
Replacing Neural Networks
with Black-Box ODE Solvers

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud
 University of Toronto, Vector Institute

Resnets are Euler integrators

• Middle layers look like:

• Limit of smaller steps:

From Resnets to ODEnets
h_L

x

z(T)

z(0)

Why not an ODE solver?
• Parameterize

• Define z(T) to be top layer of residual network, or recurrent
neural network, or normalizing flow…

• RNNs: No need to discretize time

• Fewer parameters: Neighboring layers automatically similar

• Density models: Efficiently invertible. Math is nicer.

• O(1) memory cost, due to reversibility

• Adaptive, explicit tradeoff between speed and accuracy.
No wasted layers?

Backprop through an ODE
solver is wasteful

• Ultimately want to optimize some loss

• How to compute gradients of ODESolve?

• Backprop through operations of solver is slow, has
bad numerical properties, and high memory cost

Reverse-time autodiff
• Define adjoint:

• Which has dynamics:

• Start adjoint with

• And solve a combined ODE backwards in time:

[Scalable Inference of Ordinary Differential Equation Models of Biochemical
Processes”, Froehlich, Loos, Hasenauer, 2017]

Reverse-time autodiff
• In english: Solve the original ODE and the

accumulated gradients backwards through time.

Adjoint State

State

Can ask for multiple measurement times

Reverse pass breaks solution into N-1 chunks

• First implementation of
reverse-mode autodiff
through black-box ODE
solvers

• Solves a system of size
2D + K + 1

• Stan has forward-mode
implementation, which
solves a system of size
D^2 + KD

• Tensorflow has Runge-
Kutta 4,5 implemented,
but naive autodiff

• Julia has limited support

• We have PyTorch impl

O(1) Memory Cost
• Don’t need to store layer activations for reverse

pass - just follow dynamics in reverse!

• Reversible resnets [Gomez, Ren, Urtasun,Grosse, 2018]
also have this property, but require partitioning dimensions

Explicit Error Control

• More fine-grained
control than low-
precision floats

• Cost scales with
instance difficulty

Speed-Accuracy Tradeoff

• Time cost is
dominated by
evaluation of
dynamics

• Roughly linear with
number of forward
evaluations

Reverse vs Forward Cost
• Empirically, reverse

pass roughly half as
expensive as
forward pass

• Again, adapts to
instance difficulty

• Num evaluations
comparable to
number of layers in
modern nets

How complex are the
dynamics?

• Dynamics become
more demanding to
compute during
training

Continuous-time RNNs
• We often want:

• arbitrary measurement times

• to decouple dynamics and inference

• consistently defined state at all times

µ
�

zt0
zt1

RNN encoder

Latent space
Data space

~

q(zt0 |xt0 ...xtN)
ht0 ht1 htN

ODE Solve(zt0 , f, ✓f , t0, ..., tM)

ztM

…
ztN

ztN+1

Observed Unobserved

x(t)

t0 t1 tN

Time

tN+1 tM

Prediction Extrapolation

t0 t1 tN tN+1 tM

x̂(t)

Continuous-time RNNs
• Can do VAE-style inference with an RNN encoder

• Actually, more like a Deep Kalman Filter

• TODO: move to stochastic differential equations

RNNs vs Latent ODE
• ODE VAE combines all noisy

observations to reason about
underlying trajectory (smoothing)

Recurrent Neural Net Latent ODE

RNNs vs Latent ODE

Recurrent Neural Net Latent ODE

Latent space exploration

Each 3D latent point corresponds to a trajectory

Poisson Process Likelihoods
• Can condition on

observation times

• Define rate function
as a function of
latent state

• Poisson likelihood is
just another integral,
can be solved along
with latent state Time

Normalizing Flows

• Determinant of Jacobian has cost O(D^3).

• Matrix determinant lemma gives O(DH^3) cost.

• Normalizing flows use 1 hidden unit. Deep & skinny

Continuous Normalizing Flows

• What if we move to continuous transformations?

• Time-derivative only depends on trace of Jacobian

• Trace of sum is sum of traces - O(HD) cost!

Continuous Normalizing Flows

All videos at https://goo.gl/cqHBzF

https://goo.gl/cqHBzF

Trading Depth for Width

Training directly from data
• Standard NF is one-to-one but expensive to invert.

• Continuous NF is about as easy inverted as forward

• So can train directly from data, like Real NVP

Training directly from data
• Best of all worlds:

• Wide layers

• No need to partition dimensions

• Can evaluate density tractably

What about numerical error?
• Are we really inverting exactly?

• Can ask for desired error level.

Absolute and relative tolerance: 0.01

What about numerical error?
• Are we really inverting exactly?

• Can ask for desired error level.

Absolute and relative tolerance: 0.00001

Continuous everything
• Next steps:

• Pytorch & Tensorflow versions of ODE backprop

• Scale up continuous normalizing flows

• Extend time-series model to SDEs

• Other directions:

• Continuous-time HMC?

• Backprop through physical simulations?

• Better neural physics models?

• More efficient neural architectures??

Thanks!

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud

Extra Slides

Instantaneous Change of Variables

