
CRF Framework for Supervised Preference Aggregation

Maksims N. Volkovs
University of Toronto
40 St. George Street

Toronto, ON M5S 2E4
mvolkovs@cs.toronto.edu

Richard S. Zemel
University of Toronto
40 St. George Street

Toronto, ON M5S 2E4
zemel@cs.toronto.edu

ABSTRACT
We develop a flexible Conditional Random Field framework
for supervised preference aggregation, which combines pref-
erences from multiple experts over items to form a distribu-
tion over rankings. The distribution is based on an energy
comprised of unary and pairwise potentials allowing us to
effectively capture correlations between both items and ex-
perts. We describe procedures for learning in this model
and demonstrate that inference can be done much more ef-
ficiently than in analogous models. Experiments on bench-
mark tasks demonstrate significant performance gains over
existing rank aggregation methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Preference Aggregation, Meta-search, Crowdsourcing

1. INTRODUCTION
Preference aggregation is the task of combining prefer-

ences from multiple experts over items into a single consen-
sus ranking. This problem is crucially important in many
applications. For instance, in meta-search an issued query is
sent to several search engines and the (often partial) rank-
ings returned by them are aggregated to generate more com-
prehensive ranking results. In crowdsourcing, tasks often in-
volve assigning ratings to objects or pairs of objects ranging
from images to audio and text. The ratings from several
users are then aggregated to produce a single labeling of the
data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505713.

Existing approaches to preference aggregation can be di-
vided into two categories: permutation-based and score-
based. Permutation-based models work directly in the per-
mutation space and the majority of these methods are based
on the Mallows model [23, 31, 21]. Score-based approaches
infer a set of real valued scores that are then used to rank the
items. A number of heuristic score-based methods for pref-
erence aggregation have been proposed. For example, Bor-
daCount [1], Condorcet Fusion [27] and Reciprocal Rank Fu-
sion [8] derive the item scores by averaging (weighted) ranks
across the experts, or counting the number of pairwise wins.
Several probabilistic models have also been proposed, the
majority of which are based on the Bradley-Terry and/or
Plackett-Luce models [3, 28, 13].

The vast majority of the proposed methods in both cat-
egories are developed for unsupervised preference aggrega-
tion, where the aim is to produce an aggregate ranking that
satisfies the majority of the preferences. However, many of
the recent aggregation problems are amenable to supervised
learning, as ground truth preference information is available.
For example, in meta-search the documents retrieved by the
search engines are often given to annotators who assign rele-
vance labels to each document, which provides ground truth
ranking information. Similarly, in crowdsourcing, a domain
expert typically labels a subset of the data shown to the
“crowd”. These labels are then used to evaluate the quality
of annotations submitted by each worker. In these settings
aggregating methods that aim to always satisfy the major-
ity often produce suboptimal results. Consequently, we need
the aggregating function to be able to “specialize” and infer
when to use the majority preference versus when to concen-
trate only on a small subset of preferences; this specializa-
tion property is impossible to achieve without referring to
the ground truth labels.

The supervised problem has received considerable atten-
tion in recent years and a number of supervised approaches
have been proposed [20, 36, 37, 29]. Notably, [37] has re-
cently shown that by applying SVD factorization to pair-
wise preference matrices effective item features can be ex-
tracted. The features transform the problem into a standard
learning-to-rank one allowing to apply any of the existing
learning-to-rank methods to optimize the aggregating func-
tion for the target metric. While the authors of that work
have shown superior empirical accuracy of this approach
to many existing aggregation methods, it also has a ma-
jor drawback in that it requires computing SVD factors at
test time. For large problems with many items per instance,
such as those in crowdsourcing applications, applying SVD

at test time can be prohibitively expensive, limiting the ap-
plication of this method. A number of other popular super-
vised aggregation methods share the same disadvantage and
also require applying complex optimization procedures such
as semidefinite programming [20] at test time.

In this paper we address the complexity problem by de-
veloping a flexible Conditional Random Field (CRF) frame-
work for supervised preference aggregation. Our framework
uses preference matrices directly thus avoiding costly opti-
mization and only requires computing simple sums during
the inference step. We then show how ideas from learning-
to-rank and related literature and be used to effectively op-
timize our model for most existing metrics. Experiments on
rank aggregation tasks with Microsoft’s LETOR4.0 [18] data
sets show that our model achieves performance comparable
to state-of-the art aggregation methods while requiring only
a small fraction of computational time.

2. PREFERENCE AGGREGATION PROB-
LEM

A typical supervised preference aggregation problem con-
sists of a set of N training instances D = {rn,Rn}Nn=1. Here
Rn is a set of (partial) preferences expressed by the Kn “ex-
perts” for the Mn items, and rn is a set of (partial) ground
truth preferences for the items. Note that the number of
experts and items varies across the instances, and there is
no information available about the items beyond Rn and
rn. Across different domains the preferences in Rn can be
in the form of full or partial rankings, top-T lists, ratings,
relative item comparisons, or combinations of these. More-
over, the form of ground truth preferences can also vary
across domains. For instance, in social choice, ground truth
preferences often come in the form of pairwise comparisons
and/or (partial) rankings. On the other hand in meta-search
and collaborative filtering ground truth preferences are typ-
ically expressed via ratings and/or relevance labels. In this
work we concentrate on the rank aggregation instance of this
problem from the information retrieval (IR) domain. How-
ever, the framework that we develop is general and can be
applied to any supervised preference aggregation problem
in the form defined above. In rank aggregation the experts’
preferences are summarized in an Mn×Kn matrix Rn where
Rn(i, k) denotes the rank assigned to item i by the expert k.
Furthermore, Rn can be sparse, as experts might not assign
ranks to every item; we use Rn(i, k) = 0 to indicate that
item i was not ranked by expert k.

Irrespective of the preference type the goal in supervised
preference aggregation is to use Rn to predict a ranking ŷn
of the items with highest “agreement” with the ground truth
preferences rn. We use yn(i) = j to denote that rank of item
i in yn and i = y−1

n (j) to denote the reverse. Depending on
the preference type, agreement between ŷn and rn can be
measured using different metrics.

In social choice the common evaluation metric is Kendall’s
tau, which measures the number of pairwise disagreements
between ŷn and rn. Popular evaluation metrics in IR in-
clude Normalized Discounted Cumulative Gain (NDCG)[14]
and Expected Reciprocal Rank (ERR)[6]. Both NDCG and
ERR take relevance labels as input: the value of rni is pro-
portional to the relevance of item i. NDCG is the most

commonly used metric in IR and is given by:

NDCG(ŷn, rn)@T =
1

G(rn, T)

T∑
i=1

2rn(ŷ−1
n (i)) − 1

log(1 + i)
(1)

where rn(ŷ−1
n (i)) is ground truth preference for item in po-

sition i in ŷn, and G(rn, T) is a normalizing constant such
that the maximum of NDCG(ŷn, rn)@T is 1. As is common
in CRFs, the learning problem optimizes average training
loss 1

N

∑N
n=1 l(ŷn, rn), where l(ŷn, rn) is the loss incurred

for predicting ranking ŷn under rn. For NDCG we simply
define this loss as:

l(ŷn, rn) = max
y

NDCG(y, rn)@T −NDCG(ŷn, rn)@T

= 1−NDCG(ŷn, rn)@T
(2)

Other metrics can be converted into a loss in a similar fash-
ion.

The variable number of preferences per expert and the
variable number of experts across the instances make it dif-
ficult to apply the majority of supervised methods to this
problem, since they require fixed-length item representa-
tions. CRFs (formally defined in Section 4) on the other
hand are well suited for tasks with variable input lengths,
and have successfully been applied to problems that have
this property, such as natural language processing [35, 33,
32], computational biology [34, 19], and information re-
trieval [30, 38]. Moreover, CRFs are very flexible and can
be used to optimize the parameters of the model for the tar-
get loss. For these reasons we develop a CRF framework for
preference aggregation.

3. RELEVANT WORK
Before delving into our model, we give a brief overview

of existing methods for preference aggregation. Most of the
existing approaches in this area can be divided into two cate-
gories: permutation-based and score-based. In the following
sections we describe both types of models.

3.1 Permutation-Based Methods
Permutation-based models work directly in the permuta-

tion space. The most common and well explored such model
is the Mallows model [23]. Mallows defines a distribution
over permutations and is typically parametrized by a cen-
tral permutation ŷn and a dispersion parameter φ ∈ (0, 1];
the probability of a permutation y is given by:

P (y|φ, ŷn) =
1

Z(φ, ŷn)
φ−d(y,ŷn) (3)

where d(y, ŷn) is a distance between y and ŷn. For rank
aggregation problems inference in this model amounts to
finding the permutation ŷn that maximizes the likelihood of
the observed rankings. For some distance metrics, such as
Kendall’s τ and Spearman’s rank correlation, the partition
function Z(φ, ŷn) can be found exactly. However, finding
the central permutation ŷn that maximizes the likelihood is
typically very difficult and in many cases is intractable [26].

Recent work extends the Mallows model to define distri-
butions over partial rankings [21]. Under partial rankings
the partition function can no longer be computed exactly,
so these authors introduced a new sampling approach to
estimate it. When the number of items is large, however,
this sampling approach is typically very slow, which makes

the model impractical for many large scale online problems
such as meta-search where aggregation has to be done very
quickly. Furthermore, both the proposed pairwise model
and the sampling approach rely on the assumption that all
pairwise preferences are consistent, which is often violated
in real-world preference aggregation problems.

A number of other generalizations of the Mallows model
have been proposed [17, 16, 31]; however, to the best of our
knowledge none of these extensions address learning and/or
inference complexity of this model. In general, due to the
extremely large search space (typically M ! for M items) and
the discontinuity of functions over permutations, exact infer-
ence in permutation-based models is often intractable. Thus
one must resort to approximate inference methods, such as
sampling or greedy approaches, often without guarantees on
how close the approximate solution will be to the target opti-
mal one. As the number of items grows, the cost of finding a
good approximation increases significantly, which makes the
majority of these models impractical for many real world ap-
plications where data collections are extremely large. The
score-based approach described next avoids this problem by
working with real valued scores instead.

3.2 Score-Based Methods
In score-based approaches the goal is to infer a set of real

valued scores (one per item) sn = {sn1, ..., snMn} which are
then used to sort the items. Working with scores avoids the
discontinuity problems of the permutation space.

A number of popular score-based aggregation methods in
meta-search are heuristic based. For example, BordaCount
[1], Condorcet [27] and median rank aggregation [10] derive
the item scores by averaging ranks across the experts or
counting the number of pairwise wins. In statistics a very
popular pairwise score model is the Bradley-Terry [3] model:

P (rn|sn) =
∏

rni>rnj

(
exp(sni)

exp(sni) + exp(snj)

)rni−rnj

(4)

where exp(sni)
exp(sni)+exp(snj)

can be interpreted as the probability

that item i beats item j in the pairwise contest. The key
assumption behind the Bradley-Terry model is that the pair-
wise probabilities are completely independent of the items
not included in the pair. A problem that arises from this
assumption is that if a given item i has won all pairwise con-
tests, the likelihood becomes larger as sni becomes larger.
It follows that a maximum likelihood estimate for sni is ∞
[24]. As a consequence the model will always produce a
tie amongst all undefeated items. Often this is an unsat-
isfactory solution because the contests that the undefeated
items participated in, and their opponents’ strengths, could
be significantly different.

To avoid some of these drawbacks, the Bradley-Terry
model was generalized by Plackett and Luce [28, 22] to a
Plackett-Luce model for permutations:

P (y|sn) =

Mn∏
i=1

exp(sn(y−1(i)))∑Mn
j=i exp(sn(y−1(j)))

(5)

where sn(y−1(i)) is the score of the item in position i in
y. The generative process behind the Plackett-Luce model
assumes that items are selected sequentially without replace-
ment. Initially item y−1(1) is selected from the set of Mn

items and placed first, then item y−1
n (2) is selected from the

remaining Mn−1 items and placed second and so on until all
Mn items are placed. Note that here inference can be done
quickly by doing simple gradient descent on scores, which
is a clear advantage over most permutation based models.
The Plackett-Luce generalization relaxes the pairwise inde-
pendence assumption of the Bradley-Terry model but this
model is only applicable to consistent full or partial rankings
(or consistent pairwise preferences) which significantly limits
its application. Moreover, for 2-item rankings the Plackett-
Luce model reduces to the Bradley-Terry model and thus
suffers from the same infinite score problem. To overcome
this problem a Bayesian framework was also recently in-
troduced for the Plackett-Luce model by placing a Gamma
prior on the selection probabilities [13]. The authors of that
work demonstrated that the Bayesian approach prevented
overfitting and produced aggregate rankings that better fit-
ted the observed preference data. This improvement how-
ever, comes at the cost of computational overhead required
during score inference.

Both Bradley-Terry and Plackett-Luce models are unsu-
pervised and are typically fitted via maximum likelihood.
This makes them ill-suited for supervised aggregation prob-
lems as they are unable to capture the correlations between
observed preferences and the ground-truth ones. To over-
come this disadvantage a number of supervised methods
have recently been proposed. Several of these methods have
explored weighted aggregation rules [36, 29], where a well
explored social choice aggregation rule, such as Borda or
Kemeny, are applied to weighted expert preferences. The
weights are tuned on the training data to reflect each experts
“agreement” with the ground truth preferences. While these
methods have empirically been shown to give improvements,
the weights typically have to be tuned by hand making the
models inflexible and expensive to optimize.

Other supervised methods explore pairwise item-item
preference matrices. A supervised Markov Chain model
based on this framework was recently introduced [20]. In this
model ground truth preferences are used to create pairwise
constraint matrices and a scoring function is then trained
to satisfy as many of these pairwise constraints as possi-
ble. This method was recently extended by [7] to a semi-
supervised setting where ground truth preferences are avail-
able only for a subset of the documents. Another method
based on pairwise matrices is the SVD approach [37]. In this
model pairwise expert matrices are factorized using low-rank
SVD factorization and the resulting SVD representations are
then used as item features to train the aggregating function.
This approach allows to optimize the model for any target
metric, but similarly to the Markov-Chain method which
requires solving semi definite programming problem, suffers
from expensive inference requiring SVD factorization for ev-
ery test instance.

Our proposed framework is also based on the pairwise ma-
trix approach which as demonstrated by the strong empirical
results of the above methods, is a promising way to approach
this problem. Unlike the existing methods however, we fo-
cus on making the inference as efficient as possible without
affecting the accuracy. We describe our approach in the next
section.

4. CRF FRAMEWORK FOR PREFER-
ENCE AGGREGATION

In a typical supervised problem we are interested in learn-
ing a relationship between input x and a target y for a given
training set of instantiated pairs D = {xn,yn}. More specif-
ically, we are interested in learning a predictive mapping for
x to y.

CRFs tackle this problem by defining the conditional dis-
tribution p(y|x) through some energy function E(y,x;θ) as
follows:

p(y|x) =
1

Z(x)
exp(−E(y,x;θ))

Z(x) =
∑
y

exp(−E(y,x;θ))

where θ is the model’s parameter vector. The parametric
form of the energy function E(y,x;θ) depends on the na-
ture of the problem and typically consists of weighted unary
and/or higher order potentials. As mentioned above this
framework is very flexible and has successfully been applied
to a wide range of diverse problems.

In this work we show that CRFs can also be used to build
an effective model for preference aggregation. Supervised
aggregation can be put into above framework by noting that
our goal is to also learn a predictive mapping from an expert
matrix R ≡ x to a ranking y that has the highest agreement
with the ground truth preferences r. Our goal is thus to
define a conditional distribution p(y|R) through an energy
E(y,R;θ) and optimize it for the target metric. In the
following sections we show that effective unary and pairwise
potentials can be derived directly from the expert preference
matrix, and use these potentials to define a smooth energy
function over the space of rankings.

4.1 Pairwise Preferences
Given the expert matrix Rn our aim is to convert it to a

set of pairwise preference over the items. There are a num-
ber of pairwise functions that we can use here, however, for
consistency we chose to use the functions that were utilized
in the SVD-based aggregation method [37]:

1. Binary Comparison:

φk(i, j,Rn) = I[Rn(i, k) < Rn(j, k)]

2. Normalized Rank Difference

φk(i, j,Rn) = I[Rn(i, k) < Rn(j, k)]
Rn(j, k)−Rn(i, k)

max(Rn(:, k))

3. Log Rank Difference

φk(i, j,Rn) =

I[Rn(i, k) < Rn(j, k)]
log(Rn(j, k))− log(Rn(i, k))

log(max(Rn(:, k)))

Here I[] is an indicator function; when either Rn(i, k) or
Rn(j, k) is missing φk(i, j,Rn) is set to 0 instead. Notice
that φk(i, j,Rn) is also zero if i = j. Normalization by the
maximum (log-)preference assigned by the expert k ensures
that φk(i, j,Rn) has a comparable range across experts.

Table 1: A summary of notation.
Variable Description

D = {rn,Rn}Nn=1 training instances
rn ground truth preferences
Rn Mn×Kn expert preference matrix:

Mn items, Kn experts
Rn(i, k) ranking for item i by expert k
ŷn ranking predicted by the model
l(ŷn, rn) target loss
ϕk(i,Rn) unary potential from expert k
φk(i, j,Rn) pairwise potential from expert k

Working with pairwise comparisons has a number of ad-
vantages, and models over pairwise preferences have been
extensively used in areas such as social choice [9, 21], in-
formation retrieval [15, 4], and collaborative filtering [21,
12]. First, pairwise comparisons are the building blocks of
almost all forms of evidence about preference and subsume
the most general models of evidence proposed in literature.
A model over pairwise preferences can thus be readily ap-
plied to a wide spectrum of preference aggregation problems
and does not impose any restrictions on the input type. For
instance, preferences in the form of ratings can be treated
like rankings and the same pairwise difference/comparison
functions can be applied. Moreover, top-T lists (and their
variations) can also be converted into this framework using
the binary comparison function and setting φk(i, j,Rn) = 1
if item i is in the top-T and item j is not. These examples
demonstrate the flexibility and wide applicability of a model
over pairwise preferences.

Second, pairwise comparisons are a relative measure and
help reduce the bias from the preference scale. In meta-
search for instance, each of the search engines that receives
the query can retrieve diverse lists of documents significantly
varying in size. By converting the rankings into pairwise
preferences we reduce the list size bias emphasizing the im-
portance of the relative position.

4.2 Distribution Over Permutations
The main idea behind our approach is based on an obser-

vation that the pairwise preference functions defined above
naturally translate to pairwise potentials in a CRF model.
Using these function we can evaluate the “compatibility” of
any ranking y by comparing the order induced by the rank-
ing with the pairwise preferences from each expert. This
leads to an energy function:

E(y,Rn;θ) = − 1

M2
n

Mn∑
i=1

1

log(i+ 1)

(
Kn∑
k=1

αkϕk(y−1(i)) +

βPk
∑
j 6=i

φk(y−1(i), j,Rn)− βNk
∑
j 6=i

φk(j,y−1(i),Rn)

where y−1(i) is the item in position i in ranking y. This
energy function contains a binary unary potential ϕk(i) =
I[Rn(i, k) = 0], where I[] is an indicator function. This
potential is active only when item i is not ranked by the
expert k, in which case φk is 0, and αk provides a base
preference score for the item.

The energy also contains pairwise potentials φk. Note that
from the definition of φ in Section 4.1 it follows that only
one of φk(y−1(i), j,Rn) or φk(j,y−1(i),Rn) can be non-zero
for any pair of items. Consequently, if φk(y−1(i), j,Rn) is
on (non-zero) then expert k “agrees” with the relative order
induced by y (lowering the energy) and the strength of this
agreement is given by φk. Similarly, if φk(j,y−1(i),Rn) is on
then expert k “disagrees” with the relative order, and raises
the energy. The weights βPk and βNk thus control how much
emphasis is given to positive and negative relative prefer-
ences from expert k. 1/ log(i+ 1) is the rank discount func-
tion similar to the one used in NDCG and other IR metrics,
which emphasizes items at the top positions in the rank-
ing. Finally, normalizing by 1/M2

n ensures that the energy
ranges are comparable across instances with different num-
bers of items.

Using the energy we define a conditional probability for a
ranking y:

p(y|Rn) =
1

Z(Rn)
exp(−E(y,Rn;θ))

Z(Rn) =
∑
y

exp(−E(y,Rn;θ))
(6)

where the partition function Z(Rn) sums over all Mn! valid
rankings y. In the proposed model a separate set of weights
{αk, βPk , βNk } is learned for each expert k, which allows
the model to effectively capture the correlations between
individual expert preferences and the ground truth ones.
The proposed framework can easily handle training/test in-
stances with missing experts by simply dropping the corre-
sponding pairwise potentials from the energy and only using
the base scores ψk for those experts. Moreover, while exist-
ing models rely exclusively on pairwise matrices, our model
can be straightforwardly extended to handle any available
side information on both items and experts. For instance,
by adding extra pairwise and higher order potentials we can
go beyond item interaction and, for instance, model inter-
actions between experts correlating them to ground truth
preferences.

This framework however, cannot be applied when the ex-
pert identity is unknown or when new experts, unseen during
training, are introduced at test time. This is often the case
in domains like crowdsourcing where the experts must be
anonymized due to privacy considerations, and the number
of experts is large so new experts are often introduced at test
time. To generalize the model to these settings we can sim-
ply share the same parameters α, βP and βN , removing the
dependence on k. The resulting consensus model only takes
into account the net preference across all Kn experts, ignor-
ing the individual preferences. Though this makes it pos-
sible to apply the model to arbitrary expert sets, this may
weaken it since preference information from individual ex-
perts can contain very useful information, especially in cases
where the majority of experts are wrong. When a subset of
the experts is known, it is possible to take an intermediate
approach and learn individual weights {αk, βPk , βNk } for the
known experts k, and consensus-based weights {α, βP , βN}
for the unknown experts. This demonstrates the flexibility
of the proposed CRF framework which allows us to effec-
tively learn to aggregate preferences in the settings where
both item and expert sets can vary in length.

Algorithm 1 Learning Algorithm

Input: {rn,Rn}Nn=1

Parameters: learning rate η, cut-off ε
initialize weights: θ
repeat {CRF optimization}

for n = 1 to N do
if Mn > ε then

subsample items to get rεn and Rε
n

else
rεn = rn and Rε

n = Rn

end if
compute exact gradients with {rεn,Rε

n}:
∇θ = ∂O(rεn,R

ε
n)/∂θ

update weights: θ = θ − η∇θ
end for

until convergence
Output: θ

4.3 Learning and Inference
Given the model our aim is to learn the parameters

θ = {αk, βPk , βNk }Kk=1 that minimize the average training

loss 1
N

∑N
n=1 l(ŷn, rn). Unfortunately, direct minimization

is typically not possible because l(ŷn, rn) is not a smooth
function of the CRF parameters θ. Specifically, the loss it-
self l(ŷn, rn) is not a smooth function of the prediction ŷn
and ŷn itself is also not a smooth function given the model
parameters θ. Such non-smoothness makes it impossible to
apply gradient-based optimization directly.

To solve this problem recent work explored different ap-
proximation methods to incorporate the target loss into
CRF training [38, 11, 25]. The most related of these ap-
proaches is the learning-to-rank method BoltzRank [38].
The authors of BoltzRank also dealt with a parametrized
distribution over permutations and optimized it for the tar-
get IR metric. Inspired by this work we follow this approach
and use the expected loss as the target objective to minimize:

O(rn,Rn) =
∑
y

l(y, rn)p(y|Rn) (7)

Note that even in cases where l is non-smooth (e.g., NDCG,
ERR) the above objective remains smooth with respect to θ
and can be minimized using standard gradient-based proce-
dure. However, to optimize this objective for a given train-
ing instance we need to calculate l(y, rn) and p(y|Rn,θ) for
all Mn! rankings. This computation very quickly becomes
intractable since even for Mn = 15 one needs to sum over
more than 1012 permutations. Standard MCMC and varia-
tional techniques can be used here to estimate the gradients,
however, these methods are typically too slow to be applied
to the IR domain where data sets often contain thousands of
queries. To deal with this problem the authors of [38] sug-
gested pre-computing a fixed sample set for every instance
and reusing it throughout learning. While this approach is
computationally efficient, it might miss important regions
of model’s probability space and can thus be ineffective at
optimizing the target distribution.

To avoid these problems we opted to use an approach
suggested by [5], which we empirically found to work very
well. Every time an instance n is visited and the number of
items is greater than ε, we sample a subset of ε items and
use the corresponding expert preferences Rε

n and targets rεn

Table 2: MQ2008-agg and MQ2007-agg results; statistically significant differences between CRF and SVDsup
are underlined. All the differences between CRF and other baselines are statistically significant.

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg

CPS 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
Condorcet Fusion 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
RRF 38.77 40.73 43.48 45.70 47.17 44.89 41.32 38.82 36.51 34.13 47.71
SVDsup 42.81 44.53 47.02 49.00 50.69 48.85 44.13 41.84 39.09 36.50 50.32

CRF 42.29 44.99 47.54 49.05 51.03 48.67 44.58 42.08 38.75 36.55 50.41

MQ2007-agg

CPS 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
Condorcet Fusion 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
RRF 41.93 42.66 42.42 42.73 43.13 48.70 47.20 44.84 43.52 42.52 46.72
SVDsup 46.13 46.76 46.71 46.87 47.28 52.90 51.39 49.33 47.80 46.66 50.05

CRF 46.93 46.81 46.75 46.51 46.93 54.14 51.48 49.12 47.54 46.68 50.39

to compute the gradients for θ. When selecting the items we
ensure diversity by sampling from different relevance groups.
This is especially important for imbalanced datasets, which
are common in IR, where most items are irrelevant. For
these datasets random sampling often leads to subsets where
all items are irrelevant thus providing very little learning
signal to the model. Choosing ε sufficiently small allows
the gradients to be computed exactly by enumerating all
possible ε! permutations of the items. Unlike static sample
sets, repeated re-sampling together with full enumeration
of all permutations allows us to explore all regions of the
model’s probability space throughout learning albeit for the
reduced item sets.

To make the learning more efficient both unary and pair-
wise potentials can be precomputed a priori and re-used
throughout learning. This reduces the complexity of com-
puting the model’s energy from O(M2

nKn) to O(MnKn) at
the cost of additional storage requirement of O(Mn) per
training instance. The complete learning algorithm is sum-
marized in Algorithm 1.

Once the model is learned, at test time, given a new in-
stance with corresponding experts’ preferences R our goal
is to produce a single aggregate ranking ŷ of the items that
has the highest probability (lowest energy) under the model.
Fortunately, such inference can be done very efficiently in
this CRF. We note that the energy can be rewritten as a
sum of discounted “weights”:

E(y,R;θ) =
1

M2
n

Mn∑
i=1

ωi
log(i+ 1)

where the weights are given by:

ωi = −
K∑
k=1

αkϕk(i)− βPk
∑
j 6=i

φk(i, j,R) + βNk
∑
j 6=i

φk(j, i,R)

(8)
Since 1/ log(i+ 1) is a monotonically decreasing function it
is easy to verify that the ranking with highest probability is

obtained by sorting the items according to the weights:

ŷ = arg min
y

E(y,R;θ) = arg sort([ω1, ..., ωM]) (9)

It is important to note here that this inference procedure
only requires computing simple sums and can thus be done
very efficiently . This is a significant advantage over existing
aggregation methods based on pairwise matrices that require
complex optimization procedures such as semidefinite pro-
gramming [20] or SVD [37] to be run at test time. Moreover,
while the inference procedure is simple the learning in our
model takes full advantage of the target loss function and
optimizes the aggregating function for that metric.

5. EXPERIMENTS
For our experiments we use the LETOR4.0 benchmark

datasets [18]. These data sets were chosen because they are
publicly available, include several baseline results, and pro-
vide evaluation tools to ensure accurate comparison between
methods. In LETOR4.0 there are two rank aggregation data
sets, MQ2007-agg and MQ2008-agg.

MQ2007-agg contains 1692 queries (instances) with a total
of 69623 documents (items), and MQ2008-agg contains 784
queries and a total of 15211 documents. Each query contains
partial expert rankings of the documents under that query.
There are 21 experts in MQ2007-agg and 25 in MQ2008-agg.
Consequently, for every query n in MQ2007-agg with Mn

documents we have a sparse Mn×21 (Mn×25 for MQ2008-
agg) expert preference matrix Rn. In addition, in both data
sets, each document is assigned one of three relevance levels:
2 = highly relevant, 1 = relevant and 0 = irrelevant. These
relevance levels correspond to the ground truth preferences
rn. Finally, each dataset comes with five precomputed folds
with 60/20/20 splits for training/validation/testing. The
results shown for each model are the averages of the test set
results for the five folds.

The MQ2007-agg dataset is approximately 35% sparse,
meaning that for an average query the partial ranking ma-
trix Rn will be missing 35% of its entries. MQ2008-agg is

Figure 1: Learned αk, β
P
k and βNk expert weights for training Fold 1 of MQ2008-agg; weights for other folds

look analogous. White squares represent positive weights while black squares represent negative ones. The
area of each square is proportional to weight magnitude.

significantly more sparse with the sparsity factor of approx-
imately 65%.

The goal is to use the training data to learn a map-
ping from Rn to an aggregate ranking ŷn that has max-
imal agreement with the ground truth preferences rn. In
LETOR4.0 this agreement is evaluated using NDCG (N@T ,
see Equation 2), Precision (P@T) and Mean Average Pre-
cision (MAP) [2]. Unlike NDCG, MAP only allows binary
(relevant/not relevant) document relevance, and is defined
in terms of average precision (AP):

AP (ŷn, rn) =

∑Mn
i=1 P@i ∗ rn(ŷ−1

n (i))∑Mn
i=1 rn(i)

(10)

where P@i is the precision at i:

P@i =

i∑
j=1

rn(ŷn(j))

i
(11)

MAP is then computed by averaging AP over all queries. To
compute P@k and MAP on the MQ datasets the relevance
levels are binarised with 1 converted to 0 and 2 converted
to 1. All presented NDCG, Precision and MAP results are
averaged across the test queries and were obtained using the
evaluation script available on the LETOR website1.

5.1 Results
To the best of our knowledge the SVD approach of [37]

currently has the best published results on the MQ-agg
datasets so in experiments we concentrate on comparing
our approach with this method. To train our model we
use stochastic gradient descent (one query at a time) and
do 300 full passes through the training data. We set ε = 6
(see Algorithm 1) and ensure that at least one document of
every relevance level appears in the same for each query. To
choose the type of pairwise potential to use (see Section 4.1)
we train separate models with each type and use validation
MAP to select the best one. We found that the log rank
difference potential generally produced the best results for
both datasets.

We compare our model to the best method listed on
LETOR website, namely the CPS (combination of Mal-
lows and Plackett-Luce models) [31] on each of the MQ-
agg datasets. In addition, we compare with the established
meta-search standards Condorcet Fusion [27] and Reciprocal
Rank Fusion (RRF) [8] as well as the Plackett-Luce model.

1http://research.microsoft.com/en-us/um/beijing/
projects/letor/

Finally, we also compare with two SVD-based approaches
that use the same pairwise matrices: unsupervised method
SVP [12] and the supervised SVD approach (SVDsup) [37]
described above. These models cover all of the primary lead-
ing approaches in the rank aggregation research except for
the Markov Chain model [20].

NDCG, Precision and MAP results for both datasets are
shown in Table 2. From the tables we see that our model
has very strong performance producing similar results to
the best baseline SVDsup. It is important to note here
that we use the same pairwise matrices as SVDsup dur-
ing both learning and inference. These results indicate that
our model is able to achieve highly competitive performance
without using expensive optimization procedures during in-
ference. In the following section we quantify the difference
in runtimes between the two models.

An additional advantage of using preference matrices di-
rectly is model interpretability. By analyzing the learned
potential weights we can gain insight into which experts are
useful and how their preferences are combined. Figure 1
shows an example weight matrix learned by our model on
the training Fold 1 of MQ2008-agg. Before delving into the
figure we note that negative αk raises the energy (lowering
the probability). Hence large negative values indicate that
when preference from expert k is missing for a given docu-
ment it is pushed down in the aggregate ranking i.e. expert
k is important for aggregation. Similarly, positive βPk lower
the energy (upping the probability) while positive βNk raise
the energy. Consequently, when both weights are positive
for a given expert k, documents i strongly preferred by k
(i.e.

∑
j 6=i φk(i, j,Rn) �

∑
j 6=i φk(j, i,Rn)) get pushed up

in the ranking while those not preferred get pushed down.
Taking these relationships into account we see from Figure

1 that preferences from experts 14, 15, 17, 18 and 21 are good
indicators of document relevance. The importance of these
experts is shown by large negative values of αk. Moreover,
large positive values for both βPk and βNk indicate that strong
net preference from each of these experts correlates closely
with high relevance.

We also see that some experts are not useful for aggrega-
tion. For instance experts 24, and 25 all have positive αk’s
meaning that when their preferences are absent the rank of a
document actually improves. Each of these experts also has
near-zero βPk and βNk indicating that when their preferences
are present the model does not use them.

http://research.microsoft.com/en-us/um/beijing/projects/letor/
http://research.microsoft.com/en-us/um/beijing/projects/letor/

(a) Expert expansion runtimes (b) Item expansion runtimes

Figure 2: Average per query runtimes (in seconds) for test Fold 1 of the MQ2008-agg. Figure 2(a) shows
runtimes for the expert expansion experiment. Figure 2(b) shows runtimes for the item expansion experiment.

Table 3: MQ2008-agg NDCG@1-5 results; CRF is
trained on the full data, CRF* is trained on a subset
of the data with experts 13, 20, 24 and 25 removed.

N@1 N@2 N@3 N@4 N@5

CRF 42.29 44.99 47.54 49.05 51.03
CRF* 42.64 45.07 47.63 49.00 50.90

Finally, some experts are used for aggregation even though
their preferences correlate inversely with ground truth. For
instance, experts 10, 11 and 12 all have negative βPk and
βNk weights indicating that documents strongly preferred by
these experts will be pushed down in the ranking while those
strongly opposed will be pushed up. Moreover, most weights
for these experts are large indicating that they play an im-
portant role in the aggregation process. The model thus
learned that these experts often give wrong relative order-
ings reversing which can still lead to useful predictions. It is
worth emphasizing here that this kind of inverse relationship
is impossible to capture with unsupervised methods.

To further validate the utility of analyzing experts through
CRF’s parameters we removed experts whose preferences
were found not to be useful by the CRF and retrained the
model. Specifically, from Figure 1 we see that experts 13, 20,
24 and 25 are not being used by the model and when pref-
erences from these experts are missing, the corresponding
document actually gets a boost in ranking. These experts
are clearly not useful for ranking so we removed them and re-
trained the model on the remaining 21 experts. The results
are shown in Table 3, from the table we see that retrained
model CRF* either performs comparably or outperforms the
original model. This further support the conclusion that use-
ful insight into expert quality can be gained by analyzing the
weights learned by our model. Such analysis can be particu-
larly useful in crowdsourcing and related domains where the
goal is often to identify the most accurate/reliable labelers
from the crowd.

5.2 Runtime Comparison
In the previous section we demonstrated that our model

has comparable performance to the state-of-the-art model
SVDsup. Moreover, inference in our model only requires
computing simple sums and can thus be done considerably

more efficiently than in SVDsup which requires SVD factor-
ization. In this section we quantify this difference.

We use test Fold 1 of the MQ2008-agg dataset and con-
duct two sets of experiments. In the first experiment we
repeatedly increase the number of experts. Starting with

the initial expert matrix at iteration 1: R
(1)
n = Rn, we con-

catenate it with the original matrix to get an expanded one

for iteration 2: R
(2)
n = [R

(1)
n ,Rn]. Thus, after t iterations

the resulting matrix R
(t)
n = [R

(t−1)
n ,Rn] contains Mn rows

and t×Kn columns. Concatenating expert matrices allows
us to test the inference procedure of each method on an in-
creasingly larger data while preserving sparsity. In the sec-
ond experiment we repeat this procedure but this time we
append the matrices increasing the number of documents.
Here, the ranking matrix at iteration t contains t×Mn rows
and Kn columns. The first experiment thus tests for sce-
narios where the expert set is large (expert expansion), that
typically arise in domains like crowdsourcing. While the the
second experiment tests for large item sets (item expansion)
that often arise in domains like meta-search.

Figures 2 and 2(b) show, averaged across queries, runtimes
(in seconds) for both methods at each expansion iteration.
Figure 2(a) shows runtimes for the expert expansion while
Figure 2(b) shows runtimes for the item expansion. From
the figures we see significant differences in runtimes between
the two methods. The difference is especially large for the
expert expansion (Figure 2(a)) where SVDsup is on average
almost 80 times slower than our CRF method at the tenth
iteration. This difference is due to the fact that SVDsup has
to run SVD factorization for every expert. Consequently, the
number of SVD factorizations grows linearly with the num-
ber of experts significantly slowing down SVDsup. For the
item expansion (Figure 2(b)) the number of experts stays
constant while the dimension of the preference matrix in-
creases. Since no additional SVD factorizations are required
we found the speed of SVDsup to not increase as significantly
as in the first experiment. However, even in this setting our
approach is more than 3.5 times faster. Moreover, we found
that for very large matrices (not shown on this plot) SVD
factorization dominated the calculation significantly slowing
down SVDsup. From these results we can conclude that our
approach is considerably more efficient than SVDsup espe-
cially in cases where the number of experts is large.

6. CONCLUSION
We presented a fully supervised CRF approach to pref-

erence aggregation. Unlike existing methods our approach
uses observed preferences directly and does not require any
expensive optimization procedures at test time. The direct
use of preferences also allows us to analyze learned models
and draw valuable conclusions about preference quality of
each expert. Experimental results show that our approach
has very competitive performance outperforming existing
methods on two supervised rank aggregation tasks.

Going forward a promising direction would be to explore
different types of potentials. Specifically, we plan to ex-
periment with adding expert cross correlations and incorpo-
rating side information for items and/or experts. Another
promising area of research would be to explore CRF mod-
els that in addition to experts also condition on queries. In
meta-search and other applications it is often the case that
different experts perform well for different queries. Adding
this extra conditioning can thus help the model to distin-
guish when to use each expert making it more powerful.

7. REFERENCES

[1] J. A. Aslam and M. Montague. Models for
metasearch. In Proceedings of the International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 2001.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Information
Retrieval. Addison-Wesley, 1999.

[3] R. Bradley and M. Terry. Rank analysis of incomplete
block designs. I. The method of paired comparisons.
Biometrika, 39, 1952.

[4] C. J. C. Burges. From RankNet to LambdaRank to
LambdaMART: An overview. Technical Report
MSR-TR-2010-82, Microsoft Research, 2010.

[5] T. S. Caetano, L. Cheng, Q. V. Le, and A. J. Smola.
Learning graph matching. In Proceedings of the
International Conference on Machine Learning, 2009.

[6] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
In Proceedings of the ACM Conference on Information
and Knowledge Management, 2009.

[7] S. Chen, F. Wang, Y. Song, and C. Zhang.
Semi-supervised ranking aggregation. 47, 2011.

[8] G. V. Cormack, C. L. A. Clarke, and S. Büttcher.
Reciprocal rank fusion outperforms condorcet and
individual rank learning methods. In Proceedings of
the International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2009.

[9] H. A. David. The method of paired comparisons.
Hodder Arnold, 1988.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In Proceedings of the ACM SIGMOD
Conference, 2003.

[11] K. Gimpel and N. A. Smith. Softmax-margin CRFs:
Training log-linear models with cost functions. In
HLT-NAACL, 2010.

[12] D. F. Gleich and L.-H. Lim. Rank aggregation via
nuclear norm minimization. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2011.

[13] J. Guiver and E. Snelson. Bayesian inference for
Plackett-Luce ranking models. In Proceedings of the
International Conference on Machine Learning, 2009.

[14] K. Jarvelin and J. Kekalainen. IR evaluation methods
for retrieving highly relevant documents. In
Proceedings of the International ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2000.

[15] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining, 2002.

[16] A. Klementiev, D. Roth, and K. Small. Unsupervised
rank aggregation with distance-based models. In
Proceedings of the International Conference on
Machine Learning, 2008.

[17] G. Lebanon and J. Lafferty. Cranking: Combining
rankings using conditional probability models on
permutations. In Proceedings of the International
Conference on Machine Learning, 2002.

[18] T. Liu, J. Xu, W. Xiong, and H. Li. LETOR:
Benchmark dataset for search on learning to rank for
information retrieval. In Proceedings of the
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2007.

[19] Y. Liu, J. Carbonell, P. Weigele, and
V. Gopalakrishnan. Protein fold recognition using
segmentation conditional random fields (SCRFs).
Journal of Computational Biology, 2006.

[20] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li.
Supervised rank aggregation. In Proceedings of the
International World Wide Web Conference, 2007.

[21] T. Lu and C. Boutilier. Learning Mallows models with
pairwise preferences. In Proceedings of the
International Conference on Machine Learning, 2011.

[22] R. D. Luce. Individual choice behavior: A theoretical
analysis. Wiley, 1959.

[23] C. L. Mallows. Non-null ranking models. Biometrika,
44, 1957.

[24] D. Mase. A penalized maximum likelihood approach
for the ranking of college football teams independent
of victory margins. The American Statistician, 57,
2003.

[25] D. McAllester and J. Keshet. Generalization bounds
and consistency for latent structural probit and ramp
loss. In Proceedings of the Neural Information
Processing Systems, 2011.

[26] M. Meila, K. Phadnis, A. Patterson, and J. Bilmes.
Consensus ranking under the exponential model. In
Proceedings of the Conference on Uncertainty in
Artificial Intelligence, 2007.

[27] M. Montague and J. A. Aslam. Condorcet fusion for
improved retrieval. In Proceedings of the ACM
Conference on Information and Knowledge
Management, 2002.

[28] R. Plackett. The analysis of permutations. Applied
Statistics, 24, 1975.

[29] M. Pujari and R. Kanawati. Supervised rank
aggregation approach for link prediction in complex
networks. In Proceedings of the International World
Wide Web Conference, 2012.

[30] T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and
H. Li. Global ranking using continuous conditional
random fields. In Proceedings of the Neural
Information Processing Systems, 2008.

[31] T. Quin, X. Geng, and T.-Y. Liu. A new probabilistic
model for rank aggregation. In Proceedings of the
Neural Information Processing Systems, 2010.

[32] D. Roth and W.-Y. Yih. Integer linear programming
inference for conditional random fields. In Proceedings
of the International Conference on Machine Learning,
2005.

[33] S. Sarawagi and W. W. Cohen. Semi-Markov
conditional random fields for information extraction.
In Proceedings of the Neural Information Processing
Systems. 2005.

[34] K. Sato and Y. Sakakibara. RNA secondary structural
alignment with conditional random fields.
Bioinformatics, 2005.

[35] F. Sha and F. Pereira. Shallow parsing with
conditional random fields. In HLT/NAACL, 2003.

[36] K. Subbian and P. Melville. Supervised rank
aggregation for predicting influencers in twitter. In
SocialCom, 2011.

[37] M. N. Volkovs, H. Larochelle, and R. S. Zemel.
Learning to rank by aggregating expert preferences. In
Proceedings of the ACM Conference on Information
and Knowledge Management, 2012.

[38] M. N. Volkovs and R. S. Zemel. Boltzrank: Learning
to maximize expected ranking gain. In Proceedings of
the International Conference on Machine Learning,
2009.

	Introduction
	Preference Aggregation Problem
	Relevant Work
	Permutation-Based Methods
	Score-Based Methods

	CRF Framework for Preference Aggregation
	Pairwise Preferences
	Distribution Over Permutations
	Learning and Inference

	Experiments
	Results
	Runtime Comparison

	Conclusion
	References

