Analyzing Priors on Deep Networks

Dav1d Duvenaud, Oren Rippel, Ryan Adams Zoubin Ghahramani

Sheffield Workshop on Deep Probabilistic Models

October 2, 2014

Designing neural nets

» Neural nets require lots of design decisions whose
implications hard to understand.

» We want to understand them without reference to a specific
dataset, loss function, or training method.

» We can analyze different network architectures by looking
at nets whose parameters are drawn randomly.

Why look at priors if I'm going to learn
everything anyways?

» When using Bayesian neural nets:
» Can’t learn types of networks having vanishing probability
under the prior.
» Even when non-probabilistic:
» Good prior — a good initialization strategy.
» Good prior — a good regularization strategy.
» Good prior — higher fraction of parameters specify
reasonable models — easier optimization problem.

GPs as Neural Nets

A weighted sum of features,

1 K
i=1

with any weight distribution,

Hidden

Inputs

E[w] =0, V[w]=0? 1iid.

by CLT, gives a GP as K — oo

Kernel learning as feature learning

v

GPs have fixed features, integrate out feature weights.

v

Mapping between kernels and features:

k(x,x') = h(x) Th(x).

Any PSD kernel can be written as inner product of
features. (Mercer’s Theorem)

v

v

Kernel learning = feature learning

v

What if we make the GP nueral network deep?

Example deep kernel: Periodic

Hidden
e
Hldder/ ~
Inputs \)utput
o
x | - f(x)

Now our model is:

h'(z) = [sin(), cos(z)]

we have “deep kernel:

ko (x, %)

= exp(— (' () — B ()

Deep nets, deep kernels

Hidden Hidden

Inputs
2
— hg)

, \)utput
e

25—

Now our model is:

fx) =7 éwz—h?) (h ()
—w h® (h(l)(x))

Instead of

i (x, %) = WO (x) Th O (x),

we have “deep kernel™:

ko (x,x")
— [h@) (h<1> (x)] Th® (h<1> (x)

Deep Kernels

» (Cho, 2012) built kernels by composing feature mappings.
» Composing any kernel k; with a squared-exp kernel (SE):

» A closed form...let’s do it again!

Repeated Fixed Feature Mappings

Infinitely Deep Kernels

» For SE kernel, k1 (x,x’) = exp (ky(x,x') — 1).

» What is the limit of composing SE features?

3

1layer
1 25} Y
2 layers
2r 3 layers
0.8F 151 « layers

cov(f(x), f(x)

ol
0.4
1 layer 057]
20 2 layers -1 S
o2 3 layers 15 \-7/ 1
. ‘ ‘ ‘oa\ayers‘ ‘ R ‘ ‘ ‘ ‘ ‘ ‘ ‘
-4 -3 -2 -1 0) 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
Kernel Draws from GP prior

» kyo(x,X') = 1 everywhere. ®

A simple fix

» Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

O—0O—0O—0—0

X fU(x) fA(x) fO(x) fH(x)

Input-connected architecture:

OO0

X f(x) fA(x) Ox) fH(x)

A simple fix

"]-["2]1)

ofx.3) = 2620 %) + X)) 5 x - ¥

I
o R

/ N x\
oie ole

Infinitely deep kernels, take two

» What is the limit of compositions of input-connected SE
features?

> ki(x,X') = exp (kL(X7X/) —-1- %HX - X/||%)

1 layer

2 layers
— 3layers

o layers | |

Kernels Draws from GP priors

» Like an Ornstein-Uhlenbeck process with skinny tails

» Samples are non-differentiable (fractal).

Not very exciting...

» Fixed feature mapping, unlikely to be useful for anything

» Power of neural nets comes from learning a custom
representation.

Deep Gaussian Processes

» A prior over compositions of functions:
10 (x) = fO (D (D (1D (x)) ..) (1)

with each £ % gP (0, k5(x,x")).
» Can be seen as a “simpler” version of Bayesian neural nets
» Two equivalent architectures.

Deep GPs as nonparametric nets

Inputs Targets

A neural net where each neuron’s activation function is
drawn from a Gaussian process prior.

Avoids problem of unit saturation (with sigmoidal units).
Each draw from neural net prior gives a function y = f(x).
In this talk we only consider noiseless functions.

v

v

v

v

Deep GPs as infinitely wide parametric nets

Fixed Fixed Fixed
Inputs Random Random Random

@ —
: «

e
3

£(1:2) (x) ' h((;) y

» Infinitely-wide fixed feature maps alternating with finite
linear information bottlenecks:

h9(x) =0 (b(f) + [V(f)w(f—l)} h(f—l)(x))

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

1 Layer

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

2 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

3 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

4 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

5 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

6 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

7 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

8 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

3 | 9 Layers

Priors on deep networks

» A draw from a one-neuron-per-layer deep GP:

10 Layers

X
Size of derivative becomes log-normal distributed.

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

1 Layer

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

2 Layers

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

3 Layers

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

4 Layers

Priors on deep networks

» 2D to 2D warpings of a set of coloured points:

5 Layers

Density concentrates along filaments.

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

No warping

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

1 Layer

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

2 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

\

3 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

‘ 4 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

/
d
-

5 Layers

Priors on deep networks

Color shows y that each x is mapped
[—————

to (decision boundary)

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

20 Layers

Priors on deep networks

Color shows y that each x is mapped to (decision boundary)

P

/ ‘ 40 Layers
Representation only changes in one direction locally.

What makes a good representation?

» Good representations of data manifolds don’t change in
directions orthogonal to the manifold. (Rifai et. al. 2011)

» Good representations also change in directions tangent to
the manifold, to preserve information.

» Representation of a D-dimensional manifold should
change in D orthogonal directions, locally.

» Our prior on functions might be too restrictive.

Analysis of Jacobian
2 Layers

[u

o
o)

o
o

I
~

Normalized singular value
o
N

3

1 2 3 4

o

|

5

Singular value index

0.8

0.6

0.4

0.2

6 Layers

b

1

2

3

-
4

Singular value index
The distribution of normalized singular values of the Jacobian

of functions drawn from a 5-dimensional deep GP prior.

» Lemma from paper: The Jacobian of a deep GP is a
product of i.i.d. random Gaussian matrices.

» Output only changes in w.r.t. one direction as net deepens.

5

A simple fix

» Following a suggestion from Neal (1995), we connect the
inputs x to each layer:

Standard architecture:

O—0O—0O—0—0

X fU(x) fA(x) fO(x) fH(x)

Input-connected architecture:

OO0

X f(x) fA(x) Ox) fH(x)

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the

input also connected to each layer:

1 layer

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

2 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

3 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

4 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

5 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

6 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

7 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

8 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the
input also connected to each layer:

9 layers

A different architecture

» A draw from a one-neuron-per-layer deep GP, with the

input also connected to each layer:

X
Greater variety of derivatives.

10 layers

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

1 Layer

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

2 Layers

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

3 Layers

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

4 Layers

A different architecture

» Input-connected 2D to 2D warpings of coloured points:

5 Layers
Density becomes more complex but remains 2D.

A different architecture (show video)

» Color shows y that each x is mapped to

No warping

A different architecture (show video)

» Color shows y that each x is mapped to

P

. 2 Layers

A different architecture (show video)

10 Layers

A different architecture (show video)

) < 7\ . T{

» Color shows y that each x is mapped to
7 =" 0) y/ —

20 Layers

A different architecture (show video)

> Color shows y that each x is mapped to

:) 2 . 40 Layers
Representatlon sometimes depends on all directions.

Understanding dropout

» Dropout is a method for regularizing neural networks
(Hinton et al., 2012; Srivastava, 2013).

» Recipe:

1. Randomly set to zero (drop out) some neuron activations.
2. Average over all possible ways of doing this.

» Gives robustness since neurons can’t depend on each other.
» How does dropout affect priors on functions?

» Related work: (Baldi and Sadowski, 2013; Cho, 2013;
Wager, Wang and Liang, 2013)

Dropout on Feature Activations

hy

)
3

X2

h

A
5

(%)
(X\
h3(x) f(x)
(%)
(%)

Original formulation:

70 = 2 D wihi(x

with any weight distribution,
Ew]=0, Viw]=o?

by CLT, gives a GP as K — o0

cor [18] = % S momco

Dropout on Feature Activations

/h] (X)
X1 7‘h2 (X\
X (%) f(x)

7

X3 Y]’l4 (X)

N

h5 (X)

Remove units with probability 1:

K

)=

i=1
with any weight distribution,

1
V [riwi] = 502

by CLT, gives a GP as K — o0

E [riwi] - 07

cov [;((;‘” 1% > ()

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

Dropout on Feature Activations
Remove units with probability 1:
K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [ViWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0

X cov f) Lo (x)h; (X
hs(x) o] 5% Snne)

Dropout on Feature Activations
Remove units with probability 1:
K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [riWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0

Dropout on Feature Activations

1(x)

/Z N
|

el
3(x f(x)
/

()

X1

X2 h

X3

h5 (X)

Remove units with probability 1:

K

)=

i=1
with any weight distribution,

1
V [riwi] = 502

by CLT, gives a GP as K — o0

E [riwi] - 07

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

Dropout on Feature Activations
Remove units with probability 1:
K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [riWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0

X cov f) Lo (x)h; (X
hs(x) o] 5% Snne)

Dropout on Feature Activations

,hl (x)
X : hz (x)
X2 hs(x) f
X3 ﬁ4(x)
AN
hs(x)

(%)

Remove units with probability 1:

K

)=

i=1
with any weight distribution,

1
V [riwi] = 502

by CLT, gives a GP as K — o0

E [riwi] - 07

cov [;((;‘” 1% > ()

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

Dropout on Feature Activations
Remove units with probability 1:
K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [riWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0

Dropout on Feature Activations

1(x)

/Z N
|

el
3(x f(x)
/

()

X1

X2 h

X3

h5 (X)

Remove units with probability 1:

K

)=

i=1
with any weight distribution,

1
V [riwi] = 502

by CLT, gives a GP as K — o0

E [riwi] - 07

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

Dropout on Feature Activations
Remove units with probability 1:
K

1
Z T[Wi]’li(X) Ii ~iia Ber(i)

i=1

1

f(X):E

with any weight distribution,

1
E [riWi] =0, V [riWi] = 502

by CLT, gives a GP as K — o0

X cov f) Lo (x)h; (X
hs(x) o] 5% Snne)

Dropout on Feature Activations

Double output variance:

K

fx) == > rwihi(x) 1~ Ber(%)

i=1

with any weight distribution,

E [r,-w,-] =0, V[r,vwi] = o?

*3 ha(x) by CLT, gives a GP as K — oo

hs(x) cov {}C((:,))] — % ;hi(x)hi(x’)

Dropout on Feature Activations

» Dropout on feature activations gives same GP.
» Averaging the same model doesn’t do anything.

v

GPs were doing dropout all along? ©

v

GPs are strange because any one feature doesn’t matter.

v

Is there a better way to drop out features that would lead to
robustness?

Dropout on GP inputs

Inputs Output f(x)
X1
\\\\\ﬁ | “
f/\ W A
////// e 2
B v\
X

» Each function only depends on some input dimensions.

» Given prior covariance cov [f(x),f(x')] = k(x, X'), exact
dropout gives a mixture of GPs:

p(f(x))zziD > 6P (0,k(r'x,r'x))
re{0,1}P

» Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

Inputs Output f(x)

X1

T~

X

» Each function only depends on some input dimensions.

» Given prior covariance cov [f(x),f(x')] = k(x, X'), exact
dropout gives a mixture of GPs:

p(f(x))zziD > 6P (0,k(r'x,r'x))
re{0,1}P

» Can be viewed as spike-and-slab ARD prior.

Dropout on GP inputs

Inputs Output f(x)
X1
e ,////X “.'IIII'..’
2 \\
X ‘\\x’ \/”’/U/)

» Each function only depends on some input dimensions.

» Given prior covariance cov [f(x),f(x')] = k(x, X'), exact
dropout gives a mixture of GPs:

p(f(x))zziD > 6P (0,k(r'x,r'x))
re{0,1}P

» Can be viewed as spike-and-slab ARD prior.

Covariance before and after dropout

Original squared-exp: After dropout:
cov [f(x),f(x)] = k(x,x) cov [f(x) Z k(r'x, r'x’)
re{0,1}P

» Sum of many functions, each depends only on a subset of
inputs.

» Output similar even if some input dimensions change a lot.

Summary

» Priors on functions can shed light on design choices in a
data-independent way.

» Example 1: Increasing depth makes net outputs change in
fewer input directions.

» Example 2: Dropout makes output similar even if some
inputs change a lot.

» What sorts of structures do we want to be able to learn?

Summary

» Priors on functions can shed light on design choices in a
data-independent way.

» Example 1: Increasing depth makes net outputs change in
fewer input directions.

» Example 2: Dropout makes output similar even if some
inputs change a lot.

» What sorts of structures do we want to be able to learn?

Thanks!

