Prolog: facts

- A fact is a clause with an empty body

Syntax
- `<head>`.

What makes a fact a fact?

Examples
- Exams: `exams.`
- Assignments: `assignments.`
- Taxes: `taxes.`
- The earth is round: `round(earth).`
- The sky is blue: `blue(sky).`
- The sun is hot: `hot(sun).`
- Mary is a female: `female(mary).`
- Beethoven lived between 1770 & 1827: `person(beethoven,1770,1827).`

Prolog: rules

- A rule in Prolog is in a full horn clause format:

 \[c \leftarrow h_1 \wedge h_2 \wedge h_3 \wedge ... \wedge h_n \]

Syntax:

- If I know that all those relations (those in the body) hold, then I also know that this LHS relation (in the head) holds.

Examples:
- If there is smoke there is fire
 \[fire \leftarrow smoke. \]
- If the course is boring, I leave
 \[leave(i) \leftarrow boring(course). \]
- Joe is going to kill the teacher if he fails CSC324.
 \[kills(joe, X) \leftarrow fails(joe,csc324), teaches(X,csc324). \]
Prolog: rules – cont’d

- Examples:
 - X is female if X is the mother of anyone.

 female(X) :- mother(X,_). % avoid singleton variables by using _.

 - X is the sister of Y, if X is female and X’s parents are M and F, and Y’s parents are M and F

 sister_of(X,Y):- female(X),parents(X,M,F),parents(Y,M,F).

 % in general, how we interpret the rule in first-order logic (predicate logic)?

- When to use rules?
 - Use rules to say that a particular fact depends on a group of facts.
 - Use rules to deduce new facts from existing ones.

- Rules of rules:
 - The head of the rule consist of at most one predicate
 - The body of the rule is a finite sequence of literals separated by ‘,’ (which means conjunction and)
 - Rules always end with a period “.”

Prolog: queries – cont’d

- Examples

 - composer(beethoven,1770,1827).
 - is it true that beethoven was a composer

 who lived between 1770 and 1827

 - owns(john,book).
 - is it true that john owns a book?

 (simpler: does john own a book?)

 - owns(john,X).
 - is it true that john owns something?

 (simpler: does john own something?)

Prolog: queries

- A query is a clause with an empty head.

 \[\text{\texttt{\textless{}h_1 \& h_2 \& h_3 \& \ldots \& h_n}} \]

- Syntax

 - `<body>`.

 Try to prove that `<body>` is true

 The goal is represented to the interpreter as a question.

- Examples

 - round(earth).
 - Is it true that the earth is round?

 % (or simpler than that: is the earth round?)

 - round(X).
 - Is it true that there are entities which are round?

 % (or simpler than that: what entities are round?)

Prolog: simple types - constants

- There are two types of constants: atoms and numbers.

- Atoms:
 - Alphanumeric atoms: alphabetic sequence starting with a lower case letter

 - E.g.: apple a1 apple_cart

 - Special atoms

 - E.g. ! ; []

 - Symbolic atoms: sequence of symbolic characters

 - E.g. & < > * - +

 - Quoted atoms: sequence of characters surrounded by single quotes

 - Can make anything an atom by enclosing it in single quotes.

 - E.g ‘apple’ ‘hello world’

- Numbers:

 - Integers and Floating Point numbers

 - E.g. 0 1 9821 -10 1.3 -1.3E102
Prolog: complex types - structures

- Recall: what’s a functional term?

 \[\text{functor}(\text{some-parameters}) \quad \text{e.g.\ office(mary)} \]

- We can construct complex data structures using nested functional terms.

 - Represents a statement about the world

- Example:

 - A person has; name: first name, last name - birth date: day, month, year &
 occupation

\[\text{person(name(michael, jordan), birth_date(17, february, 1963), occupation('NBA player'))} \]

Prolog: complex types - structures

Database:

- owns(john, car(red, corvette))
- owns(john, cat(black, siamese, sylvester))
- owns(elvis, copyright(song,"jailhouse rock"))
- owns(tolstoy, copyright(book,"war and peace"))
- owns(elvis, car(red, cadillac))

Query:

"Retrieve everything that John owns."

i.e., Find \(x\) such that \(\text{owns(john,} x\text{)}\) is true.

\[\text{answers: } x = \text{car(red, corvette)} \]
\[x = \text{cat(black.siamese.sylvester)} \]

Query:

"Retrieve the colour and make of John's car."

i.e., \(\text{owns(john,}\ car(\text{ Colour, Make}))\)

\[\text{answer: Colour = red} \]
\[\text{Make = corvette} \]

Prolog: complex types - structures

Database:

- owns(john, car(red, corvette))
- owns(john, cat(black, siamese, sylvester))
- owns(elvis, copyright(song,"jailhouse rock"))
- owns(tolstoy, copyright(book,"war and peace"))
- owns(elvis, car(red, cadillac))

Query:

"Who owns a red car?"

i.e., Find values for who so that
\[\exists x, y \text{ owns(who, car(red, make))} \] is true.

\[\text{answers: Who = john} \]
\[\text{Who = elvis} \]
Prolog: an example

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>likes(eve, pie). food(pie).</td>
</tr>
<tr>
<td>likes(al, eve). food(apple).</td>
</tr>
<tr>
<td>likes(eve, tom). person(tom).</td>
</tr>
<tr>
<td>likes(eve, eve).</td>
</tr>
</tbody>
</table>

Query:

?-likes(al, pie).
- no

?-likes(al, eve).
- yes

?-likes(eve, al).
- no

?-likes(person, food).
- no

Prolog: example – cont’d

<table>
<thead>
<tr>
<th>Facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>likes(eve, pie). food(pie).</td>
</tr>
<tr>
<td>likes(al, eve). food(apple).</td>
</tr>
<tr>
<td>likes(eve, tom). person(tom).</td>
</tr>
<tr>
<td>likes(eve, eve).</td>
</tr>
</tbody>
</table>

?-likes(A,B).
A=eve,B=pie ; A=al,B=eve ; ...
?-likes(D,D).
D=eve ; no

?-likes(eve,W), person(W).
W=tom

?-likes(al,V), likes(eve,V).
V=eve ; no

Prolog: proof procedure

- Two main processes:
 - Unification
 - Top-down reasoning

Prolog: unification

- First step in proof procedure

- Prolog tries to satisfy a query by **unifying** it with some conclusion and see if it is true!

- Process of finding these suitable "assignments" of values to variables is called **unification**
 - It is really a process of pattern matching to make statements identical
 - Somewhat similar to variable bindings in imperative world and to pattern matching in Scheme.
Prolog: unification – cont’d

- **Rules of unification:**

<table>
<thead>
<tr>
<th>Object 1</th>
<th>Object 2</th>
<th>example</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>free var.</td>
<td>X</td>
<td>X=4</td>
</tr>
<tr>
<td>bound variable</td>
<td>free variable</td>
<td>X, Y</td>
<td>Y gets the value of X</td>
</tr>
<tr>
<td>free variable</td>
<td>bound variable</td>
<td>X, Y</td>
<td>X gets the value of Y</td>
</tr>
<tr>
<td>bound variable</td>
<td>constant</td>
<td>X</td>
<td>“b” fails if X has a value different than “b”</td>
</tr>
<tr>
<td>compound object</td>
<td>compound object</td>
<td>f(X,Y)</td>
<td>X=2, Y=3</td>
</tr>
<tr>
<td>compound object</td>
<td>compound object</td>
<td>f(q(2,X),3)</td>
<td>f(P,3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>succeeds if P is free, and P=q(2,X) . (and more possibilities)</td>
<td></td>
</tr>
</tbody>
</table>

- **Examples:**

a(b, c, d, E) with x(...)	doesn’t unify: a and x differ
a(b, c, d, E)	no: different # of args
a(b, c, d, E)	no: b ≠ j
a(j, f, G, H)	yes: by either { C ← f, G ← d, H ← E }
a(b, f, G, H)	or { C ← f, G ← d, E ← H }
a(pred(X, j))	yes: { X ← k }
a(pred(k, j))	yes: { X ← k }
a(pred(X, j))	yes: { B ← pred(X, j) }

Prolog: unification – cont’d

- **Rules of unification:**

 - A constant unifies only with itself, it cannot unify with any other constant.
 - Two structures unify iff they have the same name, number of arguments and all the arguments unify.
 - Unification requires all instances of the same variable in a rule to get the same value.

- **Examples:**

 - Does p(X,X) unify with p(b,b) ?
 - Does p(X,X) unify with p(b,c) ?
 - Does p(X,b) unify with p(Y,Y) ?
 - Does p(X,Z,Z) unify with p(Y,Y,b) ?
 - Does p(b,b,X) unify with p(Y,Y,c) ?
 - To make the third arguments equal, we must replace X by c
 - To make the second argument equal, we must replace Y by b.
 - So, p(X,b,X) becomes p(c,b,c), and p(Y,Y,c) becomes p(b,b,c).
 - However, p(c,b,c) and p(b,b,c) are not syntactically identical.
Prolog: example 2

- Facts & rules:

 ![Graph Diagram]

 - link(a, b), link(b, c), link(a, d), link(d, c).
 - path(N, N).
 - path(L, M) :- link(L, X), path(X, M).

- Posing queries:

 Based on our logical encoding of the graph, we can then write queries:

 ?- path(a, c)
 yes
 ?- path(c, a)
 no
 ?- path(a, X), path(X, c)
 X = a
 X = b
 X = c
 X = d

 Notice that we didn’t write a graph traversal algorithm, and we didn’t hard code the set of questions we can ask in advance. We just define what a graph is...

Prolog: reasoning

- Given a set of facts and rules, we need a mechanism to deduce new facts and/or prove that a given rule is true or false or has no answer

- There are two techniques to do this:
 - Bottom-up reasoning
 - Top-down reasoning

Prolog: proof procedure - revisited

- Two main processes:
 - Unification
 - Top-down reasoning

 ![Diagram of proof procedure]

Bottom-up Reasoning

- Bottom-up (or forward) reasoning: starting from the given facts, apply rules to infer everything that is true.

 e.g., Suppose the fact \(B \) and the rule \(A \leftarrow B \) are given. Then infer that \(A \) is true.

 Example

 Rule base:

 \[
 p(X, Y, Z) \leftarrow q(X), q(Y), q(Z).
 q(a1).
 q(a2).
 \ldots
 q(aN).
 \]

 Bottom-up inference derives \(n^3 \) facts of the form \(p(a_1, a_2, a_3) \):

 \[
 p(a1, a1, a1)
 p(a1, a1, a2)
 p(a1, a2, a3)
 \ldots
 \]

 So, \(A \) is proved
Prolog: top-down reasoning

- **Top-down** (or backward) reasoning: starting from the query, apply the rules in reverse, attempting only those lines of inference that are relevant to the query.

 E.g., Suppose the query is \(A \), and the rule \(A \leftarrow B \) is given. Then to prove \(A \), try to prove \(B \).

![Rule Base and Top-down Proof Diagram]

So, \(A \) is proved.

Prolog: top-down reasoning – cont’d

- **Multiple rules and multiple premises:**
 - A fact may be inferred by many rules
 E.g. \(E \leftarrow B \)
 \(E \leftarrow C \)
 \(E \leftarrow D \)
 - A rule may have many premises
 E.g. \(E \leftarrow B \land C \land D \)

- In top-down inference, such rules give rise to
 - Inference trees
 - Backtracking

Prolog: top-down reasoning – cont’d

- **Example:** *multiple premises*

 Rule base:

 1. \(A \leftarrow B_1 \land B_2 \)
 2. \(B_1 \leftarrow C_1 \land C_2 \)
 3. \(B_2 \leftarrow C_3 \land C_4 \)

 Goal: \(A \)

 Rule (1):

 \(A \leftarrow B_1 \land B_2 \)

 Rule (2):

 \(B_1 \leftarrow C_1 \land C_2 \)

 Rule (3):

 \(B_2 \leftarrow C_3 \land C_4 \)

 Query: Is \(A \) true?

 Goal C1: \(C_1 \land C_2 \)

 Goal C2: \(C_3 \land C_4 \)

 Goal C3: success

 Goal C4: success

 Goal B1: success

 Goal B2: success

 Success:

 So, goal \(A \) is proved. (all paths must succeed)

Prolog: top-down reasoning – cont’d

- **Example:** *multiple rules*

 Rule base:

 \(A \leftarrow B_1 \)

 \(B_1 \leftarrow C_1 \)

 \(B_1 \leftarrow C_2 \)

 \(B_2 \leftarrow C_3 \)

 \(B_2 \leftarrow C_4 \)

 Goal: \(A \)

 Rule (1):

 \(A \leftarrow B_1 \)

 Rule (2):

 \(B_1 \leftarrow C_1 \)

 Rule (3):

 \(C_3 \leftarrow C_4 \)

 Query: Is \(A \) true?

 Goal C1: fail

 Goal C2: fail

 Goal C3: fail

 Goal C4: success

 Success:

 So, goal \(A \) is proved. (only one path must succeed)
Prolog: backtracking

- Prolog uses this algorithm for proving a goal by recursively breaking goal down into sub-goals and try to prove these sub-goals until facts are reached.

- To satisfy a goal:
 - Try to unify with conclusion of first rule in database
 - If successful, apply substitution to first premise, try to satisfy resulting sub-goals
 - Then apply both substitutions to next sub-goal (premise), and so on...
 - If not successful, go on to the next rule in database
 - If all rules fail, try again (backtrack) to a previous sub-goal

Prolog: backtracking example 1

Rule base:

\[
p(X) : - q(X), r(X).
q(d). q(e). q(f). q(g).
r(e). r(g).
\]

Query: Find \(x \) such that \(p(x) \) is true.

\[
p(X)
q(X), r(X)
X=d \rightarrow r(d) \text{ fail}
X=e \rightarrow r(e) \text{ success (print "X=e")}
X=f \rightarrow r(f) \text{ fail}
X=g \rightarrow r(g) \text{ success (print "X=g")}
\]

Prolog: backtracking example 2

Rule base:

\[
p(X) : - q(X), r(X, Y), s(Y).
q(a). r(a, b). r(c, b). s(c).
q(c). r(a, c). r(c, c).
r(a, d).
\]

Query: Find \(x \) such that \(p(x) \) is true.

Prolog: backtracking example 3

Query: `- located_in(toronto, north_america)`

matches 1 under x=toronto

matches 0 under x=toronto

matches 18 under x=toronto, usa

matches 5 under x=toronto, georgia

No Matches

Fail
Top-down vs. Bottom-up Reasoning

- Prolog uses top-down inference, although some other logic programming systems use bottom-up inference (e.g. Coral)

- Each has its own advantages and disadvantages:
 - Bottom-up may generate many irrelevant facts
 - Top-down may explore many lines of reasoning that fail.

- Top-down and bottom-up inference are logically equivalent
 - i.e. they both prove the same set of facts.

- However, only top-down inference simulates program execution
 - i.e. execution is inherently top down, since it proceeds from the main procedure downwards, to subroutines, to sub-subroutines, etc...