CSC263 Week 2
If you feel rusty with probabilities, please read the Appendix C of the textbook. It is only about 20 pages, and is highly relevant to what we need for CSC263.

Appendix A and B are also worth reading.
This week topic

⇒ ADT: **Priority Queue**

⇒ Data structure: **Heap**
An ADT we already know

Queue:

- a collection of elements
- supported operations
 - Enqueue(Q, x)
 - Dequeue(Q)
 - PeekFront(Q)

First in first serve
The new ADT

Max-Priority Queue:

- a collection of elements with priorities, i.e., each element x has x.priority

Supported operations:

- \textbf{Insert}(Q, x)
 - like \texttt{enqueue}(Q, x)

- \textbf{ExtractMax}(Q)
 - like \texttt{dequeue}(Q)

- \textbf{Max}(Q)
 - like \texttt{PeekFront}(Q)

- \textbf{IncreasePriority}(Q, x, k)
 - increase x.priority to k
Applications of Priority Queues

→ Job scheduling in an operating system
 ◆ Processes have different priorities (Normal, high...)

→ Bandwidth management in a router
 ◆ Delay sensitive traffic has higher priority

→ Find minimum spanning tree of a graph

→ etc.
Now, let’s implement a (Max)-Priority Queue
Use an unsorted linked list

- **INSERT(Q, x)** # x is a node
 - Just insert x at the head, which takes $\Theta(1)$

- **IncreasePriority(Q, x, k)**
 - Just change x.priority to k, which takes $\Theta(1)$

- **Max(Q)**
 - Have to go through the whole list, takes $\Theta(n)$

- **ExtractMax(Q)**
 - Go through the whole list to find x with max priority ($O(n)$), then delete it ($O(1)$ if doubly linked) and return it, so overall $\Theta(n)$.
Use a reversely sorted linked list

→ **Max(Q)**
 ◆ Just return the head of the list, $\Theta(1)$

→ **ExtractMax(Q)**
 ◆ Just delete and return the head, $\Theta(1)$

→ **INSERT(Q, x)**
 ◆ Have to linearly search the correct location of insertion which takes $\Theta(n)$ in worst case.

→ **IncreasePriority(Q, x, k)**
 ◆ After increase, need to move element to a new location in the list, takes $\Theta(n)$ in worst case.
Θ(1) is fine, but Θ(n) is kind-of bad...

unsorted linked list
sorted linked list

...
Can we link these elements in a smarter way, so that we never need to do Θ(n)?
Yes, we can!

Worst case running times

<table>
<thead>
<tr>
<th></th>
<th>unsorted list</th>
<th>sorted list</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert(Q, x)</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>Max(Q)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(1))</td>
</tr>
<tr>
<td>ExtractMax(Q)</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(\log n))</td>
</tr>
<tr>
<td>IncreasePriority(Q, x, k)</td>
<td>(\Theta(1))</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
</tr>
</tbody>
</table>
A binary max-heap is a nearly-complete binary tree that has the max-heap property.
It’s a binary tree

Each node has at most 2 children
It’s a nearly-complete binary tree

Each level is **completely filled**, except the bottom level where nodes are filled to as **far left** as possible
Why is it important to be a nearly-complete binary tree?

Because then we can store the tree in an array, and each node knows which index has the its parent or left/right child.

Left(i) = 2i
Right(i) = 2i + 1
Parent(i) = floor(i/2)

Assume index starts from 1
Why is it important to be a nearly-complete binary tree?

Another reason:

The height of a complete binary tree with \(n \) nodes is \(\Theta(\log n) \).

This is essentially why those operations would have \(\Theta(\log n) \) worst-case running time.
A thing to remember...

A heap is stored in an array.
Binary Max-Heap

A binary max-heap is a nearly-complete binary tree that has the max-heap property.
The **max-heap property**

Every node has key (priority) greater than or equal to keys of its **immediate** children.
The max-heap property

Every node has key (priority) greater than or equal to keys of its immediate children.

Implication: every node is larger than or equal to all its descendants, i.e., every subtree of a heap is also a heap.
We have a binary max-heap defined, now let’s do operations on it.

→ Max(Q)
→ Insert(Q, x)
→ ExtractMax(Q)
→ IncreasePriority(Q, x, k)
Max(Q)

Return the largest key in Q, in O(1) time
Max(Q): return the maximum element

Return the **root** of the heap, i.e.,

just **return Q[1]**

(index starts from 1)

worst case $\Theta(1)$
Insert(Q, x)

Insert node x into heap Q, in O(logn) time
Insert(Q, x): insert a node to a heap

First thing to note:

Which spot to add the new node?

The only spot that keeps it a **complete** binary tree.

Increment heap size
Insert(Q, x): insert a node to a heap

Second thing to note: **Heap property** might be broken, how to fix it and **maintain** the heap property?

“**Bubble-up**” the new node to a proper position, by **swapping** with parent.
Insert(Q, x): insert a node to a heap

Second thing to note: **Heap property** might be broken, how to fix it and maintain the heap property.

“**Bubble-up**” the new node to a proper position, by **swapping** with parent.
Insert(Q, x): insert a node to a heap

Second thing to note: **Heap property** might be broken, how to fix it and **maintain** the heap property.

“**Bubble-up**” the new node to a proper position, by **swapping** with parent.

Worst-case: $\Theta(\text{height}) = \Theta(\log n)$
ExtractMax(Q)

Delete and return the largest key in Q, in $O(\log n)$ time.
ExtractMax(Q): delete and return the maximum element

First thing to note:
Which spot to remove?
The only spot that keeps it a complete binary tree.
ExtractMax(Q): delete and return the maximum element

First thing to note:
Which spot to remove?
The only spot that keeps it a complete binary tree.

But the last guy’s key should NOT be deleted.

Overwrite root with the last guy’s key, then delete the last guy (decrement heap size).
ExtractMax(Q): delete and return the maximum element

Now the **heap property** is broken again..., need to fix it.

"Bubble-down" by swapping with...

a child...
Which child to swap with?
so that, after the swap, max-heap property is satisfied

The “elder” child!
because it is the largest among the three
ExtractMax(Q): delete and return the maximum element

Now the heap property is broken again..., need to fix it.

“Bubble-down” by swapping with the elder child
ExtractMax(Q): delete and return the maximum element

Now the **heap property** is broken again..., need to fix it.

“**Bubble-down**” by swapping with...

the elder child
ExtractMax(Q): delete and return the maximum element

Now the **heap property** is broken again..., need to fix it.

“**Bubble-down**” by swapping with the elder child

Worst case running time: $\Theta(\text{height}) + \text{some constant work}$

$\Theta(\log n)$
Quick summary

Insert(Q, x):
➔ Bubble-up, swapping with parent

ExtractMax(Q)
➔ Bubble-down, swapping elder child

Bubble up/down is also called percolate up/down, or sift up down, or tickle up/down, or heapify up/down, or cascade up/down.
CSC263 Week 2

Thursday
Announcements

Problem Set 2 is out
➔ due next Tuesday 5:59pm

Additional office hours on Mondays
➔ 4 - 5:30pm (or by appointment)
A quick review of Monday

Max-Priority Queue implementations

- unsorted and sorted linked list -- $O(1), O(n)$
- binary max-heap -- $O(1), O(\log n)$
 - Max(Q)
 - Insert(Q, x)
 - bubble up - swapping with parent
 - ExtractMax(Q)
 - bubble down - swapping with elder child
 - IncreasePriority(Q, x, k)
IncreasePriority(Q, x, k)

Increases the key of node x to k, in O(logn) time
IncreasePriority(Q, x, k): increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.
IncreasePriority(Q, x, k):
increase the key of node x to k

Just increase the key, then...

Bubble-up by swapping with parents, to proper location.

Worst case running time: $\Theta(\text{height}) + \text{some constant work}$

$\Theta(\log n)$
Now we have learned how to implement a priority queue using a heap:

- Max(Q)
- Insert(Q, x)
- ExtractMax(Q)
- IncreasePriority(Q, x, k)

Next:

- How to use heap for **sorting**
- How to **build a heap** from an unsorted array
HeapSort

Sorts an array, in $O(n \log n)$ time
The idea

How to get a sorted list out of a heap with n nodes?

Keep extracting max for n times, the keys extracted will be sorted in non-ascending order.

Worst-case running time: each ExtractMax is $O(\log n)$, we do it n times, so overall it’s... $O(n \log n)$
Now let’s be more precise

What’s needed: modify a max-heap-ordered array into a non-descendingly sorted array

We want to do this “in-place” without using any extra array space, i.e., just by swapping things around.
This node is like deleted from the tree, not touched any more.

Step 1: swap first (65) and last (24), since the tail is where 65 (max) belongs to.

Step 2: decrement heap size

This node is like deleted from the tree, not touched any more.

Step 3: fix the heap by bubbling down 24

Repeat Step 1-3 until the array is fully sorted (at most \(n \) iterations).
HeapSort, the pseudo-code

HeapSort(A)

"sort any array A into non-descending order"

BuildMaxHeap(A) # convert any array A into a heap-ordered one

for i ← A.size downto 2:
 swap A[1] and A[i] # Step 1: swap the first and the last
 A.size ← A.size - 1 # Step 2: decrement size of heap
 BubbleDown(A, 1) # Step 3: bubble down the 1st element in A

Does it work?

It works for an array A that is initially heap-ordered, it does work NOT for any array!
BuildMaxHeap(A)

Converts an array into a max-heap ordered array, in O(n) time
Convert any array into a heap ordered one

<table>
<thead>
<tr>
<th>any array</th>
<th>heap ordered array</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 33 25 65 24 40</td>
<td>65 40 25 33 18 24</td>
</tr>
</tbody>
</table>

In other words...
Idea #1

BuildMaxHeap(A):

\[
B \leftarrow \text{empty array} \quad \# \text{empty heap} \\
\text{for } x \text{ in } A: \\
\quad \text{Insert}(B, x) \quad \# \text{heap insert} \\
A \leftarrow B \quad \# \text{overwrite } A \text{ with } B
\]

Running time:
Each Insert takes \(O(\log n)\), there are \(n\) inserts...
so it’s \(O(n \log n)\), not very exciting.
Not in-place, needs a second array.
WHAT IF I TOLD YOU
YOU CAN DO BETTER THAN THIS
Idea #2

Fix heap order, from bottom up.
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by bubble-down the root
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by *bubble-down* the root.
Idea #2

Adjust heap order, from bottom up.
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by bubble-down the root
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by bubble-down the root

already a fixed heap, not to worry about!
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by bubble-down the root
Idea #2

Adjust heap order, from bottom up.

NOT a heap only because root is out of order, so fix it by **bubble-down** the root
Idea #2

Adjust heap order, from bottom up.

We did nothing but bubbling-down

Heap Built!
Idea #2: The starting index

We started here, where the index is $\text{floor}(n/2)$
Idea #2: The starting index

Even the bottom level is not fully filled, we still start from \(\text{floor}(n/2) \).

We *always* start from \(\text{floor}(n/2) \), and go down to 1.
Idea #2: Pseudo-code!

BuildMaxHeap(A):

 for i ← floor(n/2) downto 1:
 BubbleDown(A, i)

Advantages of Idea #2:

- It’s in-place, no need for extra array (we did nothing but bubble-down, which is basically swappings).
- It’s worst-case running time is $O(n)$, instead of $O(n \log n)$ of Idea #1.

Why?
Analysis:
Worst-case running time of **BuildMaxHeap(A)**
Intuition

A complete binary tree with n nodes...

How many levels?
~ $\log n$

- $\sim n/4$ nodes
- $\sim n/8$ nodes, and # of swaps per bubble-down: ≤ 2
- $\sim n/16$ nodes, and # of swaps per bubble-down: ≤ 3
- $\sim n/2$ nodes, and no work done at this level.

$\sim \log n$
So, total number of swaps

\[
T(n) = 1 \cdot \frac{n}{4} + 2 \cdot \frac{n}{8} + 3 \cdot \frac{n}{16} + \ldots
\]

\[
= \sum_{i=1}^{\log n} i \cdot \frac{n}{2i+1} \leq \sum_{i=1}^{+\infty} i \cdot \frac{n}{2i+1}
\]

\[
= n \sum_{i=1}^{+\infty} \frac{i}{2i+1}
\]

\[
= n
\]

same trick as Week 1’s sum
BUILD MAX HEAP
YOU CAN DO IN LINEAR TIME
Summary

HeapSort(A):

➔ Sort an unsorted array in-place
➔ O(n log n) worst-case running time

BuildMaxHeap(A):

➔ Convert an unsorted array into a heap, in-place
➔ Fix heap property from bottom up, do bubbling down on each sub-root
➔ O(n) worst-case running time
Algorithm visualizer

http://visualgo.net/heap.html
Next week

➔ ADT: Dictionary

➔ Data structure: Binary Search Tree