A Logic for Decidable Reasoning about Services

Yilan Gu
Dept. of Computer Science
University of Toronto

Mikhail Soutchanski
Dept. of Computer Science
Ryerson University

July 16, 2006
Outline

- Motivations
- Preliminaries
- Specification of the modified situation calculus for services
- Decidable reasoning about actions in this logic
- Discussions and future work
Shopping Online

Clients (buyers)

Requests (E.g., buy/return books)

Web Servers (E.g., Amazon)

Arrangement

Inventory

Shipping
Motivations

- Usually suppliers (Web servers) could not get complete information (OWA)
- Need composition of atomic services to achieve the clients’ requests
- Integrating Semantic webs with Web services
- Representing the dynamics
 - What needs to be represented?
 - atomic services (i.e., actions), dynamic environment (such as what books are available currently), the effect of service action
 - Expectations:
 - Represent actions for large/infinite domains (such as people, weight, time)
 - Be able to represent knowledge such as “there exist some ...”
- For composite services and the environment,
 - What do we care about? (reasoning)
 - Whether the composite services are possible to be executed successfully?
 - Whether certain properties/goals can be satisfied after the execution?
 - Expectations: efficient reasoning (here, decidability)
The Situation Calculus

• A first-order logic language
 – Represent actions and effects in a natural way
 – Very compact

• Three sorts:
 – Actions: \textit{buyBook}(x,y), \textit{returnBook}(x,y), …
 – Situations: \(S_0 \), \(do(a,s) \), \(do([a_1,\ldots,a_n],s) \)
 – Objects: things other than actions and situations.
 E.g., places, names, numbers, etc.

• Fluents: system features whose truth values may vary.
 E.g., \textit{instore}(x,s), \textit{boughtBook}(x,y,s), \textit{bought}(x,y,s)…
Basic action theory \mathcal{D}

- A set of first-order axioms to model actions and effects
- Precondition axioms for actions \mathcal{D}_{ap}:
 \[
 \text{Poss}(\text{buyBook}(x,y),s) \equiv \text{client}(x) \land \text{book}(y) \land \text{instore}(y,s)
 \]
- Successor state axioms \mathcal{D}_{ss}:
 \[
 \text{bought}(x,y,\text{do}(a,s)) \equiv a = \text{buybook}(x,y) \lor a = \text{buyCD}(x,y)
 \]
 \[
 \text{bought}(x,y,s) \land \neg (a = \text{returnbook}(x,y) \lor a = \text{returnCD}(x,y))
 \]
- Axioms for initial database \mathcal{D}_{S0}:
 - Knowledge known to be true in the situation S_0
 - Non-changeable facts
 - Open world assumption
Reasoning about Actions

• E.g., \((\exists x)(\forall y)(\forall y') boughtBook(x,y,S) \land boughtBook(x,y',S) \supset y=y' \)

• Key reasoning mechanism -- regression operator \(R \)
 – Successor state axioms support regression in a natural way
 If \(F(x_1,\ldots,x_n,do(a,s)) \equiv \Psi_F(x_1,\ldots,x_n,a,s) \), then
 \[
 R[F(t_1,\ldots,t_n,do(a',S))] = R[\Psi_F'(t_1,\ldots,t_n,a',S)].
 \]

• Important properties for regression
 – \(D \models W \equiv R[W] \)
 – \(D \models W \text{ iff } D_{S_0} \cup D_{una} \models R[W] \)

\[
\begin{array}{c}
\text{\(W_0(S_0) \)} \\
\xrightarrow{R} \\
\xrightarrow{R} \\
\xrightarrow{R}
\end{array}
\]
Disadvantages of the Situation Calculus

Advantage: representing actions and effects very compactly.

Disadvantage: reasoning for actions in general is undecidable under the open world assumption (OWA).

1. Can we get rid of the disadvantage?
2. Can we specify the Semantic Web features in a natural way?

Solution: Consider a fragment of first-order logic C^2.
Description Logics v.s. C^2

- **Description logics**
 - Base of OWL
 - Different varieties
 - $\mathcal{ALCQIO}(\sqcap, \sqcup, \neg, |, id)$

- **C^2** – a fragment of FOL
 - At most two variables x, y
 - No function symbols
 - Add counting quantifiers $\exists \geq n, \exists \leq n$

$\mathcal{ALCQIO}(\sqcap, \sqcup, \neg, |, id)$ v.s. C^2

- Concept names \Leftrightarrow unary predicates

 \[\text{instore} --- \text{instore}(x) \]

- Role names \Leftrightarrow binary predicates

 \[\text{boughtBook} --- \text{boughtBook}(x,y) \]

- E.g., $\exists \geq n R.C \Leftrightarrow \exists \geq n y.R(x,y) \land C(y)$, $\forall R.C \Leftrightarrow \forall y.R(x,y) \supset C(y)$

 \[\neg C \Leftrightarrow \neg C(x), \neg Cl \sqcap C2 \Leftrightarrow C1(x) \land C2 (x) \]
Decidability of DLs and C^2

- [Borgida 1996] $\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id)$ plus cross-product $\Leftrightarrow C^2$.
- We showed that: $C1 \times C2 = (R \sqcup \neg R)_{C2} \sqcap ((R \sqcup \neg R)_{C1})^{-}$.
- [Grädel et al., Pacholski et al. 1997] C^2 is decidable even under OWA.

\[\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id) \Leftrightarrow C^2, \text{ the translation algorithm is linear to the size of the given formula.} \]

\[\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id) \text{ is decidable even under OWA.} \]

- Other advantages
 - The features in Semantic Webs can be easily represented in C^2.
 - The reasoning in C^2 can also be easily translated into DLs.
 - May use current existing efficient DL reasoners for C^2 formulas.
The Decidable Situation Calculus \mathcal{L}_{SC}^{DL}

- **Sorts:**
 - Terms of *objects* are either variable x, variable y, or constants
 - Action functions have at most two arguments
 - Variable symbol a of sort *action* and symbol s of sort *situation* are the only additional variable symbols

- **Fluents with either two or three arguments:**
 - (Dynamic) concepts $\text{instore}(x,s)$, …
 - (Dynamic) roles $\text{boughtBook}(x,y,s)$, $\text{boughtCD}(x,y,s)$, $\text{bought}(x,y,s)$, …

- **Facts with either one or two arguments:**
 - (Static) concepts $\text{person}(x)$, $\text{client}(x)$, $\text{book}(x)$, $\text{cd}(x)$, …
 - (Static) roles $\text{hasCreditcard}(x,y)$, …

- **Logic:** add counting quantifiers $\exists \geq n$, $\exists \leq n$
The Basic Action Theory of \mathcal{L}_{SC}^{DL}

- **Precondition axioms:**
 - The RHS is C^2 if the situation argument s is suppressed

- **Success state axioms:**
 - Allow counting quantifiers
 - Variables a and s are free in the RHS of the axioms
 - Moreover, x, y, a and s are the only variables (both free and quantified)

- **Axioms for initial databases:** (with OWA)
 - Each axiom is C^2 if S_0 is suppressed

Purpose: to ensure the regression result is C^2 regardless S_0.
Extensions of the Basic Action Theory

• Allowing specify certain features similar to DLs

• Acyclic TBox axioms:
 – Dynamic ones: \(C(x,s) \equiv \Phi_C(x,s) \) (\(C \) — defined dynamic concept)
 – Static ones: \(C(x) \equiv \Phi_C(x) \) (provided in the \(D_{S0} \))
 – The RHS is \(C^2 \) when the situation argument \(s \) is suppressed
 E.g., \(valCust(x,s) \equiv person(x) \land (\exists y^\geq 3)\ bought(x,y,s) \)
 \(client(x) \equiv person(x) \land (\exists y)\ hasCreditcard(x,y) \)
 – Reasoning: use lazy unfolding for Dynamic ones

• RBox axioms:
 – For taxonomic reasoning purpose
 – \(R1 \supset R2 \) for role \(R1, R2 \)
 E.g., \(boughtBook(x,y,s) \supset bought(x,y,s), boughtCD(x,y,s) \supset bought(x,y,s) \)
 – Correctly compiled in \(D_{SS} \). I.e., \(D \models (\forall x,y,s).R1(x,y)[s] \supset R2(x,y)[s] \)
Reasoning: Regression + Lazy Unfolding

• Expectations
 – Resulting formula should be C^2 if S_o is suppressed
 – Be able to handle dynamic TBox axioms

• Reiter’s regression operator is not suitable: introduce new variables

• Formula W that is regressable in L^{DC}_{SC}
 – The situation term in W are ground
 – Variables in W can only include x, y

• Modified regression operator R
 – When W is not atomic, the operator is still defined recursively
 – Add $R[\exists^n v.W] = \exists^n v. R[W]$
 – Reuse variables x and y when W is atomic (examples on the next slide)
 – When W is a defined dynamic concept, use TBox axioms (lazy unfolding)
A Regression Example in $\mathcal{L}_{\text{SC}}^{\text{DL}}$

\[A1 = buyCD(\text{Tom, BackStreetBoys}),\]
\[A2 = buyBook(\text{Tom, HarryPotter}),\]
\[A3 = buyBook(\text{Tom, TheFirm})\]

\[\mathcal{R}[(\exists x).\text{valCust}(x, do([A1,A2,A3],S_0))]\]
\[= \mathcal{R}[(\exists x).\text{person}(x) \land (\exists \geq 3 y) \text{bought}(x, y, do([A1,A2,A3], S_0))] \text{ (lazy unfolding)}\]
\[= (\exists x).\text{person}(x) \land (\exists \geq 3 y) \mathcal{R}[\text{bought}(x, y, do([A1,A2,A3], S_0))]\]
\[= \ldots \text{ (recursively do regression using the successor state axioms)}\]
\[= (\exists x).\text{person}(x) \land (\exists \geq 3 y) [(x=\text{Tom} \land y = \text{TheFirm}) \lor\]
\[\ldots (x=\text{Tom} \land y = \text{HarryPotter}) \lor\]
\[bought(x,y,S_0) \]
Important Properties

Suppose W is a regressable formula of \mathcal{L}_{SC}^{DL} with the basic action theory \mathcal{D}

- The regression $R[W]$ terminates in a finite number of steps.
- $R[W]$ is a C^2 formula if S_0 is suppressed
- $\mathcal{D} \models W \equiv R[W]$
- $\mathcal{D} \models W$ iff $\mathcal{D}_S \cup \mathcal{D}_{una} \models R[W]$
- The problem whether is $\mathcal{D} \models W$ decidable
 - $\mathcal{D}_{S0} \cup \mathcal{D}_{una} \models R[W]$ is a decidable reasoning in C^2 when S_0 is suppressed everywhere
- The executability problems and projection problems are decidable in \mathcal{L}_{SC}^{DL}
Discussions and Future Work

• Conclusions
 – Formalize a decidable language suitable for Web services
 – Have compact powerful expression power

• Other related researches
 – [McIlraith and Son 2002] assumes that sufficient information is available
 – [Berardi et al. 2003] uses propositional dynamic logic to model services
 e-services \rightarrow constants, fluents \rightarrow F(s) (propositional fragment of the
 situation calculus)
 to capture the change of the world over time instead of caused by actions
 – [Baader et al. 2005] defines a service using a triple of sets of DL formulas

• Possible future work
 – Implementations
 – Consider the knowledge base progression/update problem in \mathcal{L}_{SC}^{DL}
 – Etc.