CSC263 Week 3
Announcements

➔ PS1 marks out, average: 90%
   ◆ re-marking requests can be submitted on MarkUS.

➔ Assignment 1 is out, due Feb 10
   ◆ more challenging than PS! Start early!
   ◆ work in groups of up to 4.
NOT EVERY GROUP PROJECT

DOES 99% OF THE WORK

SAYS HE’S GOING TO HELP BUT HE’S NOT

HAS NO IDEA WHAT’S GOING ON THE WHOLE TIME

DISAPPEAR AT THE VERY BEGINNING AND DOESN’T SHOW UP AGAIN TIL THE VERY END

IN SCHOOL YOU HAVE EVER DONE
This week

➔ ADT: Dictionary

➔ Data structure:
  ◆ Binary search tree (BST)
  ◆ Balanced BST - AVL tree
Dictionary

What’s stored:

➔ words

Supported operations

➔ Search for a word
➔ Insert a word
➔ Delete a word
Dictionary, more precisely

What’s stored

→ A set $S$ where each node $x$ has a field $x.key$
   (assumption: keys are distinct, unless o.w. specified)

Supported operations

→ **Search**($S, k$): return $x$ in $S$, s.t., $x.key = k$
   ◆ return NIL if no such $x$

→ **Insert**($S, x$): insert node $x$ into $S$
   ◆ if already exists node $y$ with same key, replace $y$ with $x$

→ **Delete**($S, x$): delete a given node $x$ from $S$

A thing to note: $k$ is a key, $x$ is a node.
More on Delete

Why Delete(S, \(x\)) instead of Delete(S, \(k\))? 

Delete(S, \(k\)) can be implemented by:
1. \(x = \text{Search}(S, k)\)
2. \(\text{Delete}(S, x)\)

We want separate different operations, i.e., each operation focuses on only one job.
Implement a Dictionary using simple data structures
Unsorted (doubly) linked list

→ **Search**\((S, k)\)
  - **O(n)** worst case
  - go through the list to find the key

→ **Insert**\((S, x)\)
  - **O(n)** worst case
  - need to check if \(x.key\) is already in the list

→ **Delete**\((S, x)\)
  - **O(1)** worst case
  - Just delete, **O(1)** in a doubly linked list
Sorted array  

\[ [18, 24, 25, 33, 40, 65] \]

- **Search**(S, k)
  - \( O(\log n) \) worst case
  - binary search!

- **Insert**(S, x)
  - \( O(n) \) worst case
  - insert at front, everything has to shift to back

- **Delete**(S, x)
  - \( O(n) \) worst case
  - Delete at front, everything has to shift to front
We can do better using smarter data structures, of course

<table>
<thead>
<tr>
<th></th>
<th>unsorted list</th>
<th>sorted array</th>
<th>BST</th>
<th>Balanced BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search($S, k$)</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Insert($S, x$)</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>Delete($S, x$)</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>
Binary Search Tree
It’s a binary tree, like binary heap

Each node has at most 2 children
need **NOT** be nearly-complete, unlike binary heap
It has the **BST property**

For **every** node $x$ in the tree

- All nodes in the **left** subtree have keys **smaller** than $x.key$
- All nodes in the **right** subtree have keys **larger** than $x.key$
BST or NOT?

Tree on the left: Not a BST because 66 is greater than 65 and should not be on the right side.

Tree on the right: A BST because all nodes on the left are less than 65 and all nodes on the right are greater than 65.
Because of BST property, we can say that the keys in a BST are sorted.

CSC148 Quiz: How to obtain a sorted list from a BST?

Perform an inorder traversal.
InorderTraversal(x):

# print all keys in BST rooted at x in ascending order

    if x ≠ NIL:
        InorderTraversal(x.left)
        print x.key
        InorderTraversal(x.right)

Worst case running time of InorderTraversal: \( O(n) \), because visit each node exactly once.
Operations on a BST
First, information at each node x

- x.key: the key
- x.left: the left child (node)
- x.right: the right child (node)
- x.p: the parent (node)
Operations on a BST

read-only operations

➔ TreeSearch(root, k)
➔ TreeMinimum(x) / TreeMaximum(x)
➔ Successor(x) / Predecessor(x)

modifying operations

➔ TreeInsert(root, x)
➔ TreeDelete(root, x)
TreeSearch(root, k)

Search the BST rooted at root, return the node with key k; return NIL if not exist.
TreeSearch(root, k)

- start from root
- if k is smaller than the key of the current node, go left
- if k is larger than the key of the current node, go right
- if equal, found
- if going to NIL, not found
TreeSearch(root, k): Pseudo-code

TreeSearch(root, k):

    if root = NIL or k = root.key:
        return root
    if k < root.key:
        return TreeSearch(root.left, k)
    else:
        return TreeSearch(root.right, k)

Worst case running time: \( O(h) \), height of tree, going at most from root to leaf
**TreeMinumum**(x)

Return the node with the minimum key of the tree rooted at x
TreeMinimum(x)

→ start from root
→ keep going to the left, until cannot go anymore
→ return that final node
TreeMinimum(x): pseudo-code

TreeMinimum(x):

    while x.left ≠ NIL:
        x ← x.left

    return x

Worst case running time: \( O(h) \), height of tree, going at most from root to leaf

TreeMaximum(x) is exactly the same, except that it goes to the right instead of to the left.
Successor($x$)

Find the node which is the successor of $x$ in the sorted list obtained by inorder traversal

or, node with the smallest key larger than $x$
Successor(x)

→ The successor of 33 is...
  ◆ 40

→ The successor of 40 is...
  ◆ 43

→ The successor of 64 is...
  ◆ 65

→ The successor of 65 is ...
  ◆ 80
Successor(x):
Organize into two cases

➔ x has a right child

➔ x does not have a right child
x has a right child

Successor(x) must be in x’s right subtree (the nodes right after x in the inorder traversal)

It’s the minimum of x’s right subtree, i.e., TreeMinimum(x.right)

The first (smallest) node among what’s right after x.
x does not have a right child

Consider the **inorder traversal**
(Left subtree -> root -> right subtree)

x is the **last one** visited in some
left subtree A
(because no right child)

The successor y of x is the **lowest ancestor** of x whose **left subtree** contains x
(y is visited right after finishing
subtree A in inorder traversal)
x does not have a right child

How to find:

→ go up to x.p

→ if x is a right child of x.p, keep going up

→ if x is a left child of x. p, stop, x.p is the guy!
Summarize the two cases of Successor(x)

➔ If x has a right child
  ◆ return TreeMinimum(x.right)

➔ If x does not have a right child
  ◆ keep going up to x.p while x is a right child, stop when x is a left child, then return x.p
  ◆ if already gone up to the root and still not finding it, return NIL.
Successor(x): pseudo-code

Successor(x):
    if x.right ≠ NIL:
        return TreeMinimum(x.right)
    y ← x.p
    while y ≠ NIL and x = y.right: # x is right child
        x = y
        y = y.p # keep going up
    return y

Worst case running time
\( O(h) \), Case 1: TreeMin is \( O(\log n) \); Case 2: at most leaf to root
Predecessor(x) works symmetrically the same way as Successor(x)
CSC263 Week 3

Thursday
Annoucement

→ Problem Set 3 out
NEW feature! Exclusive for L0301!

A weekly reflection & feedback system

2 minutes per week, let us know how things are going: http://goo.gl/forms/S9yie3597B

Anonymous, short, topic-specific and potentially hugely helpful for improving learning experience.

Bonus: “263 tips of the week” shown upon form submission, updated every Thursday night.
Learn from yesterday, live for today, hope for tomorrow. The important thing is to tell people how you feel, once every week.
Recap of Tuesday

ADT: Dictionary

Data structure: BST

➔ read-only operations
  ◆ TreeSearch(root, k)
  ◆ TreeMinimum(x) / TreeMaximum(x)
  ◆ Successor(x) / Predecessor(x)

➔ modifying operations
  ◆ TreeInsert(root, x)
  ◆ TreeDelete(root, x)
TreeInsert(root, x)

Insert node x into the BST rooted at root
return the new root of the modified tree
if exists y, s.t. y.key = x.key, replace y with x
TreeInsert(root, x)

Go down, left and right like what we do in TreeSearch

When next position is NIL, insert there

If find equal key, replace the node
Exercise
Ex 2: Insert sequence into an empty tree

Insert sequence 1:
11, 5, 13, 12, 6, 3, 14

Different insert sequences result in different “shapes” (heights) of the BST.

Insert sequence 2:
3, 5, 6, 11, 14, 13, 12
TreeInsert(root, x): Pseudo-code

TreeInsert(root, x):
    # insert and return the new root
    if root = NIL:
        root ← x
    elif x.key < root.key:
        root.left ← TreeInsert(root.left, x)
    elif x.key > root.key:
        root.right ← TreeInsert(root.right, x)
    else # x.key = root.key:
        replace root with x  # update x.left, x.right
    return root

Worst case running time: \(O(h)\)
TreeDelete(root, x)

Delete node $x$ from BST rooted at root while maintaining BST property, return the new root of the modified tree.
What’s tricky about deletion?

Tree might be disconnected after deleting a node, need to connect them back together, while maintaining the BST property.
Delete(root, x): Organize into 3 cases

Case 1: \( x \) has no child \( \Rightarrow \) Easy

Case 2: \( x \) has one child \( \Rightarrow \) Easy

Case 3: \( x \) has two children \( \Rightarrow \) less easy
Case 1: x has no child

Just delete it, nothing else need to be changed.
Case 2: x has one child

First delete that node, which makes an open spot.

Then promote x’s only child to the spot, together with the only child’s subtree.
Case 2: x has one child

First delete that node, which makes an open spot.

Then promote x’s only child to the spot, together with the only child’s subtree.
Case 3: x has two children

Delete x, which makes an open spot.

A node y should fill this spot, such that $L < y < R$.

Who should be y?

$y \leftarrow \text{the minimum of } R$, i.e., Successor(x)

$L < y$ because y is in R, $y < R$ because it’s minimum
Further divide into two cases

Case 3.1: $y$ happens to be the right child of $x$

Case 3.2: $y$ is not the right child of $x$
Case 3.1: y is x’s right child

Easy, just **promote** y to x’s spot
Case 3.1: y is x’s right child

Easy, just promote y to x’s spot
Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, y becomes free.

Order: y < w < z
Case 3.2: y is NOT x’s right child

1. Promote w to y’s spot, y becomes free.

2. Make z be y’s right child (y adopts z)
Case 3.2: y is NOT x’s right child

1. Promote \( w \) to \( y \)'s spot, \( y \) becomes free.

2. Make \( z \) be \( y \)'s right child (\( y \) adopts \( z \))

3. Promote \( y \) to \( x \)'s spot
Case 3.2: y is NOT x’s right child

1. Promote \textbf{w} to \textit{y}’s spot, \textit{y} becomes free.

2. Make \textbf{z} be \textit{y}’s right child (\textit{y} adopts \textbf{z})

3. Promote \textit{y} to \textbf{x}’s spot

\textbf{Order: } y < w < z

\textbf{x} deleted, BST order maintained, all is good.
Summarize TreeDelete(root, x)

- Case 1: x has no child, **just delete**
- Case 2: x has one child, **promote**
- Case 3: x has two children, y = successor(x)
  - Case 3.1: y is x’s right child, **promote**
  - Case 3.2: y is NOT x’s right child
    - **promote** y’s right child
    - y **adopt** x’s right child
    - **promote** y
TreeDelete(root, x): pseudo-code

Textbook Chapter 12.3

**Key:** Understand **Transplant(root, u, v)**

# v takes away u’s parent

used for promoting v and deleting u
Transplant(root, u, v):
# v takes away u’s parent
    if u.p = NIL:  # if u is root
        root ← v  # v replaces u as root
    elif u = u.p.left:# if u is mom’s left child
        u.p.left ← v  #mom accepts v as left child
    else:  # if u is mom’s right child
        u.p.right ← v  #mom accept v as right child
    if v ≠ NIL:
        v.p ← u.p  # v accepts new mom
        # u can cry now...
TreeDelete(root, x):

if x.left = NIL:
    Transplant(root, x, x.right)
elif x.right = NIL:
    Transplant(root, x, x.left)
else:
    y ← TreeMinimum(x.right)
    if y.p ≠ x:
        Transplant(root, y, y.right)
        y.right ← x.right
        y.right.p ← y
    Transplant(root, x, y)
    y.left ← x.left
    y.left.p ← y
return root
TreeDelete(root, x) worst case running time
$O(h)$ (time spent on TreeMinimum)
Now, about that $h$ (height of tree)
Definition: height of a tree

The longest path from the root to a leaf, in terms of number of edges.

\[ h = 4 \]
Consider a BST with $n$ nodes, what’s the highest it can be?

$h = n-1$

i.e, in worst case
$h \in \Theta(n)$

so all the operations we learned with $O(h)$ runtime, they are $O(n)$ in worst case
So, what’s the best case for $h$?

In best case, $h \in \Theta(\log n)$

A **Balanced BST** guarantees to have height in $\Theta(\log n)$

Therefore, all the $O(h)$ become $O(\log n)$
Next week

A Balance BST called **AVL tree**

http://goo.gl/forms/S9yie3597B