CSC263 Week 5

Larry Zhang

http://goo.gl/forms/S9yie3597B
Announcements

PS3 marks out, class average 81.3%

Assignment 1 due next week.

Response to feedbacks -- tutorials

“We spent too much time on working by ourselves, instead of being taught by the TAs.”
We intended to create an “active learning” atmosphere in the tutorials which differs from the mostly “passive learning” atmosphere in the lectures. If that’s not working for you after all, let me know through the weekly feedback form and we will change!
Foreseeing February

Feb 10: A1 due
Feb 16: Reading week
Feb 16~25: Larry out of town
Tuesday Feb 24: Lecture by Michelle
Thursday Feb 26: Lecture at exceptional location RW110
Thursday Feb 26: 11am-1pm, 2pm-4pm - Pre-test office hour at BA5287, 4pm-6pm midterm

Office hours while Larry’s away
➔ Francois (MTWRF 1:30-2:30), Michelle (MW 10:30-12)
➔ Please go to these office hours to have your questions answered! (or email Larry)
Data Structure of the Week

Hash Tables
Hash table is for implementing **Dictionary**

<table>
<thead>
<tr>
<th></th>
<th>unsorted list</th>
<th>sorted array</th>
<th>Balanced BST</th>
<th>Hash table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search (S, k)</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert (S, x)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Delete (S, x)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

average-case, and if we do it right
Direct address table

a fancy name for “array”...
Problem

Read a grade file, keep track of number of occurrences of each grade (integer 0~100).

The fastest way: create an array $T[0, ..., 100]$, where $T[i]$ stores the number of occurrences of grade i.

Everything can be done in $O(1)$ time, worst-case.

<table>
<thead>
<tr>
<th>values:</th>
<th>33</th>
<th>20</th>
<th>35</th>
<th>65</th>
<th>771</th>
<th>332</th>
<th>21</th>
<th>125</th>
<th>...</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>....</td>
<td>100</td>
</tr>
</tbody>
</table>

Direct-address table: directly using the key as the index of the table
The **drawbacks** of direct-address table?

<table>
<thead>
<tr>
<th>values:</th>
<th>33</th>
<th>20</th>
<th>35</th>
<th>65</th>
<th>771</th>
<th>332</th>
<th>21</th>
<th>125</th>
<th>...</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>....</td>
<td>100</td>
</tr>
</tbody>
</table>

Drawback #1: What if the keys are **not integers**? Cannot use keys as indices anymore!

Drawback #2: What if the grade 1,000,000,000 is allowed? Then we need an array of size **1,000,000,001**! Most space is **wasted**.

We need to be able to **convert** any type of key to an **integer**.

We need to map the **universe** of keys into a small number of **slots**.

A **hash function** does both!
An unfortunate naming confusion

Python has a built-in “hash()” function

By our definition, this “hash()” function is not really a hash function because it only does the first thing (convert to integer) but not the second thing (map to a small number of slots).
Definitions

Universe of keys U, the set of all possible keys.

Hash Table T: an array with m positions, each position is called a “**slot**” or a “**bucket**”.

Hash function h: a function maps U to $\{0, 1, ..., m-1\}$
in other words, $h(k)$ maps any key k to one of the m
buckets in table T.
in yet other words, in array T, $h(k)$ is the the index at
which the key k is stored.
Example: A hash table with $m = 7$

Insert(“hello”)
assume $h(“hello”) = 4$

Insert(“world”)
assume $h(“world”) = 2$

Insert(“tree”)
assume $h(“tree”) = 5$

Search(“hello”)
return $T[h(“hello”)]$

What’s new potential issue?
What if we Insert(“snow”), and $h(“snow”) = 4$?

Then we have a collision.

One way to resolve collision is Chaining
Example: A hash table with $m = 7$

What if we Insert(“snow”), and $h(“snow”) = 4$?

Then we have a collision.

Store a linked list at each bucket, and insert new ones at the head.

One way to resolve collision is Chaining
Hashing with chaining: Operations

Let \(n \) be the total number of keys in the hash table.

- **Search**\((k)\):
 - Search \(k \) in the linked list stored at \(T[h(k)] \)
 - Worst-case \(O(\text{length of chain}) \),
 - Worst length of chain: \(O(n) \) (e.g., all keys hashed to the same slot)

- **Insert**\((k)\):
 - Insert into the linked list stored at \(T[h(k)] \)
 - Need to check whether key already exists, still takes \(O(\text{length of chain}) \)

- **Delete**\((k)\):
 - Search \(k \) in the linked list stored at \(T[h(k)] \), then delete, \(O(\text{length of chain}) \)
Hashing with chaining operations, worst-case running times are $O(n)$ in general. Doesn’t sound too good.

However, in practice, hash tables work really well, that is because

➔ The worst case almost never happens.
➔ **Average case** performance is **really** good.

In fact, Python “**dict**” is implemented using hash table.
Average-case analysis:
Search in hashing with chaining
Assumption: **Simple Uniform Hashing**

Every key \(k \in U \) is *equally likely* to hash to any of the \(m \) buckets.

For any key \(k \) and any bucket \(j \)

\[
\Pr(h(k) = j) = \frac{1}{m} = \sum_{k \in U : h(k) = j} \Pr(k)
\]

Given a key \(k \), each of the \(m \) slots is equally likely to be hashed to, therefore \(1/m \)

Out of all keys in the universe, \(1/m \) of the keys will hash to the given slot \(j \)
Let there be \(n \) keys stored in a hash table with \(m \) buckets.

Let \(L_j \) be the length of the linked list at slot \(j \)

then \(\sum_{j=0}^{m-1} L_j = n \)
Let random variable $N(k)$ be the number of elements examined during search for k, then average-running time is basically (sort-of) $E[N(k)]$
\[E[N(k)] = \sum_{k \in U} \Pr(k) \cdot N(k) \]

Dividing the universe into \(m \) parts

\[N(k) \leq L_j, \text{ at most examine all elements in the chain} \]

\[\Pr(h(k) = j) = \frac{1}{m} \]

\[\frac{1}{m} = \sum_{k \in U : h(k) = j} \Pr(k) \]

\[\sum_{i=0}^{m-1} L_i = n \]

\[= \frac{1}{m} \sum_{j=0}^{m-1} L_j = \frac{n}{m} \]
Let \(\alpha = \frac{n}{m} \) and call it the **load factor** (average number of key per bucket, i.e., the average length of chain).

Add 1 step for the hashing \(h(k) \),

then the average-case running time for Search is in at most \(1+\alpha \) (\(O(1+\alpha) \))

By a bit more proof, we can show that it’s actually \(\Theta(1+\alpha) \)
A bit more proof: average-case runtime of a successful search (after-class reading)

Assumption: k is a key that **exists** in the hash table

The number of elements examined during search for a key k

\[= 1 + \text{number of elements before x in chain} \]

= 1 + number of keys that hash *samely* as k and are inserted **after** k

so it’s **before** x in the chain (we insert at the head)

so in the **same** chain as x
Proof continued...

Let $k_1, k_2, k_3, \ldots, k_n$ be the order of insertion.

Define

$$X_{ij} = \begin{cases} 1 & \text{if } h(k_i) = h(k_j) \\ 0 & \text{otherwise} \end{cases}$$

then, the expectation

$$E[X_{ij}] = \frac{1}{m} \quad \text{because simple uniform hashing}$$

$$E[\text{number of keys that hash samely as a key } k \text{ and are inserted after } k]$$

$$= E \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{ij} \right] = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} E[X_{ij}] = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{m}$$

$$= \frac{1}{nm} \sum_{i=1}^{n} (n - i) = \cdots = \frac{\alpha}{2} - \frac{\alpha}{2n}$$

So overall, average-case runtime of successful search:

$$1 + E[\text{number \ldots}] = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}$$
If $n < m$, i.e., more slots than keys stored, the running time is $\Theta(1)$

If n/m is in the order of a constant, the running time is also $\Theta(1)$

If n/m of higher order, e.g., \sqrt{n}, then it’s not constant anymore.

So, in practice, choose m wisely to guarantee constant average-case running time.
We made an important assumption...

Simple Uniform Hashing

Can we really get this for real?

Difficult, but we try to be as close to it as possible.

Choose good hash functions => Thursday
CSC263 Week 5

Thursday
Announcements

Don’t forget office hours (A1 due next week)
Thu 2-4pm, Fri 2-4pm, Mon 4-5:30pm
or anytime when I’m in my office

New question in our Weekly Feedback Form:
What would make the slides awesome for self-learning?

What features would you like to have, so that you don’t need to go to lectures anymore? Feel free to be creative and unrealistic.

http://goo.gl/forms/S9yie3597B

New “tips of the week” updated as usual.
Recap

→ **Hash table**: a data structure used to implement the Dictionary ADT.

→ **Hash function** $h(k)$: maps any key k to $\{0, 1, ..., m-1\}$

→ Hashing with **chaining**: average-case $O(1+\alpha)$ for search, insert and delete, assuming **simple uniform hashing**
Simple Uniform Hashing

All keys are **evenly** distributed to the m buckets of the hash table, so that the lengths of chains at each bucket are the same.

➔ Think about inserting English words from a document into the hash table

We **cannot** really **guarantee** this in practice, we don’t really the distribution from which the keys are drawn.

➔ e.g., we cannot really tell which English words will actually be inserted into the hash table before we go through the whole document.

➔ so there is **no way** to choose a hash function **beforehand** that guarantees all chains will be equally long (simple uniform hashing).
So what can we do?

We use some **heuristics**.

Heuristics

(noun)

A method that works in practice but you don’t really know why.
First of all

Every object stored in a computer can be represented by a **bit-string** (string of 1’s and 0’s), which corresponds to a **large integer**, i.e., any type of key can be converted to an **integer** easily.

So the only thing a **hash function** really needs to worry about is how to **map** these large integers to a small set of integers $\{0, 1, \ldots, m-1\}$, i.e., the buckets.
What do we want to have in a hash function?
Want-to-have #1

\(h(k)\) depends on every bit of \(k\), so that the differences between different \(k\)'s are fully considered.

\[h(k) = \text{lowest 3-bits of } k\]
\[\text{e.g., } h(101001010001010) = 2\]

\[h(k) = \text{sum of all bits}\]
\[\text{e.g., } h(101001010001010) = 6\]
Want-to-have #2

$h(k)$ "spreads out" values, so all buckets get something.

Assume there are $m = 263$ buckets in the hash table.

$h(k) = k \mod 2$

bad
because all keys hash to either bucket 0 or bucket 1

$h(k) = k \mod 263$

better
because all buckets could get something
Want-to-have #3

$h(k)$ should be efficient to compute

$h(k) = \text{solution to the PDE with parameter } k$

Yuck!

$h(k) = k \mod 263$

better
1. $h(k)$ depends on every bit of k
2. $h(k)$ “spreads out” values
3. $h(k)$ is efficient to compute

In practice, it is difficult to get all three of them, ...

but there are some **heuristics** that work well
The division method
The division method

\[h(k) = k \mod m \]

\(h(k) \) is between 0 and \(m-1 \), apparently

Pitfall: sensitive to the value of \(m \)

\(\rightarrow \) if \(m = 8 \), ...

- \(h(k) \) just returns the lowest 3-bits of \(k \)

\(\rightarrow \) so \(m \) better be a **prime number**

- That means the size of the table better be a prime number, that’s kind-of restrictive!
A variation of the division method

\[h(k) = (ak + b) \mod m \]

where \(a \) and \(b \) are constants that can be picked.

Used in “Universal hashing” (see textbook 11.3.3 if interested)

\(\rightarrow \) achieve simple uniform hashing and fight malicious adversary by choosing randomly from a set of hash functions.
The multiplication method
The multiplication method

\[h(k) = \lfloor m \cdot (kA \mod 1) \rfloor \]

with “magic constant” \(0 < A < 1\)
like, \(A = 0.45352364758429879433234\)

We “mess-up” \(k\) by multiplying \(A\), take the fractional part of the “mess” (between 0 and 1), then multiply \(m\) to make sure the result is between 0 and \(m-1\).

Tends to evenly distribute the hash values, because of the “mess-up”. Not sensitive to the value of \(m\), unlike division method

Magic A suggested by Donald Knuth: \(A = \frac{\sqrt{5} - 1}{2} = 0.618\ldots\)
Donald Knuth
The “father of analysis of algorithms”
Inventor of LaTeX

Thank me for the fun part of work in this course.
Summary: hash functions

Hash
(noun)
a dish of cooked meat cut into small pieces and cooked again, usually with potatoes.

(verb)
make (meat or other food) into a hash

“The spirit of hashing”
Open addressing
another way of resolving collisions
other than chaining
Open addressing

→ There is no chain

→ Then what to do when having a collision?
 ◆ Find another bucket that is free

→ How to find another bucket that is free?
 ◆ We probe.

→ How to probe?
 ◆ linear probing
 ◆ quadratic probing
 ◆ double hashing
Linear probing

Probe sequence:
\[(h(k) + i) \mod m, \text{ for } i=0,1,2,\ldots\]

<table>
<thead>
<tr>
<th>T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>world</td>
</tr>
<tr>
<td>3</td>
<td>tree</td>
</tr>
<tr>
<td>4</td>
<td>hello</td>
</tr>
<tr>
<td>5</td>
<td>snow</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Insert(“hello”)
assume \(h(“hello”) = 4\)

Insert(“world”)
assume \(h(“world”) = 2\)

Insert(“tree”)
assume \(h(“tree”) = 2\)
probe 2, 3 ok

Insert(“snow”)
assume \(h(“snow”) = 3\)
probe 3, 4, 5 ok
Problem with linear probing

Keys tend to **cluster**, which causes **long runs** of probing.

Solutions: Jump **farther** in each probe.

before: \(h(k), h(k)+1, h(k)+2, h(k)+3, \ldots \)

after: \(h(k), h(k)+1, h(k)+4, h(k)+9, \ldots \)

This is called quadratic probing.
Quadratic probing

Probe sequence

\[(h(k) + c_1i + c_2i^2) \mod m, \text{for } i=0,1,2,...\]

Pitfalls:

→ Collisions still cause a milder form of clustering, which still cause long runs (keys that collide jump to the same places and form crowd).

→ Need to be careful with the values of \(c_1\) and \(c_2\), it could jump in such a way that some of the buckets are never reachable.
Double hashing

Probe sequence:
\[(h_1(k) + ih_2(k)) \mod m, \text{ for } i=0,1,2,...\]

Now the jumps almost look like random, the jump-step \(h_2(k)\) is different for different \(k\), which helps avoiding clustering upon collisions, therefore avoids long runs (each one has their own way of jumping, so no crowd).
Performance of open addressing

Assuming simple uniform hashing, the average-case **number of probes** in an **unsuccessful** search is $1/(1-\alpha)$.

For a **successful** search it is $\frac{1}{\alpha} \ln \frac{1}{1 - \alpha}$.

In both cases, assume $\alpha < 1$

Open addressing cannot have $\alpha > 1$. Why?
How exactly to do Search, Insert and Delete work in an open-addressing hash table?

Will see in this week’s tutorial.
Next week

➔ Randomized algorithms

http://goo.gl/forms/S9yie3597B