Decidable Reasoning in a Modified Situation Calculus

Yilan Gu
Dept. of Computer Science
University of Toronto

Mikhail Soutchanski
Dept. of Computer Science
Ryerson University

January 12nd, 2007
Shopping Online

Requests (E.g., buy/return books)

Web Servers (E.g., Amazon)

Arrangement

Shipping

Inventory

Clients (buyers)
Motivations

• Usually suppliers (Web servers) could not get complete information (OWA)
• Need composition of atomic services to achieve the clients’ requests
• Integrating Semantic Web with Web services
• Representing the dynamics
 – What needs to be represented?
 • Atomic services (i.e., actions), dynamic environment, effects of actions
 – Requirements:
 • Represent actions with arguments varying over large/infinite domains (E.g., people, weight, time)
 • Be able to represent knowledge such as “there exist some …”
• What do we care about?
 – Reasoning: Executability Problem, Projection Problem and Progression Problem
 – Expectations: efficient reasoning (here, decidability), soundness
The Situation Calculus (SC)

- A first-order logic language
- Three sorts:
 - Actions: \textit{buyBook}(x,y), \textit{returnBook}(x,y), \ldots
 - Situations: \textit{S}_0, \textit{do}(a,s), \textit{do}([a_1,\ldots,a_n],s)
 - Objects: things other than actions and situations
- Fluents: system features whose truth values may vary
 \textit{instore}(x,s), \textit{boughtBook}(x,y,s), \textit{bought}(x,y,s)\ldots
- Basic action theory (BAT) \(\mathcal{D} \)
 - Precondition axioms for actions \(\mathcal{D}_{ap} \):
 \[
 \text{Poss}(\text{buyBook}(x,y),s) \equiv \text{client}(x) \land \text{book}(y) \land \text{instore}(y,s)
 \]
 - Successor state axioms \(\mathcal{D}_{ss} \):
 \[
 \text{bought}(x,y,\text{do}(a,s)) \equiv a = \text{buyBook}(x,y) \lor a = \text{buyCD}(x,y) \\
 \text{bought}(x,y,s) \land \neg (a = \text{returnBook}(x,y) \lor a = \text{returnCD}(x,y))
 \]
 - Axioms for initial database \(\mathcal{D}_{S_0} \):
 - Knowledge known to be true in the situation \(S_0 \)
 - Non-changeable facts
 - Open World Assumption: the initial theory about \(S_0 \) is logically incomplete
Reasoning about Actions in SC

• Projection problem: given FO sentence W, decide whether $\mathcal{D} \models W$
• Executability problem: given a sequence of actions $A_1; \ldots; A_n$, decide whether $\mathcal{D} \models Poss(A_1,S_0) \land Poss(A_2,do(A_1,S_0)) \land \ldots \land Poss(A_n, do([A_1, \ldots, A_{n-1}], S_0))$
• Key reasoning mechanism -- regression operator \mathcal{R}.
• Successor state axioms support regression in a natural way:
 If $F(x_1, \ldots, x_n, do(a,s)) \equiv \Psi_F(x_1, \ldots, x_n, a, s)$, then
 $\mathcal{R} [F(t_1, \ldots, t_n, do(A,S))] = \mathcal{R} [\Psi_F(t_1, \ldots, t_n, A,S)]$.

\begin{align*}
W_0(S_0) & \xrightarrow{\mathcal{R}} \ldots \xrightarrow{\mathcal{R}} W'(do[a_1, \ldots, a_{n-1}], S_0) & \xleftarrow{\mathcal{R}} W(do[a_1, \ldots, a_n], S_0)
\end{align*}

• Important properties for regression:
 $\mathcal{D} \models W \equiv \mathcal{R}[W]$, $\mathcal{D} \models W$ iff $\mathcal{D}_{S_0} \cup \mathcal{D}_{una} \models \mathcal{R}[W]$.

Advantage: representing actions and effects very compactly.

Disadvantage: reasoning for actions in general is undecidable under the open world assumption (OWA).

Solution: Consider a fragment of first-order logic C^2.
Description Logics vs. C²

- **Description logics**
 - Foundation of OWL
 - Different varieties
 - \(\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id) \)

- **C²**: a fragment of FOL
 - At most two variables \(x, y \)
 - No function symbols
 - Add counting quantifiers \(\exists^{\ge n}, \exists^{\le n} \)

- \(\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id) \) vs. C²
 - Concept names \(\iff \) unary predicates
 - \(\text{instore} \iff \text{instore}(x) \)
 - Role names \(\iff \) binary predicates
 - \(\text{boughtBook} \iff \text{boughtBook}(x, y) \)
 - E.g., \(\exists^{\ge n} R.C \iff \exists^{\ge n} y.R(x, y) \land C(y) \), \(\forall R.C \iff \forall y.R(x, y) \supset C(y) \)
 - \(\neg C \iff \neg C(x) \), \(C1 \sqcap C2 \iff C1(x) \land C2(x) \)

- **Advantages**
 - The features in Semantic Webs can be easily represented in C².
 - The reasoning in C² can also be easily translated into DLs.
 - May use current existing efficient DL reasoners for C² formulas.

\(\text{ALCQIO}(\sqcap, \sqcup, \neg, |, id) \iff C² \), the translation algorithm is linear in the size of the given formula, both are decidable even under OWA.
The Decidable Situation Calculus $\mathcal{L}^{DL}_{\text{SC}}$

Purpose: to ensure the formula resulting from regression is a C^2 formula.

- Sorts:
 - Terms of objects are either variable x, variable y, or constants
 - Action functions have at most two arguments
 - Variable symbol a of sort $action$ and symbol s of sort $situation$ are the only additional variable symbols

- Fluents with either two or three arguments:
 - (Dynamic) concepts $instore(x,s)$,
 - (Dynamic) roles $boughtBook(x,y,s)$, $bought(x,y,s)$,

- Facts with either one or two arguments:
 - (Static) concepts $person(x)$, $client(x)$, $book(x)$, $cd(x)$,
 - (Static) roles $hasCreditCard(x,y)$,

- Logic: add counting quantifiers $\exists^{\geq n}$, $\exists^{\leq n}$
Basic Action Theory of \mathcal{L}_{SC}^{DL}

- **Precondition axioms**: The RHS is a C^2 formula if s is suppressed
- **Success state axioms**:
 - Allow counting quantifiers
 - Variables a and s are free in the RHS of the axioms
 - Moreover, x,y,a and s are the only variables (both free and quantified)
- **Axioms for initial databases**: Each axiom is a C^2 formula if S_0 is suppressed
- **Acyclic TBox axioms**:
 - Dynamic ones: $C(x,s) \equiv \Phi_c(x,s)$ (C defined dynamic concept)
 - Static ones: $C(x) \equiv \Phi_c(x)$ (provided in the D_{S0})
 - The RHS is C^2 when the situation argument s is suppressed
 E.g., $\text{valCust}(x,s) \equiv \text{person}(x) \land (\exists y^3) \text{bought}(x,y,s)$
 $\text{client}(x) \equiv \text{person}(x) \land (\exists y) \text{hasCreditCard}(x,y)$
 - Reasoning: use lazy unfolding for Dynamic axioms
- **RBox axioms**:
 - $R1 \supset R2$ for roles $R1$, $R2$
 E.g., $\text{boughtBook}(x,y,s) \supset \text{bought}(x,y,s)$, $\text{boughtCD}(x,y,s) \supset \text{bought}(x,y,s)$
 - Correctly compiled in D_{SS}, i.e., $D \models (\forall x,y,s).R1(x,y)[s] \supset R2(x,y)[s]$
Reasoning: Regression + Lazy Unfolding

- Expectations
 - Resulting formula should be C^2 if S_0 is suppressed
 - Be able to handle dynamic TBox axioms

- Reiter’s regression operator is not suitable:
 - It introduces new variables to deal with quantifiers

- Formula W that is regresssable in \mathcal{L}_{SC}^{DC}
 - The situation terms in W are ground
 - Variables in W can only include x, y

- Modified regression operator \mathcal{R}
 - When W is not atomic, the operator is still defined recursively
 - E.g., $\mathcal{R}[W_1 \land W_2] = \mathcal{R}[W_1] \land \mathcal{R}[W_2]$, …
 - Add $\mathcal{R}[\exists^n v. W] = \exists^n v. \mathcal{R}[W]$
 - Reuse variables x and y when W is atomic
 - Lazy unfolding: use TBox axioms when W is a defined dynamic concept
 - Apply Unique name axioms axioms for actions
A Regression Example in \mathcal{L}_{SC}^{DL}

- Example: online shopping

\[A1 = buyCD(Tom, BackStreetBoys) \]
\[A2 = buyBook(Tom, HarryPotter) \]
\[A3 = buyBook(Tom, TheFirm) \]

\[\mathcal{R}[\exists x. valCust(x, do([A1,A2,A3],S_0))] \]
\[= \mathcal{R}[\exists x. person(x) \land (\exists y \geq 3) bought(x, y, do([A1,A2,A3], S_0))] \]

(lazy unfolding)
\[= (\exists x). person(x) \land (\exists y \geq 3) \mathcal{R}[bought(x, y, do([A1,A2,A3], S_0))] \]
\[= \ldots \text{ (recursively do regression using the successor state axioms)} \]
\[= (\exists x). person(x) \land (\exists y \geq 3) [(x=Tom \land y = TheFirm) \lor \]
\[
\[
\[bought(x,y,S_0)] \]
Important Properties

- Suppose W is a regressable formula of \mathcal{L}_{SC}^{DL} with BAT \mathcal{D}
 - The regression $\mathcal{R}[W]$ terminates in a finite number of steps
 - $\mathcal{R}[W]$ is a C^2 formula if S_0 is suppressed
 - $\mathcal{D} \models W \equiv \mathcal{R}[W]$
 - $\mathcal{D} \models W$ iff $\mathcal{D}_{S_0} \models \mathcal{R}[W]$
- The problem whether is $\mathcal{D} \models W$ is **decidable**
 - $\mathcal{D}_{S_0} \models \mathcal{R}[W]$ is a decidable reasoning in C^2
- When the SSA for F is context-free, the computational complexity of answering the queries of ground term $F(X,S)$ is co-NEXPTIME
- Executability problems and projection problems are **decidable** in \mathcal{L}_{SC}^{DL}
 - Whether a composite service is executable
 - Whether desired/undesired properties will be true/false after the execution
Classical Progression

• Regression is not practical when executing a very large sequence of actions
• Progression: to compute the new theory given the current theory
• [Reiter 2001] A set of sentences D_a is the classical progression of the initial KB D_0 (wrt BAT D) after performing a ground action a in the situation S_0 iff
 – D_a is uniform in $do(a, S_0)$;
 – $D \models D_a$;
 – for every model M_a of $(D \setminus D_0) \cup D_a$, there is a model M of D such that M_a and M have the same domain and interpret situation independent predicates, function symbols, Poss and all fluents about the future of $do(a, S_0)$ identically.
• The classical progression of a finite first-order knowledge base (KB) is not always FOL definable
A modified progression in \mathcal{L}_{sc}^{DL}

- The (classical) progression of a KB in \mathcal{L}_{sc}^{DL} is not always FOL definable, hence is not definable in \mathcal{L}_{sc}^{DL}
- The definability of a finite KB in \mathcal{L}_{sc}^{DL} remains open
- Consider a (weaker than classical) modified progression in \mathcal{L}_{sc}^{DL} for a CNF-based KB for a local-effect BAT
- A CNF-based KB
 - More general than proper KBs defined in [Liu & Levesque 2005]
 - Includes two parts:
 1. Situation independent facts
 2. Conjunctions of disjunctions of equality-based formulas
 - An example
 \[
 \left(\forall x (x = B_1 \supset \neg \text{ontable}(x)) \lor \forall y (y \neq B_2 \supset \text{ontable}(y)) \right) \land \\
 \forall z (z \neq B_3 \land z \neq B_4 \supset \text{hold}(z))
 \]
- A local-effect BAT: every SSA axiom is local-effect, i.e.,
 \[
 F(x, \text{do}(A, s)) \equiv x = B_1 \land p_1(s) \lor \ldots \lor x = B_m \land p_m(s) \lor \\
 F(x, s) \land \neg (x = C_1 \land q_1(s) \lor \ldots \lor x = C_n \land q_n(s))
 \]
 where s is the only variable (both free and quantified) in any p_i and q_j.

A Progression Algorithm & Properties

• provided an algorithm to obtaining a modified progression of a CNF-based KB after executing a ground action wrt a local-effect BAT

• The intuition of the algorithm
 – Keep all situation independent information
 – Add truth values for each fluent for those objects where it will definitely become true (or false)
 – Update the remaining consistent information by removing conflicting knowledge for objects from the current KB

• Properties
 – If the given BAT is consistent, so is the modified progression
 – The modified progression is (classically) sound, i.e., any model of the classical progression of the current KB wrt the given BAT is a model of the modified progression

• Open problem
 – Under what cases, the modified progression will be (classically) complete, i.e., any model of the modified progression of the current KB wrt the given BAT is a model of the classical progression
Discussions and Future Work

- **Conclusions**
 - Formalize a decidable language suitable for Web services
 - Have compact powerful expression power
 - Consider the knowledge base progression/update problem in L_{DL}^{SC}

- **Other related research**
 - Web services
 - [McIlraith & Son 2002] assumes that all sufficient information is available
 - [Berardi et al. 2003] uses propositional dynamic logic to model services
 - e-services \rightarrow constants, fluents \rightarrow F(s) (propositional fragment of SC)
 - [Artale & Franconi 2001] extends DLs with temporal logics to capture the change of the world over time instead of caused by actions
 - [Baader et al. 2005] defines a service using a triple of sets of DL formulas
 - Progression
 - [Liu & Levesque 2005] considers a weaker progression of proper KBs
 - [Vassos & Levesque 2007] considers progression for functional fluents
 - [Claßen & Lakemeyer 2007] proposes a progression of an ADL database

- **Possible future work**
 - Implementations
 - Consider open problems such as
 - FOL definability of a finite KB in the modified SC
 - classical completeness of the modified progression