Test for CSC 2515
Overview

• The test will be marked out of 100

• PART A: 8 easy questions
 – Worth 5 points each.
 – Each question should take ~3 minutes.
 – You should answer all of them

• Typical easy question:
 – a) Write down the softmax function
 – b) What is the purpose of the denominator?
Overview (cont.)

- Second Half: Four multi-part questions, you select 3

- Each question should take ~10 minutes.

- Typical question (one part):

 Under what conditions is the algorithm for K-means clustering equivalent to the algorithm for fitting a mixture of Gaussians?
Summary

• What to study?
 – Material covered in lectures and tutorial
 – Use the books/readings as back-up, to help understand the methods and derivations

• The exam is closed book and notes
 – Do not focus on memorizing formulas, but instead main ideas and methods
Topics to Study

• Week 1: Linear Regression
 • When is minimizing the squared error equivalent to Maximum Likelihood Learning?
 • Online vs. Batch learning
 • Regularized least squares

• Week 2: Classification
 • Linear Classifier: defn, utility
 • Logistic Regression: form, probabilistic interpretation
 • Loss functions
 • Regularizer: form, rationale
 • Use of validation set

• Week 3: Nonparametric methods
 • kNN: decision boundaries; compare to parametric methods
 • Decision trees: information gain, decision boundaries

• Week 4: Generative classifiers
 • Compare to discriminative classifiers
 • Underlying assumptions
 • Forms of GBC
 • Naïve Bayes: basic assumptions, application
• Week 5: Neural Networks
 • Backprop: when applicable (constraints on cost, activation functions)?
 • Weight constraints: how and why
 • Methods to prevent over-fitting
 • Alternative activation, loss functions

• Week 6: Clustering & EM
 • Hard vs. soft k-means
 • Mixture models
 • EM: definition of steps in algorithm
 • is convergence guaranteed?
 • what are responsibilities?
 • understand (but not memorize) eqns, objective
 • what does it mean that this is a generative model?

• Week 7: Continuous Latent Variable Models
 • PCA: motivation, basic algorithm
 • Probabilistic vs. standard PCA, and compare to full Gaussian
 • what is the objective function(s)?
 • what is a principal component?
 • PCA vs. clustering?
 • How does PCA compare to autoencoders
Topics to Study (cont.)

- **Week 8: Support Vector Machines**
 - what is the kernel trick?
 - when can the kernel trick be applied?
 - what is its purpose
 - how is an SVM similar and different than a linear classifier?
 - what is a support vector?
 - What is the objective function?

- **Week 10: Combining Models**
 - When is ensemble a win?
 - Bagging vs. Boosting
 - Boosting: main steps in algorithm; 2 different types of weights, rationale
 - Decision trees: algorithm; choosing nodes via MI; decision boundaries, stumps
 - Mixture of experts

- **Week 11: Reinforcement Learning**
 - Compare to other forms of learning
 - Q learning algorithm: updates, objective
 - Exploration/exploitation
Topics *NOT* to Study

- Free energy
- Structured prediction
- Non-deterministic Q-learning
- Derivations