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5.1 Recap

In the previous lecture, we discussed digital signatures and how to construct them from the Learning With
Errors (LWE) assumption. This illustrated how LWE serves as a fundamental building block for both
encryption and authentication primitives.

We then examined the GSW construction of a bounded Fully Homomorphic Encryption (FHE) scheme, which
supports evaluation of circuits up to a bounded multiplicative depth of nϵ. To overcome these limitations,
we showed how bootstrapping can be used to convert a bounded FHE scheme into an unbounded one.

5.2 Rate-1 FHE

Previously, we saw how to construct an FHE scheme that can evaluate arbitrary Boolean functions f :
{0, 1}ℓ → {0, 1}. A natural next step is to extend this to multi-bit functions f : {0, 1}ℓ → {0, 1}m, but doing
so naively leads to prohibitively large communication costs.

Suppose a client wishes to offload computation on encrypted data to a server. In the single-bit case, the
server can evaluate f and return one ciphertext of size poly(n). Extending this directly to the m-bit case
by decomposing f into m single-bit functions would require sending m separate ciphertexts, each of size
poly(n)—a total of m · poly(n) communication, which quickly becomes impractical.

Our goal is to extend the single-bit construction to the m-bit setting while keeping the communication
overhead negligible. Specifically, the trivial insecure solution requires m bits of communication from the
server to enable the client to learn the output. We would like to have the overhead of achieving security to
approach 1 as the size of the message m grows, giving what we call a rate-1 FHE scheme. In other words,
we require the size of the ciphertexts encrypting an m-bit output to be m+ poly(n).

5.2.1 Definition of Rate-1 FHE

Recall the GSW encryption scheme [GSW13]:

A← Zn×m
q , s← Zn

q , e← χm, m ≥ 2n log q

C =

[
A

s⊤A+ e⊤

]
∈ Z(n+1)×m

q , t =

[
−s
1

]
∈ Zn+1

q .
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Encryption of a bit x ∈ {0, 1} looks like

ct = C ·R+ x ·G ∈ Z(n+1)×(n+1) log q
q

where

R← {0, 1}m×(n+1) log q

G = In+1 ⊗ g

g = [1 2 . . . 2log q−1]

Homomorphic evaluation over Boolean Functions. Since the GSW scheme is fully homomorphic, we
can evaluate any Boolean function
f : {0, 1}ℓ → {0, 1} on encrypted bits x1, . . . , xℓ with ciphertexts ct1, . . . , ctℓ. The resulting ciphertext is

Eval(pk, f ; ct1, . . . , ctℓ) = C ·R′ + f(x1, . . . , xℓ) ·G.

Homomorphic evaluation over Multi-output Functions. To compute a function f : {0, 1}ℓ →
{0, 1}m, decompose it into m boolean functions f1, . . . , fm, where fi : {0, 1}ℓ → {0, 1} returns the ith

bit of output of function f i.e. fi(x) = f(x)[i]. Homomorphically evaluating the boolean functions over

GSW ciphertexts produces m ciphertext ctm ∈ Z(n+1)×(n+1) log q
q . Naively, evaluating all m outputs requires

O(m · poly(n)) communication, resulting in a multiplicative overhead.

Goal: Rate-1 FHE. We would like to achieve additive rather than multiplicative communication over-
head; that is, total communication m+poly(n) instead of m ·poly(n). This results in the ciphertext overhead
approaching 1 as the size of m grows.

5.3 Trapdoor Hash for Linear Predicates

We discuss an important primitive we will use as a building block toward rate-1 FHE encryption scheme.

Suppose two parties (Alice and Bob) represent the Server and Client, respectively. Alice and Bob have
x,y ∈ {0, 1}m and wish to output bits v1, v2 ∈ {0, 1} such that

v1 ⊕ v2 ≡ ⟨x,y⟩ (mod 2) (5.1)

with Alice’s communication independent of m. The obvious solution is for Bob to reveal y. Alice would set
v2 = ⟨x,y⟩ (mod 2), and Bob would set v1 = 0. The shares would trivially satisfy Equation 5.1. Instead,
we require that Alice learn no information about the other party’s input. This is the precise functionality
realised by the Trapdoor Hash Function (TDH) primitive introduced in [DGI+19] for evaluating Linear
Predicates.

5.3.1 (Noisy) TDH for Linear Predicates

In [DGI+19], the authors introduces Trapdoor Hash Functions for linear predicates, where the Hasher (Alice)
and Encoder (Bob) have inputs x,y ∈ {0, 1}m such that they want to learn “noisy” shares (v2, v1) of ⟨x,y⟩ q2
(mod 2) over Zq i.e.

v2 − v1 = ⟨x,y⟩q
2
+ e
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where e is a low-norm “noise”. Additionally, the Hasher learns no information about Encoder’s input.

• Setup(1λ)→ crs: Sample A← Zn×m
q and return crs := A.

• Hash(crs,x)→ (h, tdh): The hashing Algorithm essentially computes the SIS hash with respect to the
public matrix A i.e. it computes h = Ax (mod q) and tdh = x.

• Enc(crs,y) → (E, tde): The encoding algorithm essentially computes a bitwise Regev encryption of
input y. Sample s← Zn

q and e← χm, and compute

u⊤ = s⊤A+ e⊤ + y⊤ · q
2
∈ Zm

q .

It sets E := u⊤ and trapdoor tde := s

• HashEval(crs,E, tdh)→ v2: The hash evaluation algorithm computes v2 = u⊤x = s⊤Ax+e⊤x+⟨y,x⟩ q2
• EncEval(crs,h, tde)→ v1: The encoding evaluation algorithm computes v1 = s⊤h = s⊤Ax

Here, the tuple (v1, v2) is a noisy additive sharing of ⟨x,y⟩q
2
over Zq, since

v2 − v1 = e′ + ⟨y,x⟩q
2
.

where e′ = e⊤x and ||e′||∞≤ n||e||∞.

The protocol proceeds as follows:

1. Alice computes (h, tdh)← Hash(crs,x) and Bob computes (E, tde)← Enc(crs,y). Alice sends h to Bob
and receives E from Bob.

2. Alice and Bob evaluate v2 ← HashEval(crs,E, tdh) and v1 ← EncEval(crs,h, tde) respectively.

Communication cost. Alice sends one vector Ax ∈ Zn
q , i.e., n log q bits (independent of m).

Security (sketch). Bob’s message E is the Regev Encryption of input y. Invoking the semantic security
of the encryption scheme(based on the hardness of LWE), we can conclude that Alice learns no information
about Bob’s input.

5.3.2 Spooky Rounding

Up until now, Alice and Bob learns “noise” shares of ⟨x,y⟩q
2
over Zq. In this section, we use the “Spooky

Rounding” technique introduced in [DHRW16], which can be used to translate the “noisy” shares to shares
of ⟨x,y⟩ over Z2.

Lemma 5.1 (Spooky rounding[DHRW16], adapted) Let p, q be modulus with v1 ← Zq be sampled

uniformly and let v2 = v1 + µ · q
p
+ e for µ ∈ Zp and |e|≤ B. Define Roundp(z) to round z to the nearest

multiple of
q

p
and output z. Then

Pr[Roundp(v2)⊕ Roundp(v1) ̸= µ (mod p)] ≤ O(pB/q).
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Proof (Sketch). We present an overview of the proof sketch for p = 2. Similar ideas can be extended for
arbitrary p.

When b = 0, we have v2 = v1 + e. An error occurs only if v1 < q
2 and v2 ≥ q

2 i.e. v1 ∈ [ q2 −B, q
2 ]. Since v1 is

uniformly distributed, this happens with probability 2B/q.

For b = 1, the error occurs iff v1 ∈ [q −B, q), which occurs with probability 2B/q.

Application to TDH for linear predicates It should be noted that in order to apply “spooky” rounding
technique on the “noise” shares of TDH, we need to ensure that the share v1 is distributed uniformly.
Therefore, we can add a publicly sampled random offset u to v1 and v2 i.e. let

v1 = s⊤Ax+ u, v2 = s⊤Ax+ e⊤x+ ⟨x,y⟩q
2
+ u.

Each party computes its local vi and then outputs the bit bi = Round2(vi). By the definition above,
b1 ⊕ b2 = ⟨x,y⟩ except with probability O(B/q). Choosing q ≫ B makes this error negligible.

5.4 Extension to Zp

So far we showed a TDH for linear predicates over Z2 Our next goal is to extend this primitive to the case
where x,y ∈ Zm

p while preserving communication cost and security guarantees. The idea is simple: the

encoder scales its input y⊤ with q
p instead of q

2 and invoke “spooky” rounding (Lemma 5.1) which returns
values over Zp instead of Z2

5.4.1 Noisy Protocol

Setting. Fix p ≥ 2. Pick a large modulus q that is a multiple of p, e.g.,

q = p · n · λω(1) so that
q

p
≫ n ·B,

where B is a bound on the error sampled by Encoder. Sample the CRS crs ← (A,u), where A ← Zn×m
q

and a public mask u← Zq

Goal. Given x,y ∈ Zm
p , Alice and Bob output v̂1, v̂2 ∈ Zp such that

v̂2 − v̂1 ≡ x⊤y (mod p).

Protocol. Proceeds in an identical fashion as in Section 5.3.1, with q
2 replaced with q

p . Alice and Bob

return v̂1 := Roundp(v1)

Security. Exactly as in the bit-vector case, Bob’s message is a Regev ciphertext:

(A, u⊤) = (A, s⊤A+ e⊤ +
q

p
y⊤).

and security follows from the LWE assumption.
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5.5 Matrix–Vector Product Extension

Motivation. For our rate-1 FHE construction we need several inner products with the same vector x.
Rather than rerun the vector protocol k times, we let Bob hold a matrix M ∈ Zk×m

p whose rows are

represented by m⊤
1 ,m

⊤
2 , . . . ,m

⊤
k ∈ Zm

p . The vector product Mx is essentially the dot product of row vector

m⊤
i and vector x. This extension was proposed by Abram et. al.[ARS24].

Protocol.

• The Setup phase is identical to the protocol presented above.

• Let M ∈ Zk×m
p and x ∈ Zm

p . Bob reuses the same secret s← Zn
q across multiple instantiations of TDH

(one corresponding to each row of M, but samples independent noise er ← χm for r ∈ [k]. i.e. Bob
generates encoding of input U ∈ Zk×m

q with rows

u⊤
r = s⊤A + (er)

⊤
+ (mr)

⊤ · q
p
.

Alice computes her hash h := Ax in a similar manner as before.

• Bob invokes EncEval() function as described in the previous construction to get v1 = sTAx. Alice
computes Ux to obtain all row-wise shares at once,

v2 = Ux = (s⊤Ax)︸ ︷︷ ︸
v1

+

e
⊤
1 x
...

e⊤k x

 + (Mx) · q
p
.

Note that v1 and v
(r)
2 are the “noise” secret shares of m⊤

r x ·
q

p
over Zq ,i.e. ,

v
(r)
2 = u⊤

r x = v1 + e⊤r x + m⊤
r x ·

q

p
,

so

v
(r)
2 − v1 = (er)

⊤x + m⊤
r x ·

q

p

This is exactly the same noisy inner-product relation as in the vector protocol

Security. Bob encodes M as in the single-vector case: each row is a separate Regev encryption, so the
security follows semantic security of Regev encryption.

5.6 Rate-1 FHE Protocol

In the following section, assume that Bob plays the role of client and Alice plays the role of server.

Recall that evaluating f : {0, 1}ℓ → {0, 1}m on GSW ciphertexts yield m ciphertexts corresponding to m
output bits

D(j) = CR′
j + fj(x)G, j = 1, . . . ,m,



5-6 Lecture 5: Rate-1 FHE

the decryption procedure computes t⊤D(j) and recover the ith output bit (via “spooky” rounding technique),
where t = (−s, 1) is the secret key used in the encryption scheme. The decryption procedure computes

t⊤D(j) = e⊤R′
j + yj · (−s, 1)⊤G (5.2)

where yj = fj(x), and recovers the output using spooky rounding technique.

High Level Idea. After receiving GSW ciphertexts {cti}i∈ℓ where cti is the GSW ciphertext corresponding

to the message x(i), if Alice (server) were to homomorphically evaluate the function f over the ciphertexts
and send the output ciphertexts to Bob (client), the communication would be m · poly(n). Instead, we
observe that the decryption procedure is a linear operation over the ciphertext and the secret key, followed
by “spooky” rounding. Exploiting this almost-linear decryption property of the encryption scheme, Alice
and Bob invoke the TDH primitive to perform shared decryption: Alice and Bob jointly obtain the decryption
values without Bob sending ciphertexts individually.

Here, Alice’s input is the matrix D = [D(1) || D(2) || · · · || D(m)] ∈ Z(n+1)×(m(n+1) log q)
q where D(i) is

the ciphertext obtained after homomorphically evaluating input ciphertexts over function fi(). Bob’ input
is essentially the secret key used to encrypt the input ciphertexts i.e. Bob’s input is t⊤ = [−s⊤ 1]. Bob’s
encoding for the TDH primitive is the Regev encryption of the secret key message t⊤ under the secret key
s itself (circular encryption), which can be used across multiple instance of TDH. Therefore, per evaluation
the communication is poly(n) overhead from Alice plus the final m outputs, i.e., m+ poly(n).

Alice’s input. Alice has m ciphertexts D(i) obtained after homomorphically evaluating input ciphertexts
received from Bob (client). Concatenate the blocks into one matrix

D = [D(1) || D(2) || · · · || D(m)] ∈ Z(n+1)×(m(n+1) log q)
q ,

Let d⊤
i be the ith row of the matrix D

Bob’s input Let ti ∈ Zp be the i-th entry of t. For row i, we need to multiply each entry with the same
scalar ti. To realise this computation, Bob sets its ith input Ti as follows:

Ti =


ti 0 · · · 0
0 ti · · · 0
...

...
. . .

...
0 0 · · · ti

 ∈ Z(m(n+1) log q)×(m(n+1) log q)
q (5.3)

Multiplying Ti with di, we get:

u⊤
i = d⊤Ti; = [tidi,1 tidi,2 . . . tidi,m(n+1) log q] ∈ Zm(n+1) log q

p .

We note that computing u =
∑n+1

i=1 u⊤
i essentially gives us the desired linear product

u =
[
t⊤D(1)∥t⊤D(2)∥· · · ∥t⊤D(j)

]
Therefore, if Alice and Bob obtain secret shares of u, they can perform “spooky” rounding to obtain shares
of the decrypted value. We can exploit this observation to define a rate-1 FHE scheme.
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Rate-1 FHE scheme The scheme proceeds as follows:

• Bob:

1. Computes GSW ciphertexts ct1, . . . , ctℓ corresponding to its input x ∈ {0, 1}ℓ using the secret
key s. Consider the corresponding secret key vector t⊤ = [s⊤ 1].

2. Compute the encoding of (n + 1) instance of Trapdoor Hash primitive with the input to the
ith instance being the matrix Ti as in Equation 5.3. Let the encoding be Ei. Bob sends the
ciphertexts {cti} along with the n+ 1 encodings {Ej}j∈n+1 to Alice

• Alice: On receiving GSW ciphertexts, perform the following computation

1. Homomorphically evaluate the output ciphertexts D(1),D(2), . . .D(m) and set

D = [D(1) || D(2) || · · · || D(m)]

2. Decomposed D into n+ 1 rows d⊤
1 , . . . ,d

⊤
n+1 and use these as vector input for (n+ 1) instances

of Trapdoor Hash scheme. Let the hash computed for the ith instance be hi.

3. For each i ∈ [n+1], she computes her hash value hi with input being d⊤
i using the Matrix-Vector

Product Extension of Trapdoor Hash.

4. Alice computes share of u⊤
i using the HashEval() procedure on Bob’s encoding Ei.

5. Alice takes the sum shares of u⊤
i to get share of

[
t⊤D(1)∥t⊤D(2)∥· · · ∥t⊤D(j)

]
.

6. For each j ∈ [m], she isolates the share uj corresponding to the last entry of t⊤ ·D(j) and performs
spooky rounding operation on the share to obtain αj = Round2(uj).

7. She sends the hash values {hi} along with shares {αi} to Bob.

Decryption. Bob on input the hash values {hi} along with shares {αi} does the following:

1. For each i ∈ [n + 1], he computes his share of u⊤
i by evaluating the function EncEval() on the

hash value hi to get “noisy” share of u⊤
i .

2. Bob sums his shares to obtain share of
[
t⊤D(1)∥t⊤D(2)∥· · · ∥t⊤D(j)

]
.

3. For each j ∈ [m], he isolates his share vj corresponding to the last entry of t⊤ ·D(j) and perform
spooky rounding to obtain βj = Round2(vj).

4. For each j ∈ [m], Bob returns yj = αj ⊕ βj .

Correctness. From the almost-linear decryption property of GSW encryption scheme (Equation 5.2) and
the definition of gadget matrix G, we realise that the last entry of t⊤ ·D(j) is the value e⊤+yj

p
2 . Therefore,

the shares (ui, vi) obtained by Alice and Bob are shares of e⊤ + yj
p
2 . Applying spooky rounding techniques

on these shares results in shares of the value yi over Z2. Furthermore, from the correctness of homomorphic
evaluation over GSW ciphertexts, we conclude that yi = fi(x). Therefore, Bob decrypts to the correct value
with high probability.

Communication. Alice’s per-row communication is n log q bits. Thus the overall communication per
evaluation is m+ poly(n) (function description and Alice’s outputs), achieving the Rate-1 target.

Security. The security of Bob’s secret key comes from the security of the two-party protocol as discussed
in the previous sections. Once we have used the security of two-party protocol, we can rely on the security
of GSW encryption scheme.
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