Shadowing-based reliability decay in softened n-body simulations

Wayne B. Hayes*
Department of Computer Science, University of Toronto, Toronto, Ontario, M5S 3G4 Canada
(Dated: November 7, 2002)

A shadow of a numerical solution to a chaotic system is an exact solution to the equations of motion that remains close to the numerical solution for a long time. In a collisionless n-body system, we know that particle motion is governed by the global potential rather than by inter-particle interactions. As a result, the trajectory of each individual particle in the system is independently shadowable. It is thus meaningful to measure the number of particles that have shadowable trajectories as a function of time. We find that the number of shadowable particles decays exponentially with time as $e^{-\varepsilon t}$, and that for $\varepsilon \in [-0.2, 1]$ (in units of the local mean inter-particle separation ρ), there is an explicit relationship between the decay constant μ, the timestep h of the leapfrog integrator, the softening ε, and the number of particles N in the simulation. Thus, given N and ε, it is possible to pre-compute the timestep h necessary to achieve a desired fraction of shadowable particles after a given length of simulation time. We demonstrate that a large fraction of particles remain shadowable over ~ 100 crossing times even if particles travel up to about $1/3$ of the softening length per timestep. However, a sharp decrease in the number of shadowable particles occurs if the timestep increases to allow particles to travel further than $1/3$ the softening length in one timestep, or if the softening is decreased below ~ 0.25.

PACS numbers: 02.60.-x, 02.70.-c, 05.45.-a, 05.45.Jn, 95.75.P, 05.40.-a, 98.10.+z

Introduction. Numerical simulation of the softened gravitational n-body problem is used to gain insight into the formation, evolution and structure of gravitational systems ranging from galaxies and clusters of galaxies to large-scale structure of the Universe [1, 2]. Since such simulations have been used to invalidate theories [2], establishing their trustworthiness is critical. These simulations have several sources of error, including: the use of several orders of magnitude too few particles, or discreteness noise; the use of approximate force-computation methods (the latter two errors are compared in [3]); the use of a softened potential; the use of finite-timestep numerical integration to evolve the system of ordinary differential equations; and machine roundoff error. These errors are aggravated by the fact that gravitational n-body systems are chaotic and display sensitive dependence on initial conditions: two solutions with nearly initial conditions diverge exponentially away from each other on about a crossing timescale [4], so that any error results in the numerical trajectory diverging exponentially away from the exact solution with the same initial conditions. The phenomenon has been described (eg, [4]) as the "exponential magnification of small errors", implying the possibility that trajectories of such simulations are the result of nothing but magnified noise.

Fortunately, the purpose of a softened n-body simulation is not to follow the evolution of a particular choice of initial conditions, but instead to sample the evolution of large systems whose initial conditions are drawn from a random distribution. As such, we would likely be more than satisfied if our numerical solution closely followed the evolution of a nearby set of initial conditions.

The study of shadowing provides just such a property: a shadow of a numerical, or noisy, solution is an exact solution whose initial conditions and subsequent evolution remain nearby, in phase-space, to the numerical solution. Thus, a numerical solution that has a shadow is essentially an experimental observation of an exact trajectory of the mathematical system being modelled. Although this observation does not alleviate errors introduced between the physical system and the mathematical model (such as discreteness noise and force softening), it does say that the numerical simulation is faithfully solving the mathematical model. In [5], it was shown that a single particle moving amongst 99 fixed particles is shadowable for several tens of crossing times, and that glitches (the point beyond which a shadow cannot be found) tend to occur near close encounters. In [6], we demonstrated that if $M > 1$ particles move in a softened system with 100$-M$ fixed particles, then very few particles encounter glitches within the first few tens of crossing times. However, both of these studies used highly accurate integrators to generate the "noisy" trajectories. Although high accuracy is commonly used for simulations of unsoftened systems, softened simulations most often use the 2nd-order symplectic and time-symmetric leapfrog integrator.

In this paper, we use the leapfrog integrator to generate noisy trajectories of systems that have M particles moving and interacting in a softened potential amongst a background of $N - M$ fixed particles [5–7]. We use normalized units [8] in which each particle has mass $1/N$, and the system diameter, crossing time and average velocity all have order unity. We then lead the reader through the following observations. First, we observe that glitches in the trajectory of a single particle occur as a Poisson process (Figure 1). Next, we demonstrate that as M increases, shadow durations scale roughly as $1/M^{0.8}$. (The physical significance of 0.8 is unclear and

*Electronic address: wayne@cs.toronto.edu
may be dependent upon other parameters such as \(N \), the softening \(\varepsilon \), and the timestep \(h \).) More importantly, this scaling can be experimentally reproduced by superimposing trajectories of \(M \) single-moving-particle systems and taking the shortest shadow of these \(M \) systems. In other words, particles appear to encounter glitches independently of one another (Figure 2). Now, the glitching and subsequent errant behaviour of just one particle (the first to undergo a glitch) in a large simulation is unlikely to have a large effect on the reliability of that simulation; in fact, as long as only a small fraction of particles have glitched, then the reliability of the simulation probably remains high. Then, assuming that particles encounter glitches independently of one another, we can use the distribution of shadow durations of \(M = 1 \) systems to predict the fraction of shadowable particles as a function of time. We find that this fraction is a decaying exponential with some exponent \(\mu \) (Figures 3 and 4). Finally, we demonstrate an explicit relationship between \(\mu, N, \varepsilon, \) and \(h \) that holds as long as \(\varepsilon \) is in the range \(\sim [0.2, 1] \) times the mean inter-particle separation and \(h \gtrsim \varepsilon/3 \) (Figure 5). This means that given \(N, \varepsilon, \) and the expected duration of the simulation, one can \textit{precompute} the timestep \(h \) necessary to have a desired fraction of shadowable particles remain at the end of the simulation.

\textbf{Results.} Figure 1 introduces a histogram of shadow durations for 1000 softened systems with \(N = 100, M = 1 \). After an initial transient (explained in the discussion of [6, Figure 3]), the distribution fits an exponential curve, suggesting that glitches occur as a Poisson process.

Figure 2 introduces how the average shadow duration scales as the number of moving particles is increased. For various values of \(M \), we perform 40 experiments in which \(M \) particles move and interact amongst \(100 - M \) fixed particles, and plot the mean and standard deviation of the shadow durations. We make the following observations: (1) a glitch in the local 6-dimensional phase-space trajectory of any one particle will cause a glitch in the full 6\(M \)-dimensional phase-space trajectory of the \(M \)-moving particle system. (2) in a large collisionless system, the gravitational potential is governed more by the global potential than by inter-particle interactions [9], and so it is reasonable to expect that particles encounter glitches independently of each other. So, perhaps the mean shadow duration of an \(M \)-moving-particle system can be predicted by the mean shadow duration of a system with \(M \) completely uncoupled 1-moving-particle systems [6]. We test this hypothesis with the “predicted average” of Figure 2 by taking \(M \) samples at random from Figure 1 and taking the shortest shadow duration. We see that the predicted curve is well within the error bars of the “real” \(M \)-moving-particle system. Formally, this suggests that the \textit{average duration before the occurrence of the first glitch in the system is statistically independent of whether particles interact or not}.

Once one particle in the system encounters a glitch, its trajectory after that point is incorrect, and it will presumably start to “infect” the motion of other particles. However, by observation (2) above, we can hope that in a large collisionless system, one errant particle will, for a time, have negligible effect on the trajectories of other particles. In fact, we can guess that, for a time, any small fraction of errant particles will have little effect on the global behaviour of system. The goal would then be to minimize, at reasonable cost, the number of particles that have glitched by the end of a given simulation.

We now take as a working assumption that particles encounter glitches independently of one another, and that the first small fraction of particles that encounter glitches have a negligible effect on the others. That is, we reinterpret Figure 1 to represent the distribution of shadow...
durations for all the individual particles in a single many-moving-particle system. Of course, the figure is likely only to be valid for a duration much shorter than 800 crossing times, as the earlier glitched particles “infect” the motion of the remainder, but let us assume it is a reasonable approximation for some shorter period. This allows us, as a first approximation, to estimate the fraction of glitched particles in a real simulation at a given time by computing the fraction of one-moving-particle systems that have glitched by that time. Figure 3 plots the opposite—the fraction of non-glitched (i.e., shadowed) particles as a function of time—derived from Figure 1 by taking its cumulative distribution function \(F(t) \) and “flipping” it to \(1 - F(t) \). As expected from the Poisson process in Figure 1, the fraction of shadowable particles decays exponentially with a rate corresponding to a 0.36% glitch probability per particle per crossing time.

Figure 3 is interesting, but is of little use because it does not tell us how the shape of this curve varies with the total number of particles \(N \), the softening \(\varepsilon \), or the timestep \(h \). However, for reasons we will discuss later, we have found that if the timestep \(h \) is scaled as

\[
h^2 \propto \varepsilon^2 N^{1/3},
\]

then each of Figures 1, 2, and 3 are preserved if \(\varepsilon \) is not too small. That is, if \(N \) and \(\varepsilon \) are changed in a given simulation but the initial conditions are drawn from the same distribution, then using Equation (1) to scale the timestep will preserve the same degree of simulation reliability from the standpoint of shadowing. Intuitively, the scaling of \(h \propto \varepsilon \) is not surprising and is a commonly used timestep criterion. The \(N^{1/3} \) is more surprising, telling us we can increase the timestep as \(N \) increases at a fixed softening; intuitively, this is because the gravitational potential becomes more smooth with increasing \(N \).

To demonstrate this scaling, we have performed many experiments with various values of \(h \), \(N \), and \(\varepsilon \). Figure 4 summarizes the results. Each line represents the fraction of shadowable particles as a function of time for some \((N, \varepsilon)\) pair. Each closely clustered set of 4 lines represents sets of runs with various \((N, \varepsilon)\) and the timestep \(h \) scaled using Equation 1 to give the same “shadowing reliability”. Finally, decreasing the timestep (via decreasing \(k \)) increases reliability by decreasing the decay rate of the fraction of shadowed particles. We also performed similar experiments with all combinations of parameters \(N = 10^2, 10^3, 10^4 \) and \(\varepsilon = \{2, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\} N^{-1/3} \). The scaling with \(N \) works well up to \(N = 10^4 \), and presumably beyond. All curves are very similar for \(\varepsilon \geq \frac{1}{4} N^{-1/3} \). However, as seen in the figure, shadows are significantly shorter for \(\varepsilon = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}\} N^{-1/3} \), even if the smallest timestep is used. This is consistent with the observations of [5], and may be related to unphysical results obtained with a too-small softening [10].

Finally, we come to the crux. Armed with the scaling Equation (1) and the knowledge that the fraction of shadowable particles decays exponentially as \(e^{-\mu_k t} \), we would like to find a relationship between the timestep proportionality constant \(k \) of Figure 4, and \(\mu_k \). An eyeball fit of exponential curves to each of the clusters in Figure 4 gives values of the decay constant \(\mu_k \) for each cluster. These values, along with the curve \(\mu_k \) vs. \(k \), is plotted in Figure 5. As can be seen, there is evidence that for \(k \leq \frac{1}{3} \), the curve settles to a power law of approximately

\[
\mu_k = (0.047 \pm 0.015) k^{1.75 \pm 0.25}.
\]
FIG. 5: For $k = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}$ and $\varepsilon \geq \frac{1}{3} N^{-1/3}$ of Figure 4, the values of μ_k were fit by eyeball, and are, respectively, $\mu = 0.33, 0.024, 0.0071, 0.0040, 0.0027, 0.0013$. These are plotted, and for $k \leq \frac{1}{3}$, fit the curve $\mu = (0.047 \pm 0.015) k^{-1.75 \pm 0.25}$.

However, the shape of the curve is also consistent with a slowly decreasing slope as k decreases.

Discussion. The relations described above offer an a priori algorithm for choosing a timestep for a softened N-body simulation, viz. : given N, ε, the expected simulation duration T in crossing times, and a desired fraction F of shadowable particles remaining at time T, solve for μ in $F = e^{-\mu T}$, and then solve for k using Equation (2). Of course, these relationships will need to be scaled to appropriate units for the simulation. The job should be easiest for a simulation of one galaxy; for simulations of clusters of galaxies or a cosmological simulation, we would scale to the smallest sub-systems we expect to accurately integrate. We are unsure of the effects of dynamically changing the softening based on the local mean particle density, but suspect that some reasonable interpretation may be possible whereby a softenimg and timestep (modulo the discussion of the next paragraph) are chosen based upon local mean particle density.

The fact that constant-timestep leapfrog is symplectic is probably significant to these results. We experimented briefly with a dynamically changing timestep, but found that shadows were virtually destroyed if the timestep changes “too often”. However, we found that if the timestep was decreased as a particle entered a high-density region, but never increased the timestep again, these results were preserved. This may be a reasonable choice for simulations of clusters if most particles that enter a high-density region remain there for the remainder of the simulation. Alternatively, perhaps a particle’s timestep could be re-increased only after the dynamic timestep criterion says the particle’s timestep should be significantly increased, say by an order of magnitude. This will ensure the particle has left the high-density region far behind, and preserve the internal reliability of high-density regions.

More detailed arguments deriving Equation (1) show that the forward global error of a softened N-body simulation scales as $h^2 e^{-2 N^{-1/3}}$. The h^2 scaling is due to leapfrog being a globally 2nd-order integrator; the $N^{-1/3}$ scaling has been seen before [4], and the e^{-2} is new. Thus, Equation (1) simply holds the forward global error constant. Finally, a shadowing concept known as brittleness [11] relates the forward global error to the distance between a shadow and the corresponding points on the numerical trajectory, although to our knowledge this paper is the first to demonstrate a relationship between the the forward global error and the shadowing distribution.

Since the scaling of h with $N^{1/3}$ is so weak, and we usually increase N in order to increase reliability, it certainly will not hurt to ignore the scaling with N and simply scale $h \propto \varepsilon$. The remaining questions are: what value of ε to use, and what fraction of ε should a particle be allowed to travel in one timestep? The first question is answered by the fact that shadows do not appear to exist for very long if $\varepsilon \lesssim \frac{1}{3} N^{-1/3}$; concerning the second question, we believe that Figures 4 and 5 suggest that the particle should be allowed to travel at most $\frac{1}{3} \varepsilon$ in one timestep, and possibly much less, if a shadow duration of 100 crossing times encompassing most particles is desired.

Acknowledgments. We thank A. Melott for suggestions on the presentation of these results.