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Designing neural nets

» Neural nets require lots of design decisions whose
implications hard to understand.

» We want to understand them without reference to a specific
dataset, loss function, or training method.

» We can analyze different network architectures by looking
at nets whose parameters are drawn randomly.



Why look at priors if I'm going to learn
everything anyways?

» When using Bayesian neural nets:
» Can’t learn types of networks having vanishing probability
under the prior.
» Even when non-probabilistic:
» Good prior — a good initialization strategy.
» Good prior — a good regularization strategy.
» Good prior — higher fraction of parameters specify
reasonable models — easier optimization problem.



GPs as Neural Nets

A weighted sum of features,
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Kernel learning as feature learning

v

GPs have fixed features, integrate out feature weights.

v

Mapping between kernels and features:

k(x,x') = h(x) Th(x).

Any PSD kernel can be written as inner product of
features. (Mercer’s Theorem)

v

v

Kernel learning = feature learning

v

What if we make the GP nueral network deep?



Example deep kernel: Periodic
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Now our model is:
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we have “deep kernel:
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Deep nets, deep kernels
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Deep Kernels

» (Cho, 2012) built kernels by composing feature mappings.
» Composing any kernel k; with a squared-exp kernel (SE):

» A closed form...let’s do it again!



Repeated Fixed Feature Mappings




Infinitely Deep Kernels

» For SE kernel, k1 (x,x’) = exp (ky(x,x') — 1).

» What is the limit of composing SE features?
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» kyo(x,X') = 1 everywhere. ®



A simple fix

» Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

O—0O—0O—0—0

X fU(x) fA(x) fO(x) fH(x)

Input-connected architecture:

OO0

X f(x) fA(x) Ox) fH(x)



A simple fix
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Infinitely deep kernels, take two

» What is the limit of compositions of input-connected SE
features?

> ki(x,X') = exp (kL(X7X/) —-1- %HX - X/||%)

1 layer

2 layers
— 3layers

o layers | |

Kernels Draws from GP priors

» Like an Ornstein-Uhlenbeck process with skinny tails

» Samples are non-differentiable (fractal).



Not very exciting...

» Fixed feature mapping, unlikely to be useful for anything

» Power of neural nets comes from learning a custom
representation.



Deep Gaussian Processes

» A prior over compositions of functions:
10 (x) = fO (D (D (1D (x)) .. ) (1)

with each £ % gP (0, k5(x,x")).
» Can be seen as a “simpler” version of Bayesian neural nets
» Two equivalent architectures.



Deep GPs as nonparametric nets

Inputs Targets

A neural net where each neuron’s activation function is
drawn from a Gaussian process prior.

Avoids problem of unit saturation (with sigmoidal units).
Each draw from neural net prior gives a function y = f(x).
In this talk we only consider noiseless functions.

v

v

v

v



Deep GPs as infinitely wide parametric nets
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» Infinitely-wide fixed feature maps alternating with finite
linear information bottlenecks:

h9(x) =0 (b(f) + [V(f)w(f—l)} h(f—l)(x))



Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

2 Layers




Priors on deep networks
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Priors on deep networks
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Priors on deep networks
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Priors on deep networks
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Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

10 Layers

X
Size of derivative becomes log-normal distributed.



Priors on deep networks

» 2D to 2D warpings of a set of coloured points:
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Priors on deep networks
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Priors on deep networks
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Priors on deep networks

» 2D to 2D warpings of a set of coloured points:
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Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

5 Layers

Density concentrates along filaments.



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

No warping



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Priors on deep networks

Color shows y that each x is mapped
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to (decision boundary)




Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

20 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)
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Representation only changes in one direction locally.



What makes a good representation?

» Good representations of data manifolds don’t change in
directions orthogonal to the manifold. (Rifai et. al. 2011)

» Good representations also change in directions tangent to
the manifold, to preserve information.

» Representation of a D-dimensional manifold should
change in D orthogonal directions, locally.

» Our prior on functions might be too restrictive.



Analysis of Jacobian
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Singular value index
The distribution of normalized singular values of the Jacobian

of functions drawn from a 5-dimensional deep GP prior.

» Lemma from paper: The Jacobian of a deep GP is a
product of i.i.d. random Gaussian matrices.

» Output only changes in w.r.t. one direction as net deepens.
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A simple fix

» Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

O—0O—0O—0—0

X fU(x) fA(x) fO(x) fH(x)

Input-connected architecture:

OO0

X f(x) fA(x) Ox) fH(x)



A different architecture

» A draw from a one-neuron-per-layer deep GP, with the

input also connected to each layer:

1 layer



A different architecture
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A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

» A draw from a one-neuron-per-layer deep GP, with the

input also connected to each layer:

X
Greater variety of derivatives.

10 layers



A different architecture

» Input-connected 2D to 2D warpings of coloured points:




A different architecture
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A different architecture

» Input-connected 2D to 2D warpings of coloured points:
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A different architecture

» Input-connected 2D to 2D warpings of coloured points:
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A different architecture

» Input-connected 2D to 2D warpings of coloured points:

4 Layers




A different architecture

» Input-connected 2D to 2D warpings of coloured points:

5 Layers
Density becomes more complex but remains 2D.




A different architecture (show video)

» Color shows y that each x is mapped to

No warping



A different architecture (show video)

» Color shows y that each x is mapped to
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A different architecture (show video)

10 Layers



A different architecture (show video)
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A different architecture (show video)

> Color shows y that each x is mapped to

: ) 2 . 40 Layers
Representatlon sometimes depends on all directions.



Understanding dropout

» Dropout is a method for regularizing neural networks
(Hinton et al., 2012; Srivastava, 2013).

» Recipe:

1. Randomly set to zero (drop out) some neuron activations.
2. Average over all possible ways of doing this.

» Gives robustness since neurons can’t depend on each other.
» How does dropout affect priors on functions?

» Related work: (Baldi and Sadowski, 2013; Cho, 2013;
Wager, Wang and Liang, 2013)



Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
Remove units with probability 1:
K
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Dropout on Feature Activations
Remove units with probability 1:
K
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [riWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0




Dropout on Feature Activations
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Dropout on Feature Activations
Remove units with probability 1:
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Dropout on Feature Activations

Double output variance:

K

fx) == > rwihi(x) 1~ Ber(%)

i=1

with any weight distribution,

E [ r,-w,-] =0, V[ r,vwi] = o?

*3 ha(x) by CLT, gives a GP as K — oo

hs(x) cov {}C((:,)) ] — % ;hi(x)hi(x’)




Dropout on Feature Activations

» Dropout on feature activations gives same GP.
» Averaging the same model doesn’t do anything.

v

GPs were doing dropout all along? ©

v

GPs are strange because any one feature doesn’t matter.

v

Is there a better way to drop out features that would lead to
robustness?



Dropout on GP inputs
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» Each function only depends on some input dimensions.

» Given prior covariance cov [f(x),f(x')] = k(x, X'), exact
dropout gives a mixture of GPs:

p(f(x))zziD > 6P (0,k(r'x,r'x))
re{0,1}P

» Can be viewed as spike-and-slab ARD prior.
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Dropout on GP inputs
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» Each function only depends on some input dimensions.

» Given prior covariance cov [f(x),f(x')] = k(x, X'), exact
dropout gives a mixture of GPs:

p(f(x))zziD > 6P (0,k(r'x,r'x))
re{0,1}P

» Can be viewed as spike-and-slab ARD prior.



Covariance before and after dropout

Original squared-exp: After dropout:
cov [f(x),f(x)] = k(x,x) cov [f(x) Z k(r'x, r'x’)
re{0,1}P

» Sum of many functions, each depends only on a subset of
inputs.

» Output similar even if some input dimensions change a lot.



Summary

» Priors on functions can shed light on design choices in a
data-independent way.

» Example 1: Increasing depth makes net outputs change in
fewer input directions.

» Example 2: Dropout makes output similar even if some
inputs change a lot.

» What sorts of structures do we want to be able to learn?



Summary

» Priors on functions can shed light on design choices in a
data-independent way.

» Example 1: Increasing depth makes net outputs change in
fewer input directions.

» Example 2: Dropout makes output similar even if some
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Thanks!



