# Replacing Neural Networks with Black-Box ODE Solvers



Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud University of Toronto, Vector Institute





#### Resnets are Euler integrators

• Middle layers look like:  $\mathbf{h}_{t+1} = \mathbf{h}_t + f(\mathbf{h}_t, \theta_t)$ 



• Limit of smaller steps:

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$$

## From Resnets to ODEnets



# Why not an ODE solver?

• Parameterize

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), \theta(t))$$

- Define z(T) to be top layer of residual network, or recurrent neural network, or normalizing flow...
  - RNNs: No need to discretize time
  - Fewer parameters: Neighboring layers automatically similar
  - Density models: Efficiently invertible. Math is nicer.
  - O(1) memory cost, due to reversibility
  - Adaptive, explicit tradeoff between speed and accuracy. No wasted layers?

# Backprop through an ODE solver is wasteful

• Ultimately want to optimize some loss

$$L(\mathbf{z}(t_1)) = L\left(\int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt\right)$$
$$= L\left(\text{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \theta)\right)$$

- How to compute gradients of ODESolve?
- Backprop through operations of solver is slow, has bad numerical properties, and high memory cost

## Reverse-time autodiff

- Define adjoint:  $a(t) = -\frac{\partial L}{\partial \mathbf{z}(t)}$
- Which has dynamics:  $\frac{da(t)}{dt} = -a(t)^T \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}$
- Start adjoint with  $\partial L/\partial \mathbf{z}(t_1)$
- And solve a combined ODE backwards in time:

$$\frac{dL}{d\theta} = \int_{t_1}^{t_0} a(t)^T \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta} dt$$

[Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes", Froehlich, Loos, Hasenauer, 2017]

## Reverse-time autodiff

 In english: Solve the original ODE and the accumulated gradients backwards through time.

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

**Input:** dynamics parameters  $\theta$ , start time  $t_0$ , stop time  $t_1$ , final state  $\mathbf{z}(t_1)$ , loss gradient  $\frac{\partial L}{\partial \mathbf{z}(t_1)}$  $\frac{\partial L}{\partial t_1} = \frac{\partial L}{\partial \mathbf{z}(t_N)}^T f(\mathbf{z}(t_1), t_1, \theta) \qquad \triangleright \text{ Compute gradient w.r.t. } t_1$   $s = [\mathbf{z}(t_1), \frac{\partial L}{\partial \mathbf{z}(t_1)}, -\frac{\partial L}{\partial t_1}, \mathbf{0}] \qquad \triangleright \text{ Define initial augmented state}$  **def** Dynamics( $[\mathbf{z}(t), a(t), -, -], t, \theta$ ):  $\triangleright$  Define dynamics on augmented state **return**  $[f(\mathbf{z}(t), t, \theta), -a^T(t) \frac{\partial f}{\partial \mathbf{z}}, -a^T(t) \frac{\partial f}{\partial \theta}, -a^T(t) \frac{\partial f}{\partial t}] \qquad \triangleright \text{ Concatenate time-derivatives}$   $[\mathbf{z}(t_0), \frac{\partial L}{\partial \mathbf{z}(t_0)}, \frac{\partial L}{\partial \theta}, \frac{\partial L}{\partial t_0}] = \text{ODESolve}(s, \text{Dynamics}, t_1, t_0, \theta) \qquad \triangleright \text{ Solve reverse-time ODE}$  **return**  $\frac{\partial L}{\partial \mathbf{z}(t_0)}, \frac{\partial L}{\partial \theta}, \frac{\partial L}{\partial t_0}, \frac{\partial L}{\partial t_1} \qquad \triangleright \text{ Return all gradients}$ 

#### Can ask for multiple measurement times

Reverse pass breaks solution into N-1 chunks



```
def grad_odeint(yt, func, y0, t, func_args, **kwargs):
    # Extended from "Scalable Inference of Ordinary Differential
    # Equation Models of Biochemical Processes", Sec. 2.4.2
    # Fabian Froehlich, Carolin Loos, Jan Hasenauer, 2017
    # https://arxiv.org/abs/1711.08079
    T, D = np.shape(yt)
    flat_args, unflatten = flatten(func_args)
    def flat_func(y, t, flat_args):
        return func(y, t, *unflatten(flat_args))
    def unpack(x):
                      vjp_y, vjp_t, vjp_args
        #
              V.
        return x[0:D], x[D:2 * D], x[2 * D], x[2 * D + 1:]
    def augmented_dynamics(augmented_state, t, flat_args):
       # Orginal system augmented with vjp_y, vjp_t and vjp_args.
       y, vjp_y, _, _ = unpack(augmented_state)
        vjp_all, dy_dt = make_vjp(flat_func, argnum=(0, 1, 2))(y, t, flat_args)
        vjp_y, vjp_t, vjp_args = vjp_all(-vjp_y)
        return np.hstack((dy_dt, vjp_y, vjp_t, vjp_args))
    def vjp_all(g):
       v_{jp}v = q[-1, :]
       vip t0 = 0
       time_vjp_list = []
        vjp_args = np.zeros(np.size(flat_args))
        for i in range(T - 1, 0, -1):
            # Compute effect of moving measurement time.
            vjp_cur_t = np.dot(func(yt[i, :], t[i], *func_args), g[i, :])
            time_vjp_list.append(vjp_cur_t)
           vjp_t0 = vjp_t0 - vjp_cur_t
            # Run augmented system backwards to the previous observation.
            aug_y0 = np.hstack((yt[i, :], vjp_y, vjp_t0, vjp_args))
            aug_ans = odeint(augmented_dynamics, aug_y0,
                             np.array([t[i], t[i - 1]]), tuple((flat_args,)), **kwargs)
           _, vjp_y, vjp_t0, vjp_args = unpack(aug_ans[1])
           # Add gradient from current output.
           vjp_y = vjp_y + g[i - 1, :]
        time_vjp_list.append(vjp_t0)
        vjp_times = np.hstack(time_vjp_list)[::-1]
```

return None, vjp\_y, vjp\_times, unflatten(vjp\_args)
return vjp\_all

- First implementation of reverse-mode autodiff through black-box ODE solvers
- Solves a system of size
   2D + K + 1
- Stan has forward-mode implementation, which solves a system of size D^2 + KD
- Tensorflow has Runge-Kutta 4,5 implemented, but naive autodiff
- Julia has limited support
- We have PyTorch impl

# O(1) Memory Cost

 Don't need to store layer activations for reverse pass - just follow dynamics in reverse!

#### Table 1: Performance on MNIST. <sup>†</sup>From [23].

|                          | Test Error | # Params | Memory                  | Time                    |
|--------------------------|------------|----------|-------------------------|-------------------------|
| 1-Layer MLP <sup>†</sup> | 1.60%      | 0.24 M   | -                       | -                       |
| ResNet                   | 0.41%      | 0.60 M   | $\mathcal{O}(L)$        | $\mathcal{O}(L)$        |
| RK-Net                   | 0.47%      | 0.22 M   | $\mathcal{O}(	ilde{L})$ | $\mathcal{O}(	ilde{L})$ |
| ODE-Net                  | 0.42%      | 0.22 M   | $\mathcal{O}(1)$        | $\mathcal{O}(	ilde{L})$ |

• Reversible resnets [Gomez, Ren, Urtasun, Grosse, 2018] also have this property, but require partitioning dimensions

# Explicit Error Control

- More fine-grained control than lowprecision floats
- Cost scales with instance difficulty



# Speed-Accuracy Tradeoff

- Time cost is dominated by evaluation of dynamics
- Roughly linear with number of forward evaluations



# Reverse vs Forward Cost

- Empirically, reverse pass roughly half as expensive as forward pass
- Again, adapts to instance difficulty
- Num evaluations comparable to number of layers in modern nets



# How complex are the dynamics?

 Dynamics become more demanding to compute during training



# Continuous-time RNNs

- We often want:
  - arbitrary measurement times
  - to decouple dynamics and inference
  - consistently defined state at all times

$$\begin{aligned} \mathbf{z}_{t_0} &\sim p(\mathbf{z}_{t_0}) \\ \mathbf{z}_{t_1}, \mathbf{z}_{t_2}, \dots, \mathbf{z}_{t_N} &= \text{ODESolve}(\mathbf{z}_{t_0}, f, \theta_f, t_0, \dots, t_N) \\ \text{each} \quad \mathbf{x}_{t_i} &\sim p(\mathbf{x} | \mathbf{z}_{t_i}, \theta_{\mathbf{x}}) \end{aligned}$$

# Continuous-time RNNs

- Can do VAE-style inference with an RNN encoder
- Actually, more like a Deep Kalman Filter



TODO: move to stochastic differential equations

# RNNs vs Latent ODE

 ODE VAE combines all noisy observations to reason about underlying trajectory (smoothing)





Latent ODE

# RNNs vs Latent ODE



## Latent space exploration



#### Each 3D latent point corresponds to a trajectory



### Poisson Process Likelihoods

- Can condition on observation times
- Define rate function as a function of latent state
- Poisson likelihood is just another integral, can be solved along with latent state

$$\log p(t_1, \dots, t_N | t_{\text{start}}, t_{\text{end}})$$

$$= \sum_{i=1}^N \log \lambda(\mathbf{z}(t_i)) - \int_{t_{\text{start}}}^{t_{\text{end}}} \lambda(\mathbf{z}(t) dt$$

Iime

# Normalizing Flows

$$x_1 = f(x_0) \implies p(x_1) = p(x_0) \left| \det \frac{\partial f}{\partial x_0} \right|^{-1}$$

- Determinant of Jacobian has cost O(D^3).
- Matrix determinant lemma gives O(DH^3) cost.
- Normalizing flows use 1 hidden unit. Deep & skinny

$$x(t+1) = x(t) + uh(w^T x(t) + b)$$
$$\log p(x(t+1)) = \log p(x(t)) - \log \left| 1 + u^T \frac{\partial h}{\partial x} \right|$$

#### Continuous Normalizing Flows

• What if we move to continuous transformations?

$$\frac{\partial \log p(x(t))}{\partial t} = -\mathrm{tr}\left(\frac{df}{dx}(t)\right)$$

• Time-derivative only depends on trace of Jacobian

$$\frac{dx}{dt} = uh(w^T x + b), \quad \frac{\partial \log p(x)}{\partial t} = -u^T \frac{\partial h}{\partial x}$$

• Trace of sum is sum of traces - O(HD) cost!

$$\frac{dx}{dt} = \sum_{n} f_n(x), \quad \frac{d\log p(x(t))}{dt} = \sum_{n} \operatorname{tr}\left(\frac{\partial f}{\partial x}\right)$$

### Continuous Normalizing Flows



#### All videos at https://goo.gl/cqHBzF





Figure 5: Comparison of NF and CNFs on learning generative models (noise  $\rightarrow$  data) trained to minimize the reverse KL.

## Training directly from data

- Standard NF is one-to-one but expensive to invert.
- Continuous NF is about as easy inverted as forward
- So can train directly from data, like Real NVP



#### Density



#### Samples



## Training directly from data

- Best of all worlds:
  - Wide layers
  - No need to partition dimensions
  - Can evaluate density tractably



## What about numerical error?

- Are we really inverting exactly?
- Can ask for desired error level.



#### Absolute and relative tolerance: 0.01

## What about numerical error?

- Are we really inverting exactly?
- Can ask for desired error level.



#### Absolute and relative tolerance: 0.00001

# Continuous everything

- Next steps:
  - Pytorch & Tensorflow versions of ODE backprop
  - Scale up continuous normalizing flows
  - Extend time-series model to SDEs
- Other directions:
  - Continuous-time HMC?
  - Backprop through physical simulations?
  - Better neural physics models?
  - More efficient neural architectures??



Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud



# Thanks!



## Extra Slides

#### Instantaneous Change of Variables

**Theorem 1** (Instantaneous Change of Variables). Let x(t) be a finite continuous random variable with probability p(x(t)) dependent on time. Let  $\frac{dx}{dt} = f(x(t), t)$  be a differential equation describing a continuous-time transformation of x(t). Assuming that f is uniformly Lipschitz continuous in x and continuous in t, then the change in log probability also follows a differential equation,

$$\frac{\partial \log p(x(t))}{\partial t} = -\mathrm{tr}\left(\frac{df}{dx}(t)\right) \tag{8}$$



