
CSC 2426: Fundamentals of Cryptography Fall 2023

Lecture 7: Digital Signatures
Instructor: Akshayaram Srinivasan Scribe: Reina Li

Date: October 30, 2023

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Recap and roadmap

Last time, we constructed a one-time signature (OTS) scheme (KeyGen, Sign, Verify) that is correct and
secure. In that scheme, the signing key and verification keys need to be size 2nm(n) (where m(n) is the
output size of the OWF used) for messages of size n. This begs the question: can we make an OTS for
longer messages with a shorter key? Furthermore, can we make a signature scheme that is secure for signing
multiple messages?

In this lecture, first, we introduce a new class of functions: Collision-Resistant Hash Functions. We will defer
the discussion on their existence and construction to a future lecture. Then, we will use such a function to
construct an OTS for long messages. Finally, we will use this new OTS to create a signature scheme that
can securely sign polynomially many messages.

7.2 Collision-Resistant Hash Function (CRHF)

Consider a function (Setup, Eval):

Setup(1n)→ hk, the hash key

Eval(hk, x)→ h, the digest

Where |x|> |h|. Then, the range of Eval (⊆ {0, 1}|h|) must be smaller than its domain ({0, 1}|x|), and, as
such, there are many collisions occurring (at least ⌊2|x|/2|h|⌋ collisions).

We say (Setup, Eval) is a CRHF if the probability of an adversary finding a pair of inputs that collide is
negligible. That is, for any PPT adversary A

Pr
hk←(Setup)(1n)

[A(1n, hk) = (x, x′) s.t. x ̸= x′and Eval(hk, x) = Eval(hk, x′)] ≤ negl(n)

For now, assume such functions exist. In particular, assume there exists a CRHF where the message is size
q(n) (i.e. polynomial in the input size n) and the digest is size n.

7-1

7-2 Lecture 7: Digital Signatures

7.3 OTS for large messages

We will use collision-resisitant hashing to construct a one-time signature scheme with short verification keys.

7.3.1 Construction

Consider (KeyGen, Sign, Verify), an OTS that signs messages of size n and has |vk|= 2nm(n), and (Setup,
Eval), a CRHF mapping {0, 1}q(n) → {0, 1}n. From these, we will construct a OTS scheme, (KeyGen′, Sign′,
Verify′), with |vk′|= 2nm(n) + n, that signs messages of size q(n) (which may be polynomially larger than
n).

We define it as follows:

KeyGen′(1n) : (vk, sk)← KeyGen(1n)

hk ← Setup(1n)

vk′ = (vk, hk), sk′ = (sk, hk)

Sign′
(
sk′,m ∈ {0, 1}q(n)

)
: m′ = Eval(hk,m)

σ = Sign(sk,m′)

Verify′(vk′, (m,σ)) : m′ = Eval(hk,m)

Verify(vk, (m′, σ))

Where the last line of each part are the respective outputs.

7.3.2 Correctness and security

Correctness: follows from the correctness of (KeyGen, Sign, Verify).

Security: We will use a hybrid argument.

H0 : Real game

H1 : Modified game where, when A produces (m∗, σ∗) (with m∗ ̸= m), if Eval(hk,m∗) = Eval(hk,m), then
abort.

Claim 7.1 |Pr[A wins in H0]− Pr[A wins in H1]| ≤ negl.

Proof: Note Pr[H1 aborts] = Pr[A finds collision] is a negligible function (from CRHF security). Also, the
games are identical when A does not find a collision.

Lecture 7: Digital Signatures 7-3

Pr[A wins in H0]− Pr[A wins in H1]

= Pr[wins H0]− Pr[wins H1|! collision] Pr[! collision]
= Pr[wins H0]− Pr[wins H0|! collision] Pr[! collision]

= Pr[wins H0|collision] Pr[collision]
≤ Pr[collision]

Now, it remains to show that Pr[A wins in H1] is negligible, which would imply Pr[A wins in H0] is also
negligible.

Claim 7.2 Pr[A wins in H1] ≤ negl.

Proof: Assume towards a contradiction that Pr[A wins in H1] is non-negligible. Consider an adversary B,
who breaks the security of the OTS by playing H1 against A as follows:

A B Challenger

(vk, hk)
←−−−−−−−−−−

hk ← Setup(1n) vk←−−−−−−−−− (vk, sk)← KeyGen(1n)

m−−−−−−−−−→ m′ ← Eval(hk,m) m′−−−−−−−−−→
σ←−−−−−−−−− σ←−−−−−−−−− σ ← Sign(sk,m′)

(m∗, σ∗)
−−−−−−−−−→

m∗∗ ← Eval(hk,m∗) (m∗∗, σ∗)
−−−−−−−−−→

When A wins, it produces a (m∗, σ∗) that Verify′(vk′, ·) accepts. Then, (Eval(hk,m∗), σ∗) must be ac-
cepted by Verify(vk, ·), by definition. Furthermore, Eval(hk,m∗) ̸= Eval(hk,m), by assumption. Thus,
A wins against B =⇒ B wins against OTS. So, B wins against the OTS with non-negligible probability, a
contradiction.

7.4 q-Time Signature

We will now construct a q-time digital signature scheme where the adversary can query for q-signatures
before attempting to forge a signature on a different message.

7.4.1 Construction

Let (Setup, Eval) be a PRF and (KeyGen, Sign, Verify) be an OTS (as constructed in the previous section).
From these, we construct a q-Time secure signature scheme (KeyGen′, Sign′, Verify′) for messages of length
n as follows:

7-4 Lecture 7: Digital Signatures

KeyGen′(1n) : (vkϵ, skϵ)← KeyGen(1n)

k ← Setup(1n)

vk = vkϵ, sk = (k, skϵ)

Sign′ (sk,m ∈ {0, 1}n) : does the following:

Build a complete binary tree with 2n leaves. For each node, labelled l, let r ← Eval(k, l). Use a PRG to
stretch r to 2n2 bits to generate skl and then generate vkl as in the OTS construction. This way, (vkl, skl)
are deterministic but computationally indistinguishable from random.

Starting from the root (l = ϵ, h = 0), do Sign(skl, vkl,0||vkl,1) = σh, where vkl,0 and vkl,1 are the vk’s of
the left and right children of node l. If the hth bit of m is 0, continue on the left child, otherwise continue
on the right child. When the leaf node is reached, do Sign(skm,m) = σm, where skm is the sk of the node
corresponding to m.

Output σ, which contains vkl,0||vkl,1 for each node l visited, and the signatures σ1, ..., σn, σm.

Verify′(vk, σ) : does the following:

For each level h (besides the leaf), call Verify(vklh , (vklh,0||vklh,1, σh)) (where lh is the node visited at level
h). Also call Verify(vkm, (m,σm)), where vkm is the vk of the node corresponding to m. (Note that each vk
is either vkϵ or given in σ, so each Verify call is possible). Output the AND of these Verify calls.

7.4.2 Correctness and security

Correctness: follows from OTS correctness.

Security: We will use a hybrid argument.

H0 : Real game

H1 : Modified game where skl ← KeyGen(1n) (i.e. skl ← random), as opposed to generated by PRF and
stretched by PRG.

Then, |Pr[A wins in H1]− Pr[A wins in H0]| ≤ negl. by pseudo-randomness of PRF and PRG.

H2 : Modified game where:

First, we randomly choose i from 1...q(n) and j from 1...n, where q(n) is the number of queries the ad-
versary can make. Let i∗ be the jth node visited in the ith query. Then we play the game in H1, where,
A queries on q(n) messages and, finally, submits (m∗, σ∗) (with m∗ ̸= m1, ...,mq(n)), which consists of
σm∗ , (vkm∗ ||vkm∗

s
, σn), ..., (vk0||vk1, σ1). If it turns out that i∗ is the first node from the bottom in the

intersection of nodes visited when signing m∗ and the nodes seen when signing m1, ...,mq(n), we proceed.
Otherwise, abort. (Note: visited here refers to having had its sk used, while seen refers to having had its vk
signed).

Claim 7.3 Pr[A wins in H2] = Pr[A wins in H1] Pr[i∗ correct].

Lecture 7: Digital Signatures 7-5

Proof: Note that producing valid (m∗, σ∗) is independent from correctly guessing i∗. Then,

Pr[A wins in H2]

= Pr[A correctly produces (m∗, σ∗) and i∗ correct]

= Pr[A correctly produces (m∗, σ∗)] Pr[i∗ correct]

= Pr[A wins in H1] Pr[i∗ correct]

Claim 7.4 Pr[i∗ correct] ≥ 1
q(n)n

Proof: It follows from the selection of i∗ and the fact that only one node can be the first node in the
intersection of the m∗ path and the previous paths. The inequality arises because the intersection may be
found on multiple paths.

Now, it remains to show that Pr[A wins in H2] is negligible, which would imply Pr[A wins in H1] (and thus
Pr[A wins in H0]) is also negligible.

Claim 7.5 Pr[A wins in H2] ≤ negl.

Proof: Assume towards a contradiction that Pr[A wins in H2] = non-negl. Consider an adversary B who
breaks the OTS security by playing against A as follows:

A B Challenger

i∗ ← random vk←−−−−−−−−−−−−−−− (vk, sk)← KeyGen(1n)

∀l, (vkl, skl)← KeyGen(1n)

vkϵ←−−−−−−−−−−− vki∗ ← vk (ski∗ is unknown)

m1...mq(n)−−−−−−−−−−−−→
vki∗∥0, vki∗∥1−−−−−−−−−−−−−−→

σ←−−−−
σ1, ...σq(n)←−−−−−−−−−−−

∀i = 1...q(n), Sign′(skϵ,mi) = σi

(m∗, σ∗)
−−−−−−−−−−−→

((vki∗,0||vki∗,1, σi∗) ∈ σ∗) (vk∗i∗,0||vk∗i∗,1, σi∗)
−−−−−−−−−−−−−−−−−→

Since vki∗ is generated through KeyGen(1n), it is generated identically to all the other vk’s in the tree.
Thus, the game between A and B is just H2.

When A wins, (m∗, σ∗) is accepted by Verify′(vkϵ, ·). Then, (vki∗,0||vki∗,1, σi∗) must be accepted by
Verify(vk = vki∗ , ·), by the construction of Verify′.

Since it is assumed that i∗ was correctly chosen and is the first intersection, it must be that (vki∗∥0, vki∗∥1) ̸=
(vk∗i∗∥0, vk

∗
i∗∥1). Also, it means (vk∗i∗,0||vk∗i∗,1, σi∗) is a valid response from B to win against the Challenger.

Thus, A wins against B =⇒ B wins against OTS. So, B wins against the OTS with non-negligible proba-
bility, a contradiction.

7-6 Lecture 7: Digital Signatures

7.4.3 Discussion

Note that we can use the OTS security because in this construction, while the scheme can sign polynomially
many messages, each (vk, sk) pair signs the same message on any input.

Also, note that we use the OTS that employs the CRHF because if we used the original OTS, we would need
|vkϵ|≥ 2nn (since |vkn|≥ 2n, |vkn−1|≥ 4n, vkn−2 ≥ 8n, etc.), whereas here, we only need |vk|= 2nm(n) for
each vk.

