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Resnets are Euler integrators 

• Middle layers look like:

• Limit of smaller steps:
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Why not an ODE solver?
• Parameterize 

• Define z(T) to be top layer of residual network, or recurrent 
neural network, or normalizing flow… 

• RNNs: No need to discretize time 

• Fewer parameters: Neighboring layers automatically similar 

• Density models: Efficiently invertible. Math is nicer. 

• O(1) memory cost, due to reversibility 

• Adaptive, explicit tradeoff between speed and accuracy.  
No wasted layers?



Backprop through an ODE 
solver is wasteful

• Ultimately want to optimize some loss

• How to compute gradients of ODESolve? 

• Backprop through operations of solver is slow, has 
bad numerical properties, and high memory cost



Reverse-time autodiff
• Define adjoint: 

• Which has dynamics: 

• Start adjoint with 

• And solve a combined ODE backwards in time:

[Scalable Inference of Ordinary Differential Equation Models of Biochemical 
Processes”, Froehlich, Loos, Hasenauer, 2017]



Reverse-time autodiff
• In english: Solve the original ODE and the 

accumulated gradients backwards through time.



Adjoint State

State

Can ask for multiple measurement times

Reverse pass breaks solution into N-1 chunks



• First implementation of 
reverse-mode autodiff 
through black-box ODE 
solvers 

• Solves a system of size 
2D + K + 1 

• Stan has forward-mode 
implementation, which 
solves a system of size   
D^2 + KD 

• Tensorflow has Runge-
Kutta 4,5 implemented, 
but naive autodiff 

• Julia has limited support 

• We have PyTorch impl



O(1) Memory Cost
• Don’t need to store layer activations for reverse 

pass - just follow dynamics in reverse!

• Reversible resnets [Gomez, Ren, Urtasun,Grosse, 2018] 
also have this property, but require partitioning dimensions



Explicit Error Control

• More fine-grained 
control than low-
precision floats 

• Cost scales with 
instance difficulty



Speed-Accuracy Tradeoff

• Time cost is 
dominated by 
evaluation of 
dynamics 

• Roughly linear with 
number of forward 
evaluations



Reverse vs Forward Cost
• Empirically, reverse 

pass roughly half as 
expensive as 
forward pass 

• Again, adapts to 
instance difficulty 

• Num evaluations 
comparable to 
number of layers in 
modern nets



How complex are the 
dynamics?

• Dynamics become 
more demanding to 
compute during 
training



Continuous-time RNNs
• We often want: 

• arbitrary measurement times 

• to decouple dynamics and inference 

• consistently defined state at all times
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Continuous-time RNNs
• Can do VAE-style inference with an RNN encoder 

•  Actually, more like a Deep Kalman Filter 

• TODO: move to stochastic differential equations 



RNNs vs Latent ODE
• ODE VAE combines all noisy 

observations to reason about 
underlying trajectory (smoothing)

Recurrent Neural Net Latent ODE



RNNs vs Latent ODE

Recurrent Neural Net Latent ODE



Latent space exploration

Each 3D latent point corresponds to a trajectory



Poisson Process Likelihoods
• Can condition on 

observation times 

• Define rate function 
as a function of 
latent state 

• Poisson likelihood is 
just another integral, 
can be solved along 
with latent state Time



Normalizing Flows

• Determinant of Jacobian has cost O(D^3). 

• Matrix determinant lemma gives O(DH^3) cost. 

• Normalizing flows use 1 hidden unit. Deep & skinny



Continuous Normalizing Flows 

• What if we move to continuous transformations? 

• Time-derivative only depends on trace of Jacobian 

• Trace of sum is sum of traces - O(HD) cost!



Continuous Normalizing Flows 

All videos at https://goo.gl/cqHBzF

https://goo.gl/cqHBzF


Trading Depth for Width



Training directly from data 
• Standard NF is one-to-one but expensive to invert. 

• Continuous NF is about as easy inverted as forward 

• So can train directly from data, like Real NVP



Training directly from data 
• Best of all worlds: 

• Wide layers 

• No need to partition dimensions 

• Can evaluate density tractably



What about numerical error? 
• Are we really inverting exactly? 

• Can ask for desired error level.

Absolute and relative tolerance: 0.01



What about numerical error? 
• Are we really inverting exactly? 

• Can ask for desired error level.

Absolute and relative tolerance: 0.00001



Continuous everything
• Next steps: 

• Pytorch & Tensorflow versions of ODE backprop 

• Scale up continuous normalizing flows 

• Extend time-series model to SDEs 

• Other directions: 

• Continuous-time HMC? 

• Backprop through physical simulations? 

• Better neural physics models? 

• More efficient neural architectures??



Thanks!
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Instantaneous Change of Variables 




