Modular Basic Action Theories

Yilan Gu
Dept. of Computer Science
University of Toronto
Toronto, ON, Canada

Mikhail Soutchanski
Dept. of Computer Science
Ryerson University
Toronto, ON, Canada
Outline

- Motivation
- Action Hierarchy
- Modular Basic Action Theories (BATs)
- The Correctness
Motivation
Action Hierarchy

- Acyclic
- Antisymmetric
- Multiple inheritance

A1

specialization(A2, A1)

isA(A5, A1)
A Cooking Example

- prepareMeal
 - reheat
 - microwave
 - lowOilCook
 - stew
 - steam
 - ovenCook
 - boil
 - oilyCook
 - pressureCook
 - fry
 - stir
 - deepFry
 - reheat
 - microwave
 - lowOilCook
 - oilyCook
 - pressureCook
 - deepFry
Examples of Action Hierarchy Axioms

- **Examples of direct specializations:**
 - specialization(reheat(x), prepareMeal(x)).
 - specialization(cook(x), prepareMeal(x)).
 - specialization(microwave(x), reheat(x)).
 - specialization(lowOilCook(x), reheat(x)).
 - specialization(oilyCook(x), reheat(x)).
 - specialization(lowOilCook(x), cook(x)).
 - specialization(oilyCook(x), cook(x)).
 - specialization(stew(x), lowOilCook(x)).
 - specialization(deepFry(x), fry(x)).

- **Examples of isA:**
 - isA(cook(x), cook(x)).
 - isA(deepFry(x), fry(x)).
 - isA(deepFry(x), prepareMeal(x)).
Modular BAT Representation

Precondition Axioms:

\[\text{Poss}(a,s) \equiv \exists x (\text{isA}(a, \text{reheat}(x)) \land \text{food}(x) \land \text{cooked}(x,s)) \lor \]
\[\exists x (\text{isA}(a, \text{cook}(x)) \land \text{food}(x) \land \lnot \text{cooked}(x,s)) \lor \]
\[\exists x (a = \text{prepareMeal}(x) \land \text{food}(x)). \]

Successor State axioms:

\[\text{cooked}(x,\text{do}(a,s)) \equiv \text{isA}(a, \text{cook}(x)) \lor \]
\[\text{cooked}(x,s). \]

\[\text{mealReady}(x,\text{do}(a,s)) \equiv \text{isA}(a, \text{prepareMeal}(x)) \lor \]
\[\text{mealReady}(x,s). \]
Comparison: Reiter’s BAT Representation

Precondition Axioms:
Poss(deepFry(x),s) ≡ food(x). Poss(fry(x),s) ≡ food(x). … …
Poss(prepareMeal(x),s) ≡ food(x). Poss(reheat(x),s) ≡ food(x) ∧ cooked(x).
Poss(reheat(x),s) ≡ food(x) ∧ ¬ cooked(x).

Successor State axioms:
cooked(x,do(a,s)) ≡ a = cook(x) ∨ a = lowOilCook(x) ∨ a = oilyOilCook(x) ∨
a = steam(x) ∨ a = boil(x) ∨ a = stew(x) ∨ a = broil(x) ∨ a = bake(x) ∨
a = ovenCook(x) ∨ a = roast(x) ∨ a = pressureCook(x) ∨ a = fry(x) ∨
a = deepFry(x) ∨ a = stir(x) ∨ cooked(x,s).

mealReady(x,do(a,s)) ≡ a = prepareMeal(x) ∨ a = reheat(x) ∨ a = cook(x) ∨
a = microwave(x) ∨ a = lowOilCook(x) ∨ a = oilyOilCook(x) ∨
a = steam(x) ∨ a = boil(x) ∨ a = stew(x) ∨ a = broil(x) ∨ a = bake(x) ∨
a = ovenCook(x) ∨ a = roast(x) ∨ a = pressureCook(x) ∨ a = fry(x) ∨
a = deepFry(x) ∨ a = stir(x) ∨ mealReady(x,s).
Correctness of the New BATs

A modular BAT $D^H = D_0 \cup D^H_{ap} \cup D^H_{ss} \cup D_{una} \cup \Sigma \cup H$

1. D_0 – the (usual) initial theory
2. D^H_{ap} – the modular precondition axioms
3. D^H_{ss} – the modular successor state axioms
4. D_{una} – the (usual) unique name axioms for actions
5. Σ – the (usual) foundational axioms
6. H – the specialization axioms and the definition of isA

Theorem: For any modular BAT D^H there exists an equivalent D of Reiter’s BAT format, where equivalence means that for any FO regressable sentence W, $D^H \models W$ iff $D \models W$.

Although the formal definition of isA is second-order, the reasoning in D^H can be reduced to a FOL reasoning only.

A regression theorem similar to Reiter’s regression theorem is proved.
The End

Thank you!