T, 0% | which applies until / from [changepoint]

Table 4.1: Descriptions of the effect of each kernel, written as a post-modifier.

Table 4.2 gives the corresponding description of each kernel before it has been mul-

tiplied by any other, written as a noun phrase.

Kernel ‘ Noun phrase

WN uncorrelated noise

C constant

SE smooth function

Per periodic function

Lin linear function

[T, Lin® | {quadratic, cubic, quartic, ...} function

Table 4.2: Noun phrase descriptions of each type of kernel.

4.1.3 Combining descriptions into noun phrases

In order to build a noun phrase describing a product of kernels, our system chooses one
kernel to act as the head noun, which is then modified by appending descriptions of the
other kernels in the product.

As an example, a kernel of the form Per x Linx & could be described as a

Per X Lin X o
~—~ —~—

~—
periodic function with linearly varying amplitude which applies until 1700.
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where Per was chosen to be the head noun.

In our system, the head noun is chosen according to the following ordering:
Per, WN, SE, C, [] Lin™), [[ o™ (4.3)

Combining tables 4.1 and 4.2 with ordering 4.3 provides a general method to produce

descriptions of sums and products of these base kernels.

Extensions and refinements

In practice, the system also incorporates a number of other rules which help to make

the descriptions shorter, easier to parse, or clearer:

o The system adds extra adjectives depending on kernel parameters. For example,
an SE with a relatively short lengthscale might be described as “a rapidly-varying

smooth function” as opposed to just “a smooth function”.

o Descriptions can include kernel parameters. For example, the system might write

that a function is “repeating with a period of 7 days”.

o Descriptions can include extra information about the model not contained in the
kernel. For example, based on the posterior distribution over the function’s slope,
the system might write “a linearly increasing function” as opposed to “a linear

function”.

o Some kernels can be described through pre-modifiers. For example, the system
might write “an approximately periodic function” as opposed to “a periodic func-

tion whose shape changes smoothly”.

Ordering additive components

The reports generated by our system attempt to present the most interesting or im-
portant features of a dataset first. As a heuristic, the system orders components by
always adding next the component which most reduces the 10-fold cross-validated mean

absolute error.
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4.1.4 Worked example

This section shows an example of our procedure describing a compound kernel containing

every type of base kernel in our set:
SEx (WNx Lin 4+ CP(C, Per)). (4.4)

The kernel is first converted into a sum of products, and the changepoint is converted

into sigmoidal kernels (recall the definition of changepoint kernels in section 2.5):
SEXWNxLin + SEXCxo + SEXPerxo (4.5)
which is then simplified using the rules in section 4.1.1 to
WNxLin + SExo + SExPerxa. (4.6)

To describe the first component, (WN x Lin), the head noun description for WN,
“uncorrelated noise”, is concatenated with a modifier for Lin, “with linearly increasing
standard deviation”.

The second component, (SEx o), is described as “A smooth function with a length-
scale of [lengthscale] [units]”, corresponding to the SE, “which applies until [change-
point]”.

Finally, the third component, (SE X Per x &), is described as “An approximately

periodic function with a period of [period] [units] which applies from [changepoint]”.

4.2 Example descriptions

In this section, we demonstrate the ability of our procedure, ABCD, to write intelligible
descriptions of the structure present in two time series. The examples presented here

describe models produced by the automatic search method presented in chapter 3.

4.2.1 Summarizing 400 years of solar activity

First, we show excerpts from the report automatically generated on annual solar irradi-
ation data from 1610 to 2011. This dataset is shown in figure 4.1.
This time series has two pertinent features: First, a roughly 11-year cycle of solar

activity. Second, a period lasting from 1645 to 1715 having almost no variance. This flat
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Figure 4.1: Solar irradiance data (Lean et al., 1995).

region is known as to the Maunder minimum, a period in which sunspots were extremely
rare (Lean et al., 1995). The Maunder minimum is an example of the type of structure

that can be captured by change-windows.

e A constant.

A constant. This function applies from 1643 until 1716.

A smooth function. This function applies until 1643 and from 1716 onwards.

An approximately periodic function with a period of 10.8 years. This function applies until
1643 and from 1716 onwards.

Figure 4.2: Automatically generated descriptions of the first four components discovered
by ABCD on the solar irradiance data set. The dataset has been decomposed into diverse
structures having concise descriptions.

The first section of each report generated by ABCD is a summary of the structure
found in the dataset. Figure 4.2 shows natural-language summaries of the top four
components discovered by ABCD on the solar dataset. From these summaries, we can
see that the system has identified the Maunder minimum (second component) and the 11-
year solar cycle (fourth component). These components are visualized and described in
figures 4.3 and 4.5, respectively. The third component, visualized in figure 4.4, captures

the smooth variation over time of the overall level of solar activity.

The complete report generated on this dataset can be found in appendix D. Each

report also contains samples from the model posterior.
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This component is constant. This component applies from 1643 until 1716.
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Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.3: Extract from an automatically-generated report describing the model com-
ponent corresponding to the Maunder minimum.

This component is a smooth function with a typical lengthscale of 23.1 years. This component
applies until 1643 and from 1716 onwards.

13615
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Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.4: Characterizing the medium-term smoothness of solar activity levels. By
allowing other components to explain the periodicity, noise, and the Maunder minimum,
ABCD can isolate the part of the signal best explained by a slowly-varying trend.

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.5: This part of the report isolates and describes the approximately 11-year
sunspot cycle, also noting its disappearance during the Maunder minimum.
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4.2.2 Describing changing noise levels

Next, we present excerpts of the description generated by our procedure on a model of
international airline passenger counts over time, shown in figure 3.5. High-level descrip-

tions of the four components discovered are shown in figure 4.6.

A linearly increasing function.

e An approximately periodic function with a period of 1.0 years and with linearly increasing
amplitude.

e A smooth function.

e Uncorrelated noise with linearly increasing standard deviation.

Figure 4.6: Short descriptions of the four components of a model describing the airline
dataset.

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across
periods the shape of this function varies very smoothly. The amplitude of the function increases
linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.

200
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Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.7: Describing non-stationary periodicity in the airline data.

The second component, shown in figure 4.7, is accurately described as approximately
(SE) periodic (Per) with linearly growing amplitude (Lin).

The description of the fourth component, shown in figure 4.8, expresses the fact that
the scale of the unstructured noise in the model grows linearly with time.

The complete report generated on this dataset can be found in the supplementary
material of Lloyd et al. (2014). Other example reports describing a wide variety of
time-series can be found at http://mlg.eng.cam.ac.uk/1loyd/abcdoutput/
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This component models uncorrelated noise. The standard deviation of the noise increases linearly.
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Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.8: Describing time-changing variance in the airline dataset.

4.3 Related work

To the best of our knowledge, our procedure is the first example of automatic textual
description of a nonparametric statistical model. However, systems with natural lan-
guage output have been developed for automatic video description (Barbu et al., 2012)
and automated theorem proving (Ganesalingam and Gowers, 2013).

Although not a description procedure, Durrande et al. (2013) developed an analytic
method for decomposing GP posteriors into entirely periodic and entirely non-periodic

parts, even when using non-periodic kernels.

4.4 Limitations of this approach
During development, we noted several difficulties with this overall approach:

e Some kernels are hard to describe. For instance, we did not include the RQ
kernel in the text-generation procedure. This was done for several reasons. First,
the RQ kernel can be equivalently expressed as a scale mixture of SE kernels,
making it redundant in principle. Second, it was difficult to think of a clear and
concise description for effect of the hyperparameter that controls the heaviness
of the tails of the RQ kernel. Third, a product of two RQ kernels does not give
another RQ kernel, which raises the question of how to concisely describe products
of RQ kernels.

e Reliance on additivity. Much of the modularity of the description procedure is

due to the additive decomposition. However, additivity is lost under any nonlinear
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transformation of the output. Such warpings can be learned (Snelson et al., 2004),

but descriptions of transformations of the data may not be as clear to the end user.

« Difficulty of expressing uncertainty. A natural extension to the model search
procedure would be to report a posterior distribution on structures and kernel
parameters, rather than point estimates. Describing uncertainty about the hyper-
parameters of a particular structure may be feasible, but describing even a few

most-probable structures might result in excessively long reports.

Source code

Source code to perform all experiments is available at

http://www.github.com/jamesrobertlloyd/gpss-research.

4.5 Conclusions

This chapter presented a system which automatically generates detailed reports describ-
ing statistical structure captured by a GP model. The properties of GPs and the kernels
being used allow a modular description, avoiding an exponential blowup in the number
of special cases that need to be considered.

Combining this procedure with the model search of chapter 3 gives a system com-
bining all the elements of an automatic statistician listed in section 3.1: an open-ended
language of models, a method to search through model space, a model comparison
procedure, and a model description procedure. Each particular element used in the sys-
tem presented here is merely a proof-of-concept. However, even this simple prototype

demonstrated the ability to discover and describe a variety of patterns in time series.


http://www.github.com/jamesrobertlloyd/gpss-research

Chapter 5
Deep Gaussian Processes

“I asked myself: On any given day, would I rather be wrestling with a
sampler, or proving theorems?”

— Peter Orbanz, personal communication

For modeling high-dimensional functions, a popular alternative to the Gaussian pro-
cess models explored earlier in this thesis are deep neural networks. When training
deep neural networks, choosing appropriate architectures and regularization strategies
is important for good predictive performance. In this chapter, we propose to study this
problem by viewing deep neural networks as priors on functions. By viewing neural
networks this way, one can analyze their properties without reference to any particular
dataset, loss function, or training method.

As a starting point, we will relate neural networks to Gaussian processes, and ex-
amine a class of infinitely-wide, deep neural networks called deep Gaussian processes:
compositions of functions drawn from GP priors. Deep GPs are an attractive model
class to study for several reasons. First, Damianou and Lawrence (2013) showed that
the probabilistic nature of deep GPs guards against overfitting. Second, Hensman et al.
(2014a) showed that stochastic variational inference is possible in deep GPs, allowing
mini-batch training on large datasets. Third, the availability of an approximation to the
marginal likelihood allows one to automatically tune the model architecture without the
need for cross-validation. Finally, deep GPs are attractive from a model-analysis point
of view, because they remove some of the details of finite neural networks.

Our analysis will show that in standard architectures, the representational capacity
of standard deep networks tends to decrease as the number of layers increases, retaining

only a single degree of freedom in the limit. We propose an alternate network architecture
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that connects the input to each layer that does not suffer from this pathology. We also
examine deep kernels, obtained by composing arbitrarily many fixed feature transforms.
The ideas contained in this chapter were developed through discussions with Oren

Rippel, Ryan Adams and Zoubin Ghahramani, and appear in Duvenaud et al. (2014).

5.1 Relating deep neural networks to deep GPs

This section gives a precise definition of deep GPs, reviews the precise relationship
between neural networks and Gaussian processes, and gives two equivalent ways of con-

structing neural networks which give rise to deep GPs.

5.1.1 Definition of deep GPs

We define a deep GP as a distribution on functions constructed by composing functions
drawn from GP priors. An example of a deep GP is a composition of vector-valued

functions, with each function drawn independently from GP priors:

FOD(x) = FOFED . FOFD(x))..)) (5.1)
with each fc(le) =GP (0, kc(zé) (x, X,))

Multilayer neural networks also implement compositions of vector-valued functions,
one per layer. Therefore, understanding general properties of function compositions

might helps us to gain insight into deep neural networks.

5.1.2 Single-hidden-layer models

First, we relate neural networks to standard “shallow” Gaussian processes, using the
standard neural network architecture known as the multi-layer perceptron (MLP) (Rosen-
blatt, 1962). In the typical definition of an MLP with one hidden layer, the hidden unit

activations are defined as:
h(x) = o (b + Vx) (5.2)

where h are the hidden unit activations, b is a bias vector, V is a weight matrix and o

is a one-dimensional nonlinear function, usually a sigmoid, applied element-wise. The
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output vector f(x) is simply a weighted sum of these hidden unit activations:
f(x) = Wo (b+ Vx) = Wh(x) (5.3)

where W is another weight matrix.

Neal (1995, chapter 2) showed that some neural networks with infinitely many hidden
units, one hidden layer, and unknown weights correspond to Gaussian processes. More

precisely, for any model of the form

1l o 1 E
) = o) = o D i), (5.4
with fixed! features [h1(x), ..., hx(x)]" = h(x) and i.i.d. w’s with zero mean and finite

variance o2, the central limit theorem implies that as the number of features K grows,

any two function values f(x) and f(x’) have a joint distribution approaching a Gaussian:

: fx) 1) 0 o | XL hi(x)hi(x) S hi(x)hi(x')
f}fioqu(x')])w ([o]’K[zf;m<x'>m<x> S b)) ) )

A joint Gaussian distribution between any set of function values is the definition of a

Gaussian process.

The result is surprisingly general: it puts no constraints on the features (other than
having uniformly bounded activation), nor does it require that the feature weights w be
Gaussian distributed. An MLP with a finite number of nodes also gives rise to a GP,

but only if the distribution on w is Gaussian.

One can also work backwards to derive a one-layer MLP from any GP: Mercer’s
theorem, discussed in section 2.6, implies that any positive-definite kernel function cor-

responds to an inner product of features: k(x,x’) = h(x) h(x’).

Thus, in the one-hidden-layer case, the correspondence between MLPs and GPs is
straightforward: the implicit features h(x) of the kernel correspond to hidden units of
an MLP.

!The above derivation gives the same result if the parameters of the hidden units are random, since
in the infinite limit, their distribution on outputs is always the same with probability one. However, to
avoid confusion, we refer to layers with infinitely-many nodes as “fixed”.
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Neural net corresponding to a GP Net corresponding to a GP with a deep kernel
Fixed Fixed Fixed
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Figure 5.1: Left: GPs can be derived as a one-hidden-layer MLP with infinitely many
fixed hidden units having unknown weights. Right: Multiple layers of fixed hidden units
gives rise to a GP with a deep kernel, but not a deep GP.

5.1.3 Multiple hidden layers

Next, we examine infinitely-wide MLPs having multiple hidden layers. There are several

ways to construct such networks, giving rise to different priors on functions.

In an MLP with multiple hidden layers, activation of the /th layer units are given by
h®(x) = o (b + VO (x)) . (5.6)

This architecture is shown on the right of figure 5.1. For example, if we extend the
model given by equation (5.3) to have two layers of feature mappings, the resulting

model becomes

1

flx) = ?wTh@) (h(x)) . (5.7)

If the features h®(x) and h®(x) are fixed with only the last-layer weights w un-

known, this model corresponds to a shallow GP with a deep kernel, given by
T
k(x,x') = W (WM (x)] h® (WM (). (5.8)

Deep kernels, explored in section 5.5, imply a fixed representation as opposed to

a prior over representations. Thus, unless we richly parameterize these kernels, their
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A neural net with fixed activation functions corresponding to a 3-layer deep GP

x M o
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A net with nonparametric activation functions corresponding to a 3-layer deep GP
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Figure 5.2: Two equivalent views of deep GPs as neural networks. Top: A neural network
whose every other layer is a weighted sum of an infinite number of fixed hidden units,
whose weights are initially unknown. Bottom: A neural network with a finite number
of hidden units, each with a different unknown non-parametric activation function. The
activation functions are visualized by draws from 2-dimensional GPs, although their
input dimension will actually be the same as the output dimension of the previous layer.

capacity to learn an appropriate representation will be limited in comparison to more

flexible models such as deep neural networks or deep GPs.

5.1.4 Two network architectures equivalent to deep GPs

There are two equivalent neural network architectures that correspond to deep GPs: one

having fixed nonlinearities, and another having GP-distributed nonlinearities.
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To construct a neural network corresponding to a deep GP using only fixed nonlin-
earities, one can start with the infinitely-wide deep GP shown in figure 5.1(right), and
introduce a finite set of nodes in between each infinitely-wide set of fixed basis functions.
This architecture is shown in the top of figure 5.2. The D nodes f)(x) in between
each fixed layer are weighted sums (with random weights) of the fixed hidden units of
the layer below, and the next layer’s hidden units depend only on these D® nodes.

This alternating-layer architecture has an interpretation as a series of linear infor-

mation bottlenecks. To see this, substitute equation (5.3) into equation (5.6) to get
h9(x) = o (b 4 [VOWE D] hD(x)) (5.9)

where W1 is the weight matrix connecting h= to £, Thus, ignoring the in-
termediate outputs £ (x), a deep GP is an infinitely-wide, deep MLP with each pair of

layers connected by random, rank-D, matrices given by VIOW 1),

The second, more direct way to construct a network architecture corresponding to
a deep GP is to integrate out all W and view deep GPs as a neural network with a
finite number of nonparametric, GP-distributed basis functions at each layer, in which
FEO(x) represent the output of the hidden nodes at the ¢*" layer. This second view
lets us compare deep GP models to standard neural net architectures more directly.

Figure 5.1(bottom) shows an example of this architecture.

5.2 Characterizing deep Gaussian process priors

This section develops several theoretical results characterizing the behavior of deep GPs
as a function of their depth. Specifically, we show that the size of the derivative of a one-
dimensional deep GP becomes log-normal distributed as the network becomes deeper.
We also show that the Jacobian of a multivariate deep GP is a product of independent
Gaussian matrices having independent entries. These results will allow us to identify a

pathology that emerges in very deep networks in section 5.3.

5.2.1 One-dimensional asymptotics

In this section, we derive the limiting distribution of the derivative of an arbitrarily deep,

one-dimensional GP having a squared-exp kernel:
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Figure 5.3: A function drawn from a one-dimensional deep GP prior, shown at different
depths. The z-axis is the same for all plots. After a few layers, the functions begin
to be either nearly flat, or quickly-varying, everywhere. This is a consequence of the
distribution on derivatives becoming heavy-tailed. As well, the function values at each
layer tend to cluster around the same few values as the depth increases. This happens
because once the function values in different regions are mapped to the same value in
an intermediate layer, there is no way for them to be mapped to different values in later
layers.

SE(z,2") = 0% exp (W) : (5.10)

2 controls the variance of functions drawn from the prior, and the

The parameter o
lengthscale parameter w controls the smoothness. The derivative of a GP with a squared-
exp kernel is point-wise distributed as A(0,9%/w?). Intuitively, a draw from a GP is likely

to have large derivatives if the kernel has high variance and small lengthscales.

By the chain rule, the derivative of a one-dimensional deep GP is simply a product
of the derivatives of each layer, which are drawn independently by construction. The
distribution of the absolute value of this derivative is a product of half-normals, each
with mean ,/20°/zw2. If one chooses kernel parameters such that ¢*/w? = 7/2, then the

expected magnitude of the derivative remains constant regardless of the depth.

The distribution of the log of the magnitude of the derivatives has finite moments:

Mieg = E [log 8“2?” = 2log (Z}) —log2 —~

af (x)
ox

4 2

2 log?2
] =2 + °8 —~* —ylog4 + 2log (U) {7+log2—log <0>}
w w

Vjog = V [log|

(5.11)

where v & 0.5772 is Euler’s constant. Since the second moment is finite, by the central

limit theorem, the limiting distribution of the size of the gradient approaches a log-
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normal as L grows:

L

zlogH

(=1

oY ()

ox

of " (x)

Lo 107O)
log = log ’
ox 1;

ox

PN (Limiog, L) (5.12)

Even if the expected magnitude of the derivative remains constant, the variance of the

log-normal distribution grows without bound as the depth increases.

Because the log-normal distribution is heavy-tailed and its domain is bounded below
by zero, the derivative will become very small almost everywhere, with rare but very
large jumps. Figure 5.3 shows this behavior in a draw from a 1D deep GP prior. This
figure also shows that once the derivative in one region of the input space becomes very

large or very small, it is likely to remain that way in subsequent layers.

5.2.2 Distribution of the Jacobian

Next, we characterize the distribution on Jacobians of multivariate functions drawn
from deep GP priors, finding them to be products of independent Gaussian matrices

with independent entries.

Lemma 5.2.1. The partial derivatives of a function mapping R® — R drawn from a

GP prior with a product kernel are independently Gaussian distributed.

Proof. Because differentiation is a linear operator, the derivatives of a function drawn
from a GP prior are also jointly Gaussian distributed. The covariance between partial
derivatives with respect to input dimensions d; and ds of vector x are given by Solak
et al. (2003):

oo (242 10 _ ke 613

Oxg = Ox - Oxyg, 01
dy da d1 da

x=x'

If our kernel is a product over individual dimensions k(x,x’) = [T k4(x4, 7)), then the

off-diagonal entries are zero, implying that all elements are independent. O]

For example, in the case of the multivariate squared-exp kernel, the covariance be-
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tween derivatives has the form:

D 2
f(X) ~ GP <O,0’2 H exp <_;(ded)>>
d=1 d

o ifdy =d
— cov (af (x) 9f <X)) e 0T (5.14)
Ora, — Oy 0 ifd #dy

Lemma 5.2.2. The Jacobian of a set of D functions RP? — R drawn from independent

GP priors, each having product kernel is a D x D matriz of independent Gaussian R.V.’s

Proof. The Jacobian of the vector-valued function f(x) is a matrix J with elements
Jij(x) = %{ﬁj_x). Because the GPs on each output dimension fi(x), fa(x),..., fp(x) are
independent by construction, it follows that each row of J is independent. Lemma 5.2.1
shows that the elements of each row are independent Gaussian. Thus all entries in the

Jacobian of a GP-distributed transform are independent Gaussian R.Vs. O

Theorem 5.2.3. The Jacobian of a deep GP with a product kernel is a product of inde-

pendent Gaussian matrices, with each entry in each matriz being drawn independently.

Proof. When composing L different functions, we denote the immediate Jacobian of
the function mapping from layer ¢ — 1 to layer ¢ as J®(x), and the Jacobian of the
entire composition of L functions by J1)(x). By the multivariate chain rule, the
Jacobian of a composition of functions is given by the product of the immediate Ja-

cobian matrices of each function. Thus the Jacobian of the composed (deep) function

FOFEVCFOFO V() ) is
JUL (x) = g8 j&=b - g@) @) g0, (5.15)

By lemma 5.2.2, each Ji(? = N, so the complete Jacobian is a product of independent

Gaussian matrices, with each entry of each matrix drawn independently. O]

This result allows us to analyze the representational properties of a deep Gaussian
process by examining the properties of products of independent Gaussian matrices.

5.3 Formalizing a pathology

A common use of deep neural networks is building useful representations of data man-

ifolds. What properties make a representation useful? Rifai et al. (2011a) argued that
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good representations of data manifolds are invariant in directions orthogonal to the data
manifold. They also argued that, conversely, a good representation must also change
in directions tangent to the data manifold, in order to preserve relevant information.

Figure 5.4 visualizes a representation having these two properties.
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Figure 5.4: Representing a 1-D data manifold. Colors are a function of the computed
representation of the input space. The representation (blue & green) changes little
in directions orthogonal to the manifold (white), making it robust to noise in those
directions. The representation also varies in directions tangent to the data manifold,
preserving information for later layers.

Asin Rifai et al. (2011b), we characterize the representational properties of a function
by the singular value spectrum of the Jacobian. The number of relatively large singular
values of the Jacobian indicate the number of directions in data-space in which the
representation varies significantly. Figure 5.5 shows the distribution of the singular
value spectrum of draws from 5-dimensional deep GPs of different depths.? As the nets
gets deeper, the largest singular value tends to dominate, implying there is usually only
one effective degree of freedom in the representations being computed.

Figure 5.6 demonstrates a related pathology that arises when composing functions
to produce a deep density model. The density in the observed space eventually becomes
locally concentrated onto one-dimensional manifolds, or filaments. This again suggests
that, when the width of the network is relatively small, deep compositions of indepen-
dent functions are unsuitable for modeling manifolds whose underlying dimensionality
is greater than one.

To visualize this pathology in another way, figure 5.7 illustrates a color-coding of
the representation computed by a deep GP, evaluated at each point in the input space.
After 10 layers, we can see that locally, there is usually only one direction that one can

move in x-space in order to change the value of the computed representation, or to cross

2Rifai et al. (2011b) analyzed the Jacobian at location of the training points, but because the priors
we are examining are stationary, the distribution of the Jacobian is identical everywhere.
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Figure 5.5: The distribution of normalized singular values of the Jacobian of a func-
tion drawn from a 5-dimensional deep GP prior 25 layers deep (Left) and 50 layers
deep (Right). As nets get deeper, the largest singular value tends to become much
larger than the others. This implies that with high probability, these functions vary
little in all directions but one, making them unsuitable for computing representations of
manifolds of more than one dimension.

a decision boundary. This means that such representations are likely to be unsuitable
for decision tasks that depend on more than one property of the input.

To what extent are these pathologies present in the types of neural networks com-
monly used in practice? In simulations, we found that for deep functions with a fixed
hidden dimension D, the singular value spectrum remained relatively flat for hundreds
of layers as long as D > 100. Thus, these pathologies are unlikely to severely effect the

relatively shallow, wide networks most commonly used in practice.

5.4 Fixing the pathology

As suggested by Neal (1995, chapter 2), we can fix the pathologies exhibited in figures
figure 5.6 and 5.7 by simply making each layer depend not only on the output of the pre-
vious layer, but also on the original input x. We refer to these models as input-connected
networks, and denote deep functions having this architecture with the subscript C, as

in fo(x). Formally, this functional dependence can be written as

FEPx) = FP (£ (x0,x) VL (5.16)
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Figure 5.6: Points warped by a function drawn from a deep GP prior. Top left: Points
drawn from a 2-dimensional Gaussian distribution, color-coded by their location. Sub-
sequent panels: Those same points, successively warped by compositions of functions
drawn from a GP prior. As the number of layers increases, the density concentrates
along one-dimensional filaments. Warpings using random finite neural networks exhibit
the same pathology, but <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>