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Designing neural nets

I Neural nets require lots of design decisions whose
implications hard to understand.

I We want to understand them without reference to a specific
dataset, loss function, or training method.

I We can analyze different network architectures by looking
at nets whose parameters are drawn randomly.



Why look at priors if I’m going to learn
everything anyways?

I When using Bayesian neural nets:
I Can’t learn types of networks having vanishing probability

under the prior.
I Even when non-probabilistic:

I Good prior→ a good initialization strategy.
I Good prior→ a good regularization strategy.
I Good prior→ higher fraction of parameters specify

reasonable models→ easier optimization problem.



GPs as Neural Nets
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A weighted sum of features,

f(x) =
1

K

K∑
i=1

wihi(x)

with any weight distribution,

E [wi] = 0, V [wi] = σ2, i.i.d.

by CLT, gives a GP as K →∞

cov

[
f(x)
f(x′)

]
→ σ2

K

K∑
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hi(x)hi(x
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Kernel learning as feature learning

I GPs have fixed features, integrate out feature weights.
I Mapping between kernels and features:

k(x, x′) = h(x)Th(x′).
I Any PSD kernel can be written as inner product of

features. (Mercer’s Theorem)
I Kernel learning = feature learning

I What if we make the GP nueral network deep?



Example deep kernel: Periodic
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Now our model is:

h1(x) = [sin(x), cos(x)]

we have “deep kernel”:

k2(x,x
′)

= exp(−1

2

(
h1(x))− h1(x′)

)



Deep nets, deep kernels
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Instead of

k1(x,x
′) = h(1)(x)Th(1)(x′),

we have “deep kernel”:

k2(x,x
′)

=
[
h(2)
(
h(1)(x)

)]T
h(2)
(
h(1)(x′)

)



Deep Kernels

I (Cho, 2012) built kernels by composing feature mappings.
I Composing any kernel k1 with a squared-exp kernel (SE):

k2(x, x′) =

=
(
hSE (h1(x)

))T hSE (h1(x′)
)

= exp
(
−1

2
||h1(x)− h1(x′)||22

)
= exp

(
−1

2
[
h1(x)Th1(x)− 2h1(x)Th1(x′) + h1(x′)Th1(x′)

])
= exp

(
−1

2
[k1(x, x)− 2k1(x, x′) + k1(x′, x′)]

)
I A closed form. . . let’s do it again!



Repeated Fixed Feature Mappings
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Infinitely Deep Kernels

I For SE kernel, kL+1(x, x′) = exp (kL(x, x′)− 1).
I What is the limit of composing SE features?
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I k∞(x, x′) = 1 everywhere. /



A simple fix

I Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

Input-connected architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)



A simple fix

kL+1(x, x′) =
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(
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2

)

= exp
(
−1

2
[kL(x, x)− 2kL(x, x′) + kL(x′, x′)]−

1
2
||x− x′||22

)



Infinitely deep kernels, take two

I What is the limit of compositions of input-connected SE
features?

I kL+1(x, x′) = exp
(
kL(x, x′)− 1− 1

2 ||x− x′||22
)
.
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I Like an Ornstein-Uhlenbeck process with skinny tails
I Samples are non-differentiable (fractal).



Not very exciting...

I Fixed feature mapping, unlikely to be useful for anything
I Power of neural nets comes from learning a custom

representation.



Deep Gaussian Processes

I A prior over compositions of functions:

f(1:L)(x) = f(L)(f(L−1)(. . . f(2)(f(1)(x)) . . . )) (1)

with each f(`)d
ind∼ GP

(
0, k`d(x, x′)

)
.

I Can be seen as a “simpler” version of Bayesian neural nets
I Two equivalent architectures.



Deep GPs as nonparametric nets
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I A neural net where each neuron’s activation function is
drawn from a Gaussian process prior.

I Avoids problem of unit saturation (with sigmoidal units).
I Each draw from neural net prior gives a function y = f(x).
I In this talk we only consider noiseless functions.



Deep GPs as infinitely wide parametric nets
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I Infinitely-wide fixed feature maps alternating with finite
linear information bottlenecks:
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Priors on deep networks

I A draw from a one-neuron-per-layer deep GP:

f (x)
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Size of derivative becomes log-normal distributed.



Priors on deep networks
I 2D to 2D warpings of a set of coloured points:



Priors on deep networks
I 2D to 2D warpings of a set of coloured points:
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Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

2 Layers



Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

3 Layers



Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

4 Layers



Priors on deep networks
I 2D to 2D warpings of a set of coloured points:

5 Layers
Density concentrates along filaments.



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

No warping



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

1 Layer



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

2 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

3 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

4 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

5 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

10 Layers



Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

20 Layers



Priors on deep networks
Color shows y that each x is mapped to (decision boundary)

40 Layers
Representation only changes in one direction locally.



What makes a good representation?

tangent

orthogonal

I Good representations of data manifolds don’t change in
directions orthogonal to the manifold. (Rifai et. al. 2011)

I Good representations also change in directions tangent to
the manifold, to preserve information.

I Representation of a D-dimensional manifold should
change in D orthogonal directions, locally.

I Our prior on functions might be too restrictive.



Analysis of Jacobian
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A simple fix

I Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)

Input-connected architecture:

x f(1)(x) f(2)(x) f(3)(x) f(4)(x)



A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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A different architecture

I A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:
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Greater variety of derivatives.



A different architecture

I Input-connected 2D to 2D warpings of coloured points:



A different architecture
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A different architecture

I Input-connected 2D to 2D warpings of coloured points:

2 Layers



A different architecture

I Input-connected 2D to 2D warpings of coloured points:

3 Layers



A different architecture

I Input-connected 2D to 2D warpings of coloured points:

4 Layers



A different architecture
I Input-connected 2D to 2D warpings of coloured points:

5 Layers
Density becomes more complex but remains 2D.



A different architecture (show video)

I Color shows y that each x is mapped to

No warping



A different architecture (show video)

I Color shows y that each x is mapped to

2 Layers



A different architecture (show video)

I Color shows y that each x is mapped to

10 Layers



A different architecture (show video)

I Color shows y that each x is mapped to

20 Layers



A different architecture (show video)
I Color shows y that each x is mapped to

40 Layers
Representation sometimes depends on all directions.



Understanding dropout

I Dropout is a method for regularizing neural networks
(Hinton et al., 2012; Srivastava, 2013).

I Recipe:
1. Randomly set to zero (drop out) some neuron activations.
2. Average over all possible ways of doing this.

I Gives robustness since neurons can’t depend on each other.
I How does dropout affect priors on functions?
I Related work: (Baldi and Sadowski, 2013; Cho, 2013;

Wager, Wang and Liang, 2013)



Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations

x1

x2

x3

h1(x)

h2(x)

h3(x)

h4(x)

h5(x)

f (x)

Remove units with probability 1
2 :

f (x) =
1
K

K∑
i=1

riwihi(x) ri ∼iid Ber(
1
2
)

with any weight distribution,

E [riwi] = 0, V [riwi] =
1
2
σ2

by CLT, gives a GP as K →∞

cov
[

f (x)
f (x′)

]
→ 1

2
σ2

K

K∑
i=1

hi(x)hi(x′)



Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations
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Dropout on Feature Activations

I Dropout on feature activations gives same GP.
I Averaging the same model doesn’t do anything.

I GPs were doing dropout all along? ,
I GPs are strange because any one feature doesn’t matter.
I Is there a better way to drop out features that would lead to

robustness?



Dropout on GP inputs
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I Given prior covariance cov [f (x), f (x′)] = k(x, x′), exact
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I Can be viewed as spike-and-slab ARD prior.
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Covariance before and after dropout
Original squared-exp: After dropout:

cov [f (x), f (x′)] = k(x, x′) cov [f (x), f (x′)] =
∑

r∈{0,1}D

k(rTx, rTx′)

x− x′ x− x′

I Sum of many functions, each depends only on a subset of
inputs.

I Output similar even if some input dimensions change a lot.



Summary

I Priors on functions can shed light on design choices in a
data-independent way.

I Example 1: Increasing depth makes net outputs change in
fewer input directions.

I Example 2: Dropout makes output similar even if some
inputs change a lot.

I What sorts of structures do we want to be able to learn?

Thanks!
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