Lecture 8: State-Space Models

Richard Zemel

All lecture slides will be available as .pdf on the course website:
www.cs.toronto.edu/~zemel/Courses/CS412
Sequential data

Turn attention to sequential data
- Time-series: stock market, speech, video analysis
- Ordered: text, gene

Simple example: Dealer A is fair; Dealer B is not

Process (let Z be dealer A or B):
	Loop until tired:
	1. Flip coin C, use it to decide whether to switch dealer
	2. Chosen dealer rolls die, record result

Fully observable formulation: data is sequence of dealer selections

AAAABBBBAABBBBBBBBBBBAAABBBBBBBB
Simple example: Markov model

- If underlying process unknown, can construct model to predict next letter in sequence
- In general, product rule expresses joint distribution for sequence
 \[P(X_1, X_2, ..., X_T) = \prod_{t=1}^T P(X_t|X_{t-1}, ..., X_1) \]
- **First-order Markov chain**: each observation independent of all previous observations except most recent
 \[P(X_t|X_{t-1}, ..., X_1) = P(X_t|X_{t-1}) \]
- ML parameter estimates are easy

- Each pair of outputs is a training case; in this example:
 \[P(X_t = B| X_{t-1} = A) = \frac{\# [t \text{ s.t. } X_t = B, X_{t-1} = A]}{\# [t \text{ s.t. } X_{t-1} = A]} \]
Higher-order Markov models

- Consider example of text
- Can capture some regularities with bigrams (e.g., q nearly always followed by u, very rarely by j) – probability of a letter given just its preceding letter
- But probability of a letter depends on more than just previous letter
- Can formulate as second-order Markov model (trigram model)
- Need to take care: many counts may be zero in training dataset
Table 3

Bigrams as Graphemes

<table>
<thead>
<tr>
<th>Grapheme as a string</th>
<th>Relative frequency (%)</th>
<th>Count as a string (%)</th>
<th>Time occurs as a grapheme (%)</th>
<th>Example used as grapheme (%)</th>
<th>Time combined to form grapheme (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>0.0002</td>
<td>30.0</td>
<td>84.62</td>
<td>AERO</td>
<td>0.00</td>
</tr>
<tr>
<td>AH</td>
<td>0.0001</td>
<td>20.0</td>
<td>100.0</td>
<td>AUTOBAHN</td>
<td>0.00</td>
</tr>
<tr>
<td>AI</td>
<td>0.0017</td>
<td>325.0</td>
<td>83.08</td>
<td>WAIT</td>
<td>0.00</td>
</tr>
<tr>
<td>AL</td>
<td>0.0084</td>
<td>1,623.0</td>
<td>83.08</td>
<td>FRUGAL</td>
<td>0.00</td>
</tr>
<tr>
<td>AO</td>
<td>0.0000</td>
<td>30.0</td>
<td>100.0</td>
<td>TAO</td>
<td>0.00</td>
</tr>
<tr>
<td>AU</td>
<td>0.0012</td>
<td>293.0</td>
<td>100.0</td>
<td>SAUCER</td>
<td>10.46</td>
</tr>
<tr>
<td>AW</td>
<td>0.0006</td>
<td>108.0</td>
<td>77.31</td>
<td>FLAW</td>
<td>3.00</td>
</tr>
<tr>
<td>AW</td>
<td>0.0006</td>
<td>160.0</td>
<td>99.38</td>
<td>ESSAY</td>
<td>0.00</td>
</tr>
<tr>
<td>BB</td>
<td>0.0004</td>
<td>87.0</td>
<td>99.43</td>
<td>RABBIT</td>
<td>0.00</td>
</tr>
<tr>
<td>BT</td>
<td>0.0001</td>
<td>18.0</td>
<td>44.44</td>
<td>DEBT</td>
<td>0.00</td>
</tr>
<tr>
<td>CC</td>
<td>0.0005</td>
<td>99.0</td>
<td>72.73</td>
<td>SOCCER</td>
<td>3.00</td>
</tr>
<tr>
<td>CE</td>
<td>0.0037</td>
<td>726.0</td>
<td>99.93</td>
<td>CEREAL</td>
<td>0.00</td>
</tr>
<tr>
<td>CH</td>
<td>0.0037</td>
<td>719.0</td>
<td>89.01</td>
<td>ARCH</td>
<td>10.99</td>
</tr>
<tr>
<td>CI</td>
<td>0.0024</td>
<td>473.0</td>
<td>16.03</td>
<td>FACIAL</td>
<td>0.00</td>
</tr>
<tr>
<td>CK</td>
<td>0.0018</td>
<td>344.0</td>
<td>99.27</td>
<td>PICK</td>
<td>0.00</td>
</tr>
<tr>
<td>CO</td>
<td>0.0000</td>
<td>6.0</td>
<td>50.00</td>
<td>ACQUIT</td>
<td>50.00</td>
</tr>
<tr>
<td>CS</td>
<td>0.0002</td>
<td>32.0</td>
<td>50.00</td>
<td>OPTI+CS*</td>
<td>0.00</td>
</tr>
<tr>
<td>CT</td>
<td>0.0025</td>
<td>479.0</td>
<td>0.21</td>
<td>INDICT</td>
<td>0.00</td>
</tr>
<tr>
<td>CZ</td>
<td>0.0000</td>
<td>2.0</td>
<td>100.00</td>
<td>CZAR</td>
<td>0.00</td>
</tr>
<tr>
<td>DD</td>
<td>0.0005</td>
<td>100.0</td>
<td>97.00</td>
<td>ODD</td>
<td>0.00</td>
</tr>
<tr>
<td>DG</td>
<td>0.0003</td>
<td>60.0</td>
<td>100.00</td>
<td>MIDGET</td>
<td>0.00</td>
</tr>
<tr>
<td>DI</td>
<td>0.0039</td>
<td>750.0</td>
<td>0.33</td>
<td>CORRAL</td>
<td>0.00</td>
</tr>
<tr>
<td>DJ</td>
<td>0.0001</td>
<td>18.0</td>
<td>94.44</td>
<td>ADJUST</td>
<td>0.00</td>
</tr>
<tr>
<td>EA</td>
<td>0.0031</td>
<td>606.0</td>
<td>72.61</td>
<td>TWEAK</td>
<td>9.49</td>
</tr>
<tr>
<td>ED</td>
<td>0.0027</td>
<td>515.0</td>
<td>4.27</td>
<td>VOICED</td>
<td>0.00</td>
</tr>
<tr>
<td>EE</td>
<td>0.0017</td>
<td>337.0</td>
<td>93.62</td>
<td>DEER</td>
<td>4.00</td>
</tr>
<tr>
<td>EI</td>
<td>0.0007</td>
<td>133.0</td>
<td>50.00</td>
<td>HEIST</td>
<td>26.32</td>
</tr>
<tr>
<td>EL</td>
<td>0.0035</td>
<td>682.0</td>
<td>20.53</td>
<td>LEVEL</td>
<td>0.00</td>
</tr>
<tr>
<td>EN</td>
<td>0.0085</td>
<td>1,643.0</td>
<td>8.22</td>
<td>EATEN</td>
<td>0.00</td>
</tr>
<tr>
<td>EO</td>
<td>0.0007</td>
<td>140.0</td>
<td>22.50</td>
<td>PIGEON</td>
<td>6.43</td>
</tr>
<tr>
<td>ES</td>
<td>0.0043</td>
<td>831.0</td>
<td>3.53</td>
<td>HOOVES</td>
<td>0.00</td>
</tr>
<tr>
<td>ET</td>
<td>0.0039</td>
<td>762.0</td>
<td>2.23</td>
<td>SACHET</td>
<td>0.00</td>
</tr>
<tr>
<td>EU</td>
<td>0.0004</td>
<td>86.0</td>
<td>81.40</td>
<td>FEUD</td>
<td>4.65</td>
</tr>
<tr>
<td>EW</td>
<td>0.0006</td>
<td>108.0</td>
<td>63.89</td>
<td>GREW</td>
<td>7.41</td>
</tr>
<tr>
<td>EY</td>
<td>0.0040</td>
<td>81.0</td>
<td>92.99</td>
<td>MONEY</td>
<td>7.41</td>
</tr>
<tr>
<td>FF</td>
<td>0.0009</td>
<td>176.0</td>
<td>100.00</td>
<td>OFF</td>
<td>0.00</td>
</tr>
<tr>
<td>FT</td>
<td>0.0004</td>
<td>69.0</td>
<td>1.45</td>
<td>SOFTEN</td>
<td>0.00</td>
</tr>
<tr>
<td>GG</td>
<td>0.0004</td>
<td>73.0</td>
<td>98.63</td>
<td>JUGGLE</td>
<td>0.00</td>
</tr>
<tr>
<td>GH</td>
<td>0.0009</td>
<td>171.0</td>
<td>12.28</td>
<td>ROUGH</td>
<td>82.46</td>
</tr>
<tr>
<td>GI</td>
<td>0.0014</td>
<td>267.0</td>
<td>6.05</td>
<td>REGION</td>
<td>0.00</td>
</tr>
<tr>
<td>GM</td>
<td>0.0001</td>
<td>28.0</td>
<td>14.69</td>
<td>PHILEM</td>
<td>0.00</td>
</tr>
<tr>
<td>GN</td>
<td>0.0006</td>
<td>126.0</td>
<td>33.33</td>
<td>GNASH</td>
<td>0.00</td>
</tr>
<tr>
<td>IA</td>
<td>0.0034</td>
<td>667.0</td>
<td>6.37</td>
<td>PARLIAMENT</td>
<td>0.00</td>
</tr>
<tr>
<td>IE</td>
<td>0.0018</td>
<td>340.0</td>
<td>41.13</td>
<td>BRIEF</td>
<td>12.50</td>
</tr>
<tr>
<td>IL</td>
<td>0.0088</td>
<td>737.0</td>
<td>6.51</td>
<td>VIGIL</td>
<td>0.00</td>
</tr>
<tr>
<td>IN</td>
<td>0.0113</td>
<td>2,188.0</td>
<td>3.20</td>
<td>LATIN</td>
<td>0.00</td>
</tr>
<tr>
<td>KH</td>
<td>0.0001</td>
<td>14.0</td>
<td>57.14</td>
<td>SHEIKH</td>
<td>0.00</td>
</tr>
<tr>
<td>KN</td>
<td>0.0002</td>
<td>43.0</td>
<td>94.19</td>
<td>KNITT</td>
<td>0.00</td>
</tr>
<tr>
<td>LD</td>
<td>0.0006</td>
<td>121.0</td>
<td>3.72</td>
<td>WOULD</td>
<td>0.00</td>
</tr>
<tr>
<td>LE</td>
<td>0.0085</td>
<td>1,652.0</td>
<td>43.70</td>
<td>PICKLE</td>
<td>0.00</td>
</tr>
<tr>
<td>LF</td>
<td>0.0002</td>
<td>46.0</td>
<td>13.04</td>
<td>HALF</td>
<td>0.00</td>
</tr>
<tr>
<td>LW</td>
<td>0.0002</td>
<td>47.0</td>
<td>48.94</td>
<td>WALK</td>
<td>0.00</td>
</tr>
<tr>
<td>LL</td>
<td>0.0033</td>
<td>649.0</td>
<td>97.92</td>
<td>DWELL</td>
<td>0.00</td>
</tr>
<tr>
<td>LM</td>
<td>0.0002</td>
<td>48.0</td>
<td>29.17</td>
<td>PALM</td>
<td>0.00</td>
</tr>
<tr>
<td>LV</td>
<td>0.0003</td>
<td>55.0</td>
<td>10.91</td>
<td>CALVES</td>
<td>0.00</td>
</tr>
<tr>
<td>MB</td>
<td>0.0011</td>
<td>221.0</td>
<td>16.06</td>
<td>THUMB</td>
<td>0.00</td>
</tr>
<tr>
<td>MM</td>
<td>0.0009</td>
<td>178.0</td>
<td>98.88</td>
<td>RUMMY</td>
<td>0.00</td>
</tr>
<tr>
<td>MN</td>
<td>0.0002</td>
<td>43.0</td>
<td>25.38</td>
<td>AUTUMN</td>
<td>0.00</td>
</tr>
<tr>
<td>NG</td>
<td>0.0002</td>
<td>616.0</td>
<td>58.44</td>
<td>PING</td>
<td>0.00</td>
</tr>
<tr>
<td>NN</td>
<td>0.0008</td>
<td>164.0</td>
<td>97.36</td>
<td>TENNIS</td>
<td>0.00</td>
</tr>
<tr>
<td>OA</td>
<td>0.0008</td>
<td>148.0</td>
<td>87.50</td>
<td>LOAN</td>
<td>2.36</td>
</tr>
<tr>
<td>OE</td>
<td>0.0003</td>
<td>61.0</td>
<td>41.80</td>
<td>SHEEDE</td>
<td>0.00</td>
</tr>
<tr>
<td>OH</td>
<td>0.0001</td>
<td>19.0</td>
<td>31.58</td>
<td>OHM</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Character recognition: Transition probabilities
Hidden Markov model (HMM)

- Return to casino example -- now imagine that do not observe ABBAA, but instead just sequence of die rolls (1-6)

- Generative process:
 Loop until tired:
 1. Flip coin C (Z = A or B)
 2. Chosen dealer rolls die, record result X

Z is now hidden state variable – 1st order Markov chain generates state sequence (path), governed by transition matrix A

\[P(Z_t = k | Z_{t-1} = j) = A_{jk} \]

State as multinomial variable: \[P(z_t | z_{t-1}) = \prod_k \prod_j A_{jk}^{z_{t-1},j,z_t,k} \]

Observations governed by emission probabilities, convert state path into sequence of observable symbols or vectors: \[P(X_t | Z_t) \]
Relationship to other models

- Can think of HMM as:
 - Markov chain with stochastic measurements
 - Mixture model with states coupled across time

- Hidden state is 1st-order Markov, but output not Markov of any order
- Future is independent of past given present, but conditioning on observations couples hidden states
Character Recognition Example

Which letters are these?
Context matters: recognition easier based on sequence of characters

How to apply HMM to this character string?

Main elements: states? emission, transition probabilities?
HMM: Semantics

Need 3 distributions:
1. Initial state: $P(Z_1)$
2. Transition model: $P(Z_t | Z_{t-1})$
3. Observation model (emission probabilities): $P(X_t | Z_t)$
HMM: Main tasks

- Joint probabilities of hidden states and outputs:

\[P(x, z) = P(z_1)P(x_1 | z_1) \prod_{t=2}^{T} P(z_t | z_{t-1})P(x_t | z_t) \]

- Three problems
 1. Computing probability of observed sequence: forward-backward algorithm [good for recognition]
 2. Infer most likely hidden state sequence: Viterbi algorithm [useful for interpretation]
 3. Learning parameters: Baum-Welch algorithm (version of EM)
Fully observed HMM

Learning fully observed HMM (observe both X and Z) is easy:

1. Initial state: $P(Z_1) – \text{proportion of words start with each letter}$

2. Transition model: $P(Z_t | Z_{t-1}) – \text{proportion of times a given letter follows another (bigram statistics)}$

3. Observation model (emission probabilities): $P(X_t | Z_t) – \text{how often particular image represents specific character, relative to all images}$

But still have to do inference at test time: work out states given observations

HMMs often used where hidden states are identified: words in speech recognition; activity recognition; spatial position of rat; genes; POS tagging
HMM: Inference tasks

Important to infer distributions over hidden states:
- If states are interpretable, infer interpretations
- Also essential for learning

Can break down hidden state inference tasks to solve (each based on all observations up to current time, $X_{0:t}$)

1. **Filtering**: compute posterior over current hidden state: $P(Z_t | X_{0:t})$
2. **Prediction**: compute posterior over future hidden state: $P(Z_{t+k} | X_{0:t})$
3. **Smoothing**: compute posterior over past hidden state: $P(Z_k | X_{0:t}), 0 < k < t$
4. **Fixed-lag smoothing**: $P(Z_{t-a} | X_{0:t})$: compute posterior over hidden state a few steps back
Filtering, Smoothing & Prediction

\[P(Z_t \mid X_{1:t}) = P(Z_t \mid X_t, X_{1:t-1}) \]

\[\propto P(X_t \mid Z_t, X_{1:t-1})P(Z_t \mid X_{1:t-1}) \]

\[= P(X_t \mid Z_t)P(Z_t \mid X_{1:t-1}) \]

\[= P(X_t \mid Z_t) \sum_{z_{t-1}} P(Z_t \mid z_{t-1}, X_{1:t-1})P(z_{t-1} \mid X_{1:t-1}) \]

\[= P(X_t \mid Z_t) \sum_{z_{t-1}} P(Z_t \mid z_{t-1})P(z_{t-1} \mid X_{1:t-1}) \]

Filtering: for \textbf{online} estimation of state

Pr(state) = observation probability * transition-model

Smoothing: \textbf{post hoc} estimation of state (similar computation)

Prediction is filtering, but with no new evidence:

\[P(Z_{t+k} \mid X_{1:t}) = \sum_{z_{t+k-1}} P(Z_{t+k} \mid z_{t+k-1})P(z_{t+k-1} \mid X_{1:t}) \]
HMM: Maximum likelihood

Having observed some dataset, use ML to learn the parameters of the HMM

Need to marginalize over the latent variables:

\[p(X|\theta) = \sum_{Z} p(X, Z|\theta) \]

Difficult:

– does not factorize over data
– involves generalization of a mixture model

Approach: utilize EM for learning

Focus first on how to do inference efficiently
Forward recursion (α)

Define $\alpha(z_{t,j}) = P(x_1, ..., x_t, z_t = j)$

Clever recursion can compute huge sum efficiently

\[
\begin{align*}
\alpha(z_{1,j}) &= P(x_1, z_1 = j) = P(x_1|z_1 = j)P(z_1 = j) \\
\alpha(z_{2,j}) &= P(x_2|z_2 = j) \left[\sum_k P(z_2 = j|z_1 = k)P(x_1|z_1 = k)P(z_1 = k) \right] \\
&= P(x_2|z_2 = j) \left[\sum_k A_{k,j} \alpha(z_{1,k}) \right] \\
\alpha(z_{t+1,j}) &= P(x_{t+1}|z_{t+1} = j) \left[\sum_k A_{k,j} \alpha(z_{t,k}) \right]
\end{align*}
\]
Define $\beta(z_{t,j}) = P(x_{t+1}, \ldots, x_T | z_t = j)$

$$
\beta(z_{t,j}) = \left[\sum_k A_{jk} P(x_{t+1} | z_{t+1} = k) \beta(z_{t+1,k}) \right]
$$

$\beta(z_{T,j}) = 1$

$\alpha(z_{t,j})$: total inflow of prob. to node (t,j)

$\beta(z_{t,j})$: total outflow of prob. from node (t,j)
Forward-Backward algorithm

Estimate hidden state given observations

Define \(\gamma(z_{t,i}) = P(z_t = i | x_1, ..., x_T) \)

\[
\gamma(z_{t,i}) = \frac{P(X| z_t = i)P(z_t = i)}{P(X)} \\
= \frac{P(x_1, ..., x_t| z_t = i)P(x_{t+1}, ..., x_T| z_t = i)P(z_t = i)}{P(X)} \\
= \frac{P(x_1, ..., x_t, z_t = i)P(x_{t+1}, ..., x_T| z_t = i)}{P(X)} \\
= \alpha(z_{t,i})\beta(z_{t,i})/P(X)
\]

One forward pass to compute all \(\alpha(z_{t,i}) \), one backward pass to compute all \(\beta(z_{t,i}) \): total cost \(\mathcal{O}(K^2T) \)

Can compute likelihood at any time \(t \) based on \(\alpha(z_{t,j}) \) and \(\beta(z_{t,j}) \)

\[
L = P(X) = \sum_i \alpha(z_{t,i})\beta(z_{t,i})
\]
Viterbi decoding

How to choose single best path through state space?
Choose state with largest probability at each time t: maximize expected number of correct states
But this may not be the best path, with highest likelihood of generating the data

To find best path – *Viterbi decoding*, form of dynamic programming (forward-backward algorithm)
Same recursions, but replace Σ with max (“brace” example)

Forward: retain best path into each node at time t
Backward: retrace path back from state where most probable path ends
Can estimate HMM parameters using maximum likelihood

If state path known, then parameter estimation easy

Instead must estimate states, update parameters, re-estimate states, etc. -- Baum-Welch (form of EM)

State estimation via forward-backward, also need transition statistics (see next slide)

Update parameters (transition matrix \(A \), emission parameters) to maximize likelihood
Transition statistics

Need statistics for adjacent time-steps:

Define $\xi(z_{i,j}(t)) = P(z_{t-1} = i, z_t = j | X)$

$$\xi(z_{i,j}(t)) = P(z_{t-1} = i, x_1, ..., x_{t-1})$$

$$= P(z_t = j, x_t, ..., x_T | z_{t-1} = i, x_1, ..., x_{t-1}) / P(X)$$

$$= P(z_{t-1} = i, x_1, ..., x_{t-1}) P(z_t = j | z_{t-1} = i)$$

$$= P(x_t | z_t = j) P(x_{t+1}, ..., x_T | z_t = j) / L$$

$$= \alpha(z_{t-1}, i) A_{ij} P(x_t | z_t = j) \beta(z_t, j) / L$$

Expected number of transitions from state i to state j that begin at time $t-1$, given the observations

Can be computed with the same $\alpha(z_{t,j})$ and $\beta(z_{t,j})$ recursions
Parameter updates

Initial state distribution: expected counts in state \(k \) at time 1

\[
\pi_k = \frac{\gamma(z_{1,k})}{\sum_{j=1}^{K} \gamma(z_{1,j})}
\]

Estimate transition probabilities:

\[
A_{ij} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \sum_{k} \xi(z_{ik}(t))} = \frac{\sum_{t=2}^{T} \xi(z_{ij}(t))}{\sum_{t=2}^{T} \gamma(z_{t,i})}
\]

Emission probabilities are expected number of times observe symbol in particular state:

\[
\mu_{i,k} = \frac{\sum_{t=1}^{T} \gamma(z_{t,k}) x_{t,i}}{\sum_{t=1}^{T} \gamma(z_{t,k})}
\]
Using HMMs for recognition

Can train an HMM to classify a sequence:
1. train a separate HMM per class
2. evaluate prob. of unlabelled sequence under each HMM
3. classify: HMM with highest likelihood

Assumes can solve two problems:
1. estimate model parameters given some training sequences (we can find local maximum of parameter space near initial position)
2. given model, can evaluate prob. of a sequence
Probability of observed sequence

Want to determine if given observation sequence is likely under the model (for learning, or recognition)

Compute marginals to evaluate prob. of observed seq.: sum across all paths of joint prob. of observed outputs and state

$$P(X) = \sum_{Z} P(X, Z)$$

Take advantage of factorization to avoid exp. cost (#paths = K^T)

$$P(X) = \sum_{z_1} \sum_{z_2} \cdots \sum_{z_T} \prod_{t=1}^{T} P(z_t|z_{t-1})P(x_t|z_t)$$

$$= \sum_{z_1} P(z_1)P(x_1|z_1) \sum_{z_2} P(z_2|z_1)P(x_2|z_2) \cdots \sum_{z_T} P(z_T|z_{T-1})P(x_T|z_T)$$
Application example: classifying stair events

Aim: automatically detect unusual events on stairs from video
Idea: compute visual features describing person’s motion during descent, apply HMM to several sequences of feature values

One-class training:
1. train HMM on example sequences from class: normal stair descent
2. set likelihood threshold L based on labelled validation set:

 $$C(L) = \frac{W}{N_n} \sum_{i=1}^{N_n} g(\log P(\mathbf{X}^i), L) + \frac{(1-W)}{N_a} \sum_{j=1}^{N_a} (1 - g(\log P(\mathbf{X}^j), L))$$

3. classify by thresholding HMM likelihood of test sequence
Classifying stair events: Normal event
Classifying stair events: Anomalous event
Classifying stair events: Precision-recall

![Precision recall curve of HMM classification](image1.png)

![C(L) vs. L plot](image2.png)

L_{max}
Variants on basic HMM

• Input-output HMM
 – Have additional observed variables U

• Semi-Markov HMM
 – Improve model of state duration

• Autoregressive HMM
 – Allow observations to depend on some previous observations directly

• Factorial HMM
 – Expand dim. of latent state
State Space Models

Instead of discrete latent state of the HMM, model Z as a continuous latent variable.

Standard formulation: linear-Gaussian (LDS), with (hidden state Z, observation Y, other variables U)

- Transition model is linear
 \[z_t = A_t z_{t-1} + B_t u_t + \epsilon_t \]
- with Gaussian noise
 \[\epsilon_t = \mathcal{N}(0, Q_t) \]
- Observation model is linear
 \[y_t = C_t z_t + D_t u_t + \delta_t \]
- with Gaussian noise
 \[\delta_t = \mathcal{N}(0, R_t) \]

Model parameters typically independent of time: stationary
Kalman Filter

Algorithm for filtering in linear-Gaussian state space model
Everything is Gaussian, so can compute updates exactly

Dynamics update: predict next belief state

\[
p(z_t|y_{1:t-1}, u_{1:t}) = \int \mathcal{N}(z_t|A_t z_{t-1} + B_t u_t, Q_t) \mathcal{N}(z_{t-1}|\mu_{t-1}, \Sigma_{t-1}) dz_{t-1} \\
= \mathcal{N}(z_t|\mu_t|_{t-1}, \Sigma_t|_{t-1})
\]

\[
\mu_t|_{t-1} = A_t \mu_{t-1} + B_t u_t \\
\Sigma_t|_{t-1} = A_t \Sigma_{t-1} A_t^T + Q_t
\]
Kalman Filter: Measurement Update

Key step: update hidden state given new measurement:

\[
p(z_t | y_{1:t}, u_{1:t}) \propto p(y_t | z_t, u_t)p(z_t | y_{1:t-1}, u_{1:t})
\]

First term a bit complicated, but can apply various identities (such as the matrix inversion lemma, Bayes rule), obtain:

\[
p(z_t | y_{1:t}, u_{1:t}) = \mathcal{N}(z_t | \mu_t, \Sigma_t)
\]

The mean update depends on Kalman gain matrix \(K \), and the residual or innovation \(r = y - \mathbb{E}[y] \)

\[
\mu_t = \mu_{t|t-1} + K_t r_t
\]

\[
K_t = \Sigma_{t|t-1} C_t^T S_t^{-1}
\]

\[
\hat{y} = \mathbb{E}[y_t | y_{1:t-1}, u_t] = C_t \mu_{t|t-1} + D_t u_t
\]

\[
S_t = \text{cov}[r_t | y_{1:t-1}, u_{1:t}] = C_t \Sigma_{t|t-1} C_t^T + R_t
\]
Kalman Filter: Extensions

Learning similar to HMM
- Need to solve inference problem – local posterior marginals for latent variables
- Use Kalman smoothing instead of forward-backward in E step, re-derive updates in M step

Many extensions and elaborations
- Non-linear models: extended KF, unscented KF
- Non-Gaussian noise
- More general posteriors (multi-modal, discrete, etc.)
- Large systems with sparse structure (sparse information filter)