
CSC 2419: Lattice-based Cryptography Fall 2025

Lecture 7: Secure Computation: FHE and LFE
Instructor: Akshayaram Srinivasan Scribe: Mani Mehdipoor

Date: 2025-11-03

7.1 Recap

In the previous lecture, we discussed Non-Interactive Zero-Knowledge (NIZK) proofs, in which a prover
convinces a verifier that a statement is true without revealing any information about the witness and without
having multiple back-and-forth communications with the verifier.

Specifically, we saw how to construct NIZK from 3-message Zero-Knowledge and Correlation-Intractable
(CI) hashing. Recall that a 3-message Zero-Knowledge proof follows the “Commit–Challenge–Response”
structure. To ensure soundness in the non-interactive setting, we needed a CI hash function to avoid
generating the bad challenge strings b⋆1, . . . , b

⋆
n, for which it would be possible to cheat the verifier on every

challenge. We discussed how to construct such a CI hash function using Rate-1 FHE.

7.2 Definition of Secure Computation

As usual, we consider two polynomially-bounded parties: Alice and Bob. Alice holds a private input x ∈ X ,
and Bob holds a private input y ∈ Y. These are common inputs to some function f : X ×Y → {0, 1} which
they wish to compute through an interactive protocol, by exchanging rounds of messages. In this lecture,
we only consider protocols that involve two messages: Alice sends the first message msg1 to Bob, and then
Bob responds with a message msg2 to Alice.

Correctness. At the end of the protocol, Alice outputs a value z, which should equal f(x, y) except with
negligible probability.

Security. Informally, we want Bob to learn no information about x, and Alice to learn no information about
y except what can be revealed from x and f(x, y). Note that we could have a function such as f(x, y) = x⊕y,
in which case x and f(x, y) would reveal y completely; this would still be considered acceptable. We do not
care what the safe set of functions to compute is; in our definition, we only care that Alice learns nothing
beyond what we can learn from just x and f(x, y).

Formally, for Alice’s security, we require that, for all x, x′ ∈ X ,

{msg1 ← Alice(x)} ≈c {msg1 ← Alice(x′)}

To formalize Bob’s security, let us first consider two naive attempts.
Attempt 1. One might require that for all y, y′ ∈ Y, {msg2 ← Bob(msg1, y)} ≈c {msg2 ← Bob(msg1, y

′)}.
However, this has a trivial distinguishing attack: If f(x, y) ̸= f(x, y′), then Alice can distinguish the two
simply by finding the outputs.

7-1

7-2 Lecture 7: Secure Computation: FHE and LFE

Attempt 2. We might instead restrict to y, y′ such that f(x, y) = f(x, y′). While this avoids the previous
problem, it is not an ideal definition since it may not be possible to find such parts y, y′ efficiently (for
example, when f is a one-way function).

To obtain the correct formal definition, we are going to use the simulation paradigm, which we considered
last lecture for ZK proofs. For secret input x ∈ X , we define the view of Alice as ViewA = (x, r,msg2), where
r is the internal randomness of Alice. We say that Bob’s security holds if there exists a PPT simulator Sim
such that for all x ∈ X and y ∈ Y,

{ViewA(x, r,msg2)} ≈c {Sim(x, f(x, y))}

Since Alice’s view can be generated (up to computational indistinguishability) by a simulator which is
polynomial-time and only gets input x and f(x, y), this shows that Alice’s real word view does not reveal
any information about y except what can already be learnt from x and f(x, y).

Here, we assumed that both Alice and Bob follow the exact protocol instructions, but may try to learn extra
information from what they can see. This is known as the semi-honest model.
In the malicious model, we no longer hold this assumption, meaning that Alice or Bob could deviate from
the protocol by sending fake messages that are not consistent with their inputs or the protocol’s rules.
Zero-knowledge proofs actually give us a way to upgrade from the semi-honest model1 to a malicious model.
We could ask each party to also generate a ZK proof showing that they correctly computed their messages
according to the protocol and their private inputs. The soundness property of the ZK proof ensures that the
messages truly correspond to a valid computation; so, if a party tries to cheat, they would not be able to
generate a valid proof. At the same time, the zero-knowledge property ensures that no information is revealed
about the private inputs of the parties, preserving security. In this way, ZK effectively binds the parties to
follow the protocol without revealing any secrets or relying on trust. This allows a protocol that was only
secure against semi-honest adversaries to be easily upgraded to security against malicious adversaries, which
actually illustrates one of the key applications of ZK proofs in cryptography.

Goal. The goal of this lecture is to use lattice-based tools to construct a protocol for this task with very
low communication. By low communication, we mean that we want the total size of messages exchanged,
i.e. |msg1|+|msg2|, to be as small as possible.

7.3 Alice’s input is short

We start with a scenario where Alice holds a secret input x ∈ {0, 1}n and Bob holds a secret input y ∈ {0, 1}N ,
with N ≫ n. In other words, Bob’s input here is much larger than Alice’s.

Let us first consider the most trivial and insecure protocol: Alice sends x to Bob, Bob computes f(x, y)
using his input y, and sends the result back to Alice. In this case, the communication cost is |msg1|+|msg2|=
|x|+|f(x, y)|= n + 1, which is actually optimal (even in the communication-complexity sense) for some
functions, such as database lookups.

Now, let us think about how to make this insecure protocol secure. Fully Homomorphic Encryption (FHE)
provides a natural solution. Consider the function f [y] : X → {0, 1} which has y hardcoded and takes in
x ∈ X as input and outputs f(x, y). We first try the following protocol:

1Technically speaking, we need a slightly stronger notion than semi-honest for this upgrade to work. In the stronger notion,
we require security against adversaries who follow the protocol but might choose their random coins arbitrarily. This notion is
called semi-malicious security.

Lecture 7: Secure Computation: FHE and LFE 7-3

1. Alice sends an FHE encryption of her input ct = FHE-ENC(x) to Bob.

2. Using the publicly computable algorithm FHE-EVAL, Bob computes f [y] directly on the ciphertext ct
of x.

3. Bob sends the resulting ciphertext, which encrypts f [y](x), back to Alice.

4. Alice decrypts using her secret key to recover f(x, y).

Correctness. The correctness of the protocol follows immediately from the correctness of the underlying
FHE scheme.

Security. Security of Alice is easy. The semantic security of FHE says that: for all x, x′ ∈ X ,

{FHE-ENC(x)← Alice(x)} ≈c {FHE-ENC(x′)← Alice(x′)},

which is exactly what we want for the security of Alice.

The security of Bob is more subtle. It would amount to showing that FHE-EVAL(f [y], ct) is actually
computationally indistinguishable to a fresh encryption of f(x, y). If this holds, then we can ensure security
for Bob because we can consider a simulator that encrypts f(x, y) as msg2 and samples randomness r to
produce a view that is computationally indistinguishable to Alice’s real-world view.

However, in the case of the GSW-based FHE scheme, this equivalence does not exactly hold. Let us first
recall the GSW FHE scheme:

The public key is B =

[
A

sTA+ eT

]
, and encryption is computed by sampling a binary matrix R and

outputting ct = BR + x ⊗ G, where G is the gadget matrix. Here x ∈ {0, 1}n, so we consider the tensor
product x⊗G for shorthand.

During the FHE Evaluation, the output ciphertext has the form BR′ + f(x, y) · G, for some noise R′ de-
termined by the circuit of f [y]. If we do an addition gate, R′ is just the addition of R1 and R2. However,
for multiplication gates, things become more complicated, and we actually encounter a problem because
R′ will be something like R1G

−1(c2) + y · R2, which actually leaks some information about y. Specifically,
since Alice knows both sT and eT , she can potentially try to extract some information about y from the
structure of R′. Therefore, for the standard GSW encryption that we considered, the evaluated ciphertext
FHE-EVAL(f [y], ct) is not actually indistinguishable from FHE-ENC(f(x,y)). So, we must modify our ap-
proach. Specifically, we need to somehow sanitize the noise of this ciphertext so that it does not contain any
information about y. This technique is known as noise flooding.

7.3.1 Noise Flooding

Note that (bootstrapping as needed) R′ is actually a matrix that has a bounded L-infinity norm; let’s say
that ∥R′∥∞≤ B, which we denote as R′ ∈ [−B,B]. Let λ denote the security parameter. To flood the noise,
we now introduce a larger bound B′ chosen as B′ = B · λω(1), which is super-polynomially larger than B.
Here, we are assuming that B′ is still below the noise bound.

Within the FHE-EVAL procedure, Bob then samples a fresh random matrix R′′ ∈ [−B′, B′] (i.e. a uniform
matrix with entries in [−B′, B′]) and adds BR′′ to the ciphertext to obtain a new ciphertext

B(R′ +R′′) + f(x, y) ·G

7-4 Lecture 7: Secure Computation: FHE and LFE

Intuitively, by doing this, we are “flooding” the bounded noise R′ with a much larger random noise R′′,
making the ciphertext statistically independent of y, which explains the name of the technique.

Security. To show security, our claim is that R′ + R′′ is statistically close to uniform distribution over
[−B′, B′]. This would show that the new noise is statistically independent of y, which would ensure the
security of Bob.

The argument closely parallels the one we used for spooky rounding. As long as R′′ does not fall within
the small bad intervals [−B′,−B′ + B] or [B′ − B,B′] (which could cause ∥R′ + R′′∥∞ to exceed B′), the
sum R′ + R′′ will be uniform over [−B′, B′]. Thus, the statistical distance between the true distribution of
R′ + R′′ and uniform is 2B/2B′ = B/B′, which is negligible since B′ was chosen to be superpolynomially
larger than B.

Communication Cost. We can essentially achieve a communication cost close to n + 1 by encrypting
a short PRG seed and XORing the PRG output with x, which makes Alice’s communication cost of order
n+ poly(λ), and with ciphertext compression, this can be reduced to 1 + poly(λ).

Until now, this is the only known approach to achieve secure computation with communication costs close
to the size of Alice’s input. Other known approaches have communication costs that grow with the circuit
size or Bob’s input.

7.4 Bob’s input is short

Let us now consider the opposite setting. Suppose Alice holds a secret input x ∈ {0, 1}N and Bob holds a
secret input y ∈ {0, 1}n, where N ≫ n. In this case, the trivial and insecure protocol would just have Bob
send y to Alice, and then have Alice compute f(x, y) using her input x. As in the last scenario, our goal
is to construct a secure protocol that achieves a communication cost close to that of this trivial, insecure
approach. This problem is actually known as Laconic Function Evaluation (LFE), introduced by Quach,
Wee, and Wichs in [QWW18].

7.4.1 Key-Equation

A central tool for constructing LFE protocols from lattices is the Key Equation which we now consider.

Consider any input y = yn · · · y2y1 ∈ {0, 1}n and a function f : {0, 1}n → {0, 1}. Further, suppose that we
have a matrix

C = [A1 + y1G ∥ A2 + y2G ∥ · · · ∥ An + ynG].

where A1, . . . , An are public matrices and G is the gadget matrix.
Then, we want to show that there exists a “low ℓ∞-norm” matrix Hf,y that depends both on f and y such
that

C ·Hf,y = Af + f(y) ·G,

where the matrix Af depends only on f and the public matrices A1, . . . , An, but not the input y.
Here, by “low ℓ∞-norm” we mean low norm in the sense that the noise grows similarly to the noise growth
of the randomness R in the GSW encryption.

Proof: Let us prove the Key-Equation using induction on the depth of the function f .

Lecture 7: Secure Computation: FHE and LFE 7-5

The base case is the input level. Meaning that f(y) = yi for some i; without loss of generality, suppose that

f(y) = y1. For this case, the relation holds trivially. We can take Hf,y =


I
0
...
0

, and Af = A1. Then Hf,y

has low norm by construction, and we obtain C ·Hf,y = A1 + y1G = Af + f(y)G, as desired.

Assume the claim holds for all functions of depth at most d − 1, and consider a gate at level d. Let the
gate take as input two wires g1(y) and g2(y) computed at level d− 1. Suppose that Hg1,y and Hg2,y are the
low-norm matrices generating Ag1 + g1(y)G and Ag2 + g2(y)G, respectively, each with norm bounded by B.

First, let’s consider an addition gate; i.e. the gate computes f(y) = g1(y) + g2(y). Then, we can take

Hf,y = [Hg1,y∥Hg2,y] ·
[
I
I

]
and Af = Ag1 +Ag2 . Here, Hf,y has norm bounded by 2B, and

C ·Hf,y = Ag1 +Ag2 + (g1(y) + g2(y))G = Af + f(y)G,

as we require.

The interesting case is multiplication; i.e., the gate computes f(y) = g1(y) · g2(y). This behaves similarly to

multiplication in the GSW scheme. We take Af = −Ag1G
−1(Ag2) and Hf,y = [Hg1,y∥Hg2,y]

[
−G−1(Ag2)

g1(y)I

]
.

Then Af depends only on f and not on y, while Hf,y has norm bounded by B · poly(λ) (i.e., it grows
comparably to R in GSW). Further, we have

C ·Hf,y = −(Ag1 + g1(y)G) ·G−1(Ag2) + g1(y)(Ag2 + g2(y)G)

= −Ag1G
−1(Ag2)− g1(y)Ag2 + g1(y)Ag2 + g1(y)g2(y)G = Af + f(y)G,

which is exactly what we required. This proves the equation for a multiplication gate.

By induction, the claim holds for all functions f , completing the proof of the Key Equation.

Despite its simplicity, the Key-Equation (introduced in [BGG+14]) has become one of the most versatile
and widely used tools in lattice-based cryptography over the past decade, with countless applications. We
will also revisit it in later lectures.

7.4.2 LFE from Key-Equation

We will now use the Key-Equation above to get LFE. We will do this in several steps, starting from a simple
but insecure construction and gradually adding security at each step.

Setup. Let the common reference string (CRS) consist of the public matrices A1, . . . , An appearing in the
Key Equation. Recall that Alice holds a large secret input x ∈ {0, 1}N and Bob holds a smaller secret input
y ∈ {0, 1}n, with N ≫ n. The goal is to allow Alice to compute f(x, y) securely, with low communication.
Since Alice has to send the first message msg1, an FHE solution, like before, would not work here. So, we
take a different approach.

Step 1. This step gives an insecure protocol, which we will later patch.
Alice first sets the function f [x] : Y → {0, 1} to be the function that takes y ∈ Y as input and outputs
f(x, y). She then uses Key-Equation to compress this function into Af and sends Af to Bob. Note that
since Af depends only on f and the CRS, Alice can compute it without even knowing y.

7-6 Lecture 7: Secure Computation: FHE and LFE

Bob treats these matrices as LWE public key matrices, and, for each i = 1, . . . , n, he generates an LWE
sample sT (Ai + yiG) + ei. He then sends these LWE samples over to Alice. Since each Ai is uniform, the
matrix Ai + yiG is again going to be random, so it is not going to reveal any information about y.

Alice then stacks all of these LWE samples and multiplies the result by Hf,y on the right to get

(sT [A1 + y1G ∥ · · · ∥ An + ynG] + [e1 · · · en]) ·Hf,y = sT (Af + f(x, y) ·G) + ẽ,

where ẽ = [e1 · · · en] ·Hf,y is again a low norm vector, because Hf,y has low-norm by construction.

Now, Alice can do something very similar to how we decrypted GSW. As in the GSW, assume the last
component of s is 1. Then the last column of the matrix Alice computed gives:

sTaf + f(x, y) · q/2 + ē,

where af is the last column of Af and ē is the last column of ẽ.

To recover f(x, y) from this, we can modify the protocol so Bob also sends a rounding of sTaf to Alice along
with the LWE samples. Then Alice rounds her result as well and retrieves f(x, y) by XORing the two; i.e.,
she does

⌈sTaf + f(x, y) · q/2 + ē⌋ ⊕ ⌈sTaf⌋

There are actually multiple problems with this protocol. First, Af could leak information about Alice’s
input x. However, there’s a bigger problem for security of Bob. The matrix Hf,y depends on y, so unless
Alice knows what y is, she cannot compute Hf,y by herself. Thus, even correctness would require Bob to
send y to Alice, defeating the purpose of the protocol.

Step 2. We now modify the protocol to protect Bob’s input.

In this protocol, Alice instead uses the homomorphic version f ′ = FHE-EVAL(f [x], ·) and sends Af ′ to Bob.
Then, Bob computes an encryption ct = FHE-ENC(y) and also forms LWE samples sT (A + ct ⊗ G) + eT

which he sends to Alice along with ct and ⌈sTaf ′⌋.

Having received the ciphertext ct, Alice can now compute the matrix Hf ′,ct securely. Repeating the previous
steps yields

(sT (A+ ct⊗G) + eT) ·Hf ′,ct ≈ sT (Af ′ + f ′(ct)⊗G)

and, from this and ⌈sTaf ′⌋, she can output f ′ evaluated on ct, i.e.,

f ′(ct) = FHE-EVAL(f [x],FHE-ENC(y)) = FHE-ENC(f(x, y))

In the previous construction, at this stage, the output f(x, y) appeared in the clear. In the current setting,
however, Alice only obtains FHE-ENC(f(x, y)), which is unusable for correctness, since she does not possess
the FHE secret key to retrieve f(x, y).

To recover f(x, y), we therefore somehow need a method to do FHE decryption within Key-Equation, but
without actually revealing any information about the FHE secret key, as that would compromise Bob’s
security.

In order to achieve this, we will make use of two crucial facts:

1. FHE decryption is nearly linear in the secret key; i.e. FHE-DEC(sk, ct) ≈ ⟨ct, st⟩, and

2. There is asymmetry in the multiplication of Key-Equation.

Lecture 7: Secure Computation: FHE and LFE 7-7

To see the latter, recall that for multiplying two bits in the Key-Equation, we used a low norm matrix of
the form

[Hg1,y ∥ Hg2,y] ·
[
−G−1(Ag2)
g1(y) · I

]
Note that even though we are computing the multiplication of g1(y) and g2(y), the construction of Hf,y in
the Key-Equation requires knowledge of only one of the inputs, namely g1(y). Furthermore, for addition
gates, we actually do not need to know either g1(y) or g2(y), since we simply take Hf,y = Hg1,y + Hg2,y.
Hence, this means that for an inner product between x and y, doing the Key-Equation requires knowledge
of only one of the two inputs. In other words, we can do the Key-Equation of f(x, y) = ⟨x, y⟩ even when we
only know one of the inputs, say x. This is because for the multiplications xiyi, we only need to know one
of xi or yi, and for the addition, we do not need to know either.

Now, suppose we take x = FHE-ENC(f(x, y)) and y = sk to be the secret key of this FHE encryption.
Then, by leveraging the Key-Equation asymmetry structure, we can effectively compute the inner product
between the two, i.e. ⟨FHE-ENC(f(x, y)), sk⟩ ≈ FHE-DEC(sk, ct), without explicit knowledge of the secret
key. This is exactly what we are going to use to get to our next step.

Step 3. In this step, we use the above observation to fix the correctness problem of step 2.

In this protocol, let B be another matrix in the CRS. Now, Bob computes sT (B + sk ⊗ G) + e′ and sends
it to Alice along with ct and ⌈sTa′⌋. Note that since B is random, B + sk ⊗G is also uniformly random, so
by the LWE assumption, this does not reveal any information about sk.

Having received ct and knowing f [x], Alice can obtain the encryption FHE-ENC(f(x, y)) using the publicly
computable FHE evaluation. Then, using the asymmetry property of the Key-Equation, she computes the
Key-Equation matrix H ′ that encodes the inner product ⟨FHE-ENC(f(x, y)), sk⟩ using only her knowledge
of FHE-ENC(f(x, y)).

Following the same steps as before, Alice then computes

(sT (A+ ct⊗G) + eT ∥sT (B + sk ⊗G) + e′
T
) ·H ′ ≈ sT (A′ + ⟨FHE-ENC(f(x, y)), sk⟩G)

Looking at the last column of this, Alice obtains something of the form

sTa′ + f(x, y) · q/2 + ē+ e′,

where a′ is the last column of A′, and ē, e′ are low-norm vectors we get from LWE and FHE.
Finally, at this stage, Alice can round this result and XOR it with ⌈sTa′⌋, which she received from Bob, to
obtain f(x, y) in the clear.

The key takeaway here is that we can actually do FHE decryption under Key-Equation without knowledge
of the FHE secret. This is a very powerful tool.

Security of Bob (sketch). The fact that ct and sT (B + sk ⊗ G) + eT do not reveal anything about
y and sk follows from the security of FHE encryption and the LWE-assumption, respectively. To see why
sending ⌈sTa′⌋ in the clear does not compromise Bob’s security, we note that we can compute Bob’s share
from Alice’s share and f(x, y) alone. Specifically, a simulator can compute Alice’s share, round it, and then
set Bob’s share to be the XOR of f(x, y) and Alice’s share. Then, this would match the real distribution of
⌈sTa′⌋ except with negligible probability, showing that Bob’s message leaks no additional information about
y or the FHE secret key.

Step 4. In the final step, we modify the protocol to also protect Alice’s input.
Using the following simple modification, we can actually achieve statistical protection of Alice’s input.

7-8 Lecture 7: Secure Computation: FHE and LFE

Instead of directly computing f , we define a related function g that takes (x, r) as Alice’s input and (y, 0)
as Bob’s input, and computes

g((x, r), (y, 0)) = f(x, y) + ⟨0, r⟩ = f(x, y)

Thus, g produces the same output as f , but operates on a slightly larger input domain. The inclusion of the
random vector r is what we need to ensure input hiding for Alice.

As before, Alice computes the matrix Af corresponding to f . We also introduce a set of matrices {Di}
corresponding to the r- and 0-components of g. Alice then computes Af +

∑
riDi and sends it to Bob.

Bob encodes the LWE samples for f as before, but now also encodes the zeroes using sT (Di) (plus the error).
Using these encodings and the gate structure, Alice computes

sT (Af + f(x, y) ·G) + sT (
∑

riDi) = sT (Af +
∑

riDi) + f(x, y) ·G

Following the same steps as before, Alice can then recover f(x, y) in the clear.

Security of Alice (sketch). To ensure Alice’s security, we need to show that
∑

i riDi is statistically close
to uniform, so that Alice’s message reveals nothing about Af . This actually follows from the Leftover Hash
Lemma (LHL). Note that ri’s are binary values. Representing the matrices Di as columns of a larger matrix
D, we can write

∑
i riDi = rTD. If there are sufficiently many Di’s, then by LHL,

∑
i riDi is statistically

close to uniform. Hence, the message sent by Alice hides Af , ensuring her security.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applications.
Cryptology ePrint Archive, Paper 2018/409, 2018.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, Dhinakaran Vinayagamurthy. Fully Key-Homomorphic Encryption, Arith-
metic Circuit ABE and Compact Garbled Circuits. Eurocrypt 2014.

