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Abstract. A shadow is an exact solution to an iterated map that remains close to
an approximate solution for a long time. An elegant geometric method for proving
the existence of shadows is called containment, and it has been proven previously
in two and three dimensions, and in some special cases in higher dimensions. This
paper presents the general proof using tools from differential and algebraic topology
and singular homology.

1. Introduction.

1.1. Background. An orbit of a continuous map ϕ : Rn → Rn is a finite or infinite
sequence of points generated using

xi+1 = ϕ(xi). (1)

Often one point, x0, is given, called the initial condition. Consider an approximation
ϕ̂ to ϕ with just one required property,

‖ϕ̂(x)− ϕ(x)‖ < δ, x ∈ Rn. (2)

An orbit of ϕ̂ generated using
yi+1 = ϕ̂(yi) (3)

is called a δ-pseudo-orbit of ϕ and, from (2), has the property

‖yi+1 − ϕ(yi)‖ < δ for all i.

Pseudo-orbits are of interest to those studying computer-generated orbits because
finite-precision arithmetic is used to compute them, with the consequence that an
exact orbit and a pseudo-orbit starting at the same point can diverge exponentially
away from each other. See for example [4]. Given a pseudo-orbit (3), the exact
orbit (1) is a shadow of (3) if

‖yi − xi‖ < ε for all i.

Shadowing was first discussed by [1] and [3], in relation to hyperbolic systems, in
which space along an orbit can be uniformly separated into expanding and con-
tracting subspaces. Let S and ϕ be the invariant set and the map of a hyperbolic
system, respectively. In such systems, [1] proved that ∀ε > 0, ∃ δ > 0 such that
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Figure 1. Containment in 3D with 2 expanding directions and 1 contracting.

every infinite-length δ-pseudo orbit remaining in S is ε-shadowed by an exact tra-
jectory in S. [3] proved that the same result holds if the map is required to be
hyperbolic only along trajectories in the vicinity of the pseudo-orbit. [12] proved a
similar theorem along the way towards using the theory of exponential dichotomies
to prove Smale’s Theorem ([13, 14]).

Most systems of general interest, however, are not hyperbolic. The first studies
of shadows for non-hyperbolic systems appear to be [2] and [7]. [8] and [4] provide
the first proof of the existence of a shadow for a two-dimensional non-hyperbolic
system over a non-trivial length of time, using a method called containment. Here,
by way of introduction, we outline a three-dimensional case that is proved in [10].

Let ϕ be a map which is not hyperbolic, but which displays pseudo-hyperbolicity
[9] for a finite but non-trivial number of iterations. Let {yi}b

i=a ⊂ R3 be a three-
dimensional δ-pseudo-orbit of ϕ for integers a and b. In this case the pseudo-orbit
has 1 contracting direction and two expanding directions (Figure 1), and pseudo-
hyperbolicity means that as i increases, orbits separated from each other by a
small distance in the expanding subspace diverge on average (but not necessarily
uniformly) away from each other, while orbits separated by a small distance in
the contracting subspace approach each other on average. The three-dimensional
containment process consists of building a parallelogram Mi around each point yi of
the pseudo-orbit such that the first pair of expanding faces F±1

i are separated along
one expanding direction (the x direction in Figure 1), the second pair of expanding
faces F±2

i are separated along the other expanding direction (the y direction in
Figure 1), and the one pair of contracting faces F±3

i are separated from each other
along the contracting direction (the z direction in Figure 1). In order to prove the
existence of a shadow, we require that ϕ(Mi) maps over Mi+1 so that ϕ flattens
Mi into a thin slice, cutting Mi+1 into 3 pieces, the middle piece of which contains
a contiguous section of ϕ(Mi) (as well as possibly some isolated pieces of ϕ(Mi)).
Now, assume γi is a surface in Mi whose boundary connects and “wraps around” all
of the expanding sides of Mi. Then there is a contiguous patch of ϕ(γi) ∩Mi+1 ≡
γi+1 lying wholly in Mi+1 whose boundary ∂γi+1 connects and “wraps around” the
expanding sides of Mi+1. If this property continues for each step then, by induction,
there is a γN 6= ∅ lying wholly within MN whose boundary ∂γN connects and
wraps around the expanding sides of MN . Then any point xN ∈ γN can be traced
backwards to a point xi ∈ γi ⊂ Mi for i = 0, 1, . . . , N − 1, and the xi trajectory is



HIGH-DIMENSIONAL SHADOWING BY CONTAINMENT 331

an exact orbit lying close the pseudo-orbit — i.e., a shadow. In fact, since xN can
be any point in γN , this arguments demonstrates the existence of a 2-dimensional
family of shadows. In general when there are k expanding directions, we will have
a k-dimensional family of shadows. It is interesting to note that as viewed from
“above” (ie., looking down the z-axis), the projection of γi onto the xy plane would
appear to “cover” Mi’s projection onto the xy plane. It may be possible to prove
theorems similar to those in this paper using such covering relations [15, 16].

This case, along with all other one-, two-, and three-dimensional cases, as well
as some special cases in higher dimension, were proved in [10]. The purpose of
this paper is to present the general n-dimensional proof in which k directions are
expanding, while n− k directions are contracting.

1.2. Overview. The machinery that we use requires that the intersections of the
manifolds ϕ(γi)∩Mi+1 are transversal. Theorem 6 (Sard’s Theorem) demonstrates
that there exists γ0 such that for every i > 0, ϕ(γi) is transversal to Mi+1. In
Section 2 we present the main result. Section 3 presents the background for Sard’s
Theorem, while Section 4 provides a brief background to singular homology and
cohomology, and finally, the proof of our main result.

2. Main Result. Let ϕ : Rn → Rn be a diffeomorphism. Assume that ϕ displays
pseudo-hyperbolicity such that there exist k directions which expand on average
over time, which we will call the nominally expanding directions. Similarly, assume
there are (n−k) directions which contact on average over time, called the nominally
contracting directions. None of these directions need to be orthogonal to each other,
although we assume that the entire set of expanding and contracting directions spans
Rn. For each i = 0, . . . , N , let Mi be an n-cube in Rn. For convenience assume
that the faces of Mi are labeled so that the first 2k faces F±j

i , j = 1, . . . , k, lie
transverse to the nominal expanding directions of ϕ, and the remaining 2(n − k)
faces F±j

i , j = k+1, . . . , n, lie transverse to the nominal contracting directions of ϕ.
We denote the union of a set of faces by listing multiple integers in the superscript.
Thus the expanding faces of Mi are collectively denoted ∂XMi ≡ F±1,...,±k

i and the
contracting faces of Mi are denoted ∂CMi ≡ F

±(k+1),...,±n
i .

Let Int(A) denote the interior of the set A. Refer to Figure 2. We say that Mi

and Mi+1 satisfy the (n, k)-Inductive Containment Property (abbreviated (n, k)-
ICP), for ϕ if

(ICP1): ϕ(∂XMi)∩Mi+1 = ∅ and, for all j ∈ {1, . . . , k}, ϕ(F−j
i ) and ϕ(F+j

i ) lie
on opposite sides of the infinite slab between the two hyperplanes containing
F−j

i+1 and F+j
i+1, respectively.

(ICP2): There is a parallelepiped Qi+1 ⊂ Rn with faces Gj
i+1 parallel to the

faces F j
i+1 of Mi+1 for j = ±1, . . . ,±n such that

i) ϕ(Mi) ⊂ Int(Qi+1),
ii) Qi+1 ∩ ∂CMi+1 = ∅ and, for all j ∈ {k + 1, . . . , n}, F−j

i+1 and F+j
i+1

lie on opposite sides of the infinite slab between the two hyperplanes
containing G−j

i+1 and G+j
i+1.

The conditions of the Inductive Containment Property can be rigorously verified
computationally [9].

Theorem 1 ((n,k)-Inductive Containment Theorem). Suppose that Mi and Mi+1

satisfy (n, k)-ICP for ϕ for all i = 0, . . . , N − 1. Then there exists a sequence of
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Figure 2. Schematic diagram of the Inductive Containment Prop-
erty in 2 dimensions. The tall parallelogram is Qi+1 ⊃ ϕ(Mi), the
wider one is Mi+1. The vertical direction is expanding. The hori-
zontal direction contracting.

non-empty k-manifolds γi ⊂ Mi, i = 0, . . . , N , such that

Int(γi) ⊂ Int(Mi) , ∂γi = γi ∩ ∂XMi , and γi+1 ⊂ ϕ(γi)

for all i.

We will prove this theorem in stages. For a cleaner exposition of the proof, we
will translate all objects to a standardized frame in the vicinity of the origin, as
follows. Let 2n denote the standard unit cube in Rn,

2n = {(x1, . . . , xn) : |xj | ≤ 1 for j = 1, . . . , n},
and denote its faces by

E+j = {(x1, . . . , xn) : xj = +1, |xl| ≤ 1 for l 6= j} , j = 1, . . . , n,

E−j = {(x1, . . . , xn) : xj = −1, |xl| ≤ 1 for l 6= j} , j = 1, . . . , n.

We introduce the Standardized (n, k)-Inductive Containment Property by trans-
forming both Mi and Mi+1 to 2n, as follows. For each i = 0, . . . , N there is an
orientation-preserving diffeomorphism (i.e., change of coordinates) ψi : Rn → Rn

that maps Mi to 2n, and maps F±j
i to E±j for j = 1, . . . , n. Let Mi = 2n for all

i. Let φi = ψi+1 ◦ ϕ ◦ ψ−1
i . If Mi and Mi+1 satisfy (n, k)-ICP for ϕ, then by con-

struction Mi and Mi+1 satisfy (n, k)-ICP for φi, and we say that the Standardized
(n, k)-ICP holds for φi. Note that it is easy to choose ψi so that the Standardized
(n, k)-ICP holds for φ, such that there exists positive ε < 1 such that (ICP2) holds
with

Q = {(x1, . . . , xn) : |xi| ≤ 1/ε for i = 1, . . . , k and |xi| ≤ 1−ε for i = k + 1, . . . , n}.
For our purposes, the term manifold will refer to a smooth manifold with bound-

ary and corners.
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Definition 1. Suppose that Γ ⊂ 2n is a k-manifold with ∂Γ ⊂ ∂X2n. We say that
∂Γ wraps around ∂X2n if the homology class of [∂Γ] in Hk−1(∂X2n) is not zero.

Remark. The manifolds γi used in Theorem 1 will have this wrap-around property.
Without this property, it would be possible for a manifold γi to be “pushed out” of
some box Mj , j > i, causing the intersection of γj and Mj to become empty.

Lemma 1. Let φ : Rn → Rn be a diffeomorphism and assume that the standardized
(n, k)-ICP holds for φ. Let Γ ⊂ 2n be a non-empty k-manifold with boundary
∂Γ ⊂ ∂X2n, and suppose further that ∂Γ wraps around ∂X2n. Finally, suppose
that φ(Γ) is transverse to ∂X2n, and let Γ′ ≡ φ(Γ) ∩2n. Then the following hold:

i) Γ′ is a non-empty k-manifold with boundary ∂Γ′ = Γ′ ∩ ∂2n.
ii) ∂Γ′ ⊂ ∂X2n.
iii) ∂Γ′ wraps around ∂X2n.

We will prove this lemma in Section 4.
Proof of Theorem 1. We will prove the theorem by induction. Let ψi : Rn → Rn be
a change of co-ordinates that maps Mi to 2n, and maps F±j

i to E±j for j = 1, . . . , n.
Let φi = ψi+1 ◦ ϕ ◦ ψ−1

i . Then the Standardized (n, k)-ICP holds for each φi. Let
2k denote the unit k-cube in Rn,

2k = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 for 1 ≤ i ≤ k, xk+1 = · · · = xn = 0}.
This is a k-dimensional submanifold of 2n, and its boundary

∂2k = {(x1, . . . , xn) ∈ 2k : xj = ±1 for some j ∈ {1, . . . , k}},
is contained in ∂X2n. By Lemma 3 and Definition 6, the homology class [∂2k] ∈
Hk−1(∂X2n) is 1. By Theorem 6 (Sard’s Theorem), we can homotope 2k rel-
ative to its boundary to a k-manifold Γ with ∂Γ = ∂2k such that Γ intersects
φ−1

0 φ−1
1 · · ·φ−1

i (∂X2n) transversally for each i = 0, . . . , N . Thus [∂Γ] = [∂2k] 6= 0,
and

φiφi−1 · · ·φ0(Γ) is transverse to ∂X2n for all i. (4)

We start the induction by taking Γ0 = Γ. Then Γ0 and φ0 satisfy the hypotheses
of Lemma 1. Let Γ1 = φ0(Γ0) ∩ 2n. Then Γ1 is a non-empty k-manifold with
boundary ∂Γ1 ⊂ ∂X2n, and [∂Γ1] 6= 0.

At the i-th step of the induction, we have a non-empty k-manifold Γi ⊂ 2n with
∂Γi ⊂ ∂X2n and [∂Γi] 6= 0 in Hk−1(∂X2n). Moreover Γi ⊂ φi−1(Γi−1) ⊂ · · · ⊂
φi−1φi−2 · · ·φ0(Γ0), which implies that φi(Γi) ⊂ φi · · ·φ0(Γ0). From (4), we see that
φi(Γi) is transverse to ∂X2n, so we can apply Lemma 1. If we set Γi+1 = φi(Γi)∩2n,
then Γi+1 and φi+1 satisfy the hypotheses of Lemma 1, and the induction continues.

By the N -th step of the induction, we have produced non-empty k-manifolds Γi,
i = 0, . . . , N , with Int(Γi) ⊂ Int(2n), ∂Γi = Γi ∩ ∂X2n,

[∂Γi] 6= 0 for all i ,

and
Γi+1 ⊂ φi(Γi) for all i .

Let γi = ψ−1
i (Γi) for each i = 0, . . . , N . Then Int(γi) ⊂ Int(Mi), ∂γi = γi ∩ ∂XMi,

and

γi+1 = ψ−1
i+1(Γi+1) ⊂ ψ−1

i+1(φi(Γi)) = ψ−1
i+1(ψi+1 ϕψ−1

i )(Γi) = ϕ(γi).

This completes the proof of Theorem 1.
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Corollary 1 (Shadowing Containment Theorem). Let {Mi}N
i=0 be a sequence of

n-dimensional parallelepipeds enclosing a pseudo-trajectory {yi}N
i=0 such that yi ∈

Mi, i = 0, . . . , N , and suppose that Mi and Mi+1 satisfy (n, k)-ICP for all i =
0, . . . , N − 1. Let ε be the maximum diameter of Mi over all i. Then there exists a
sequence of k-dimensional manifolds {γi ⊂ Mi}N

i=0 such that any point xj ∈ γj , j =
0, . . . , N admits an exact orbit {xi}N

i=0 which is an ε-shadow of {yi}N
i=0. That is,

‖xi − yi‖ ≤ ε for all i = 0, . . . , N .

Proof. By the Inductive Containment Theorem, there is a sequence of non-empty k-
manifolds γi ⊂ Mi such that γi ⊂ Int(ϕ(γi−1)) for all i. Let xN be any point in γN .
As ϕ is a diffeomorphism, there is a unique point x0 ∈ γ0 such that ϕN (x0) = xN .
For each i we set xi = ϕi(x0). Then xi+1 = ϕ(xi) ∈ Mi+1 for all i and {xi}N

i=0 is an
ε-shadow of {yi}N

i=0. Since this is true for all xN ∈ γN , γN admits a k-dimensional
family of shadows.

3. Sard’s Theorem and Transversality. For the purpose of proving the Induc-
tive Containment Theorem in arbitrary dimensions, we would like to determine
under what conditions two objects in Rn intersect in a “nice” way. It turns out
that when the objects in question are smooth manifolds, then a good answer is pro-
vided by transversality theory. In this section we review some of the basic concepts
from transversality theory that we need. [6] supply a more detailed introduction,
together with some applications to geometry.

3.1. Manifolds. Let X be a smooth manifold of dimension k. That is, every point
x ∈ X has an open neighborhood V which is homeomorhic to an open set U ⊂ Rk:

θ : U
∼=−→ V ⊂ X. (5)

The triplet (θ, U, V ) is sometimes referred to as a coordinate chart near x. If
(θ1, U1, V1), (θ2, U2, V2) are two coordinate charts (near points x1 and x2, say) that
overlap in the sense that V1 ∩ V2 6= ∅, then we further require that

θ−1
1 ◦ θ2 : θ−1

2 (V1 ∩ V2) → θ−1
1 (V1 ∩ V2)

and θ−1
2 ◦ θ1 : θ−1

1 (V1 ∩ V2) → θ−1
2 (V1 ∩ V2)

be smooth, as maps between open sets in Rk.

3.2. Tangent space. In the cases of interest to us, the manifold X sits in some
higher-dimensional Euclidean space Rn, so the coordinate map (5) is simply a
smooth map from U ⊂ Rk to Rn, with image equal to V . Thus the derivative
of θ at a point u ∈ U makes sense as a linear map from Rk to Rn, i.e., it is a real
n× k matrix. We denote this derivative by dθu.

Suppose (θ, U, V ) is a coordinate chart near x ∈ X, and θ(u) = x. We define
the tangent space to X at x to be the image of dθu : Rk → Rn. (Equivalently, the
tangent space is the linear span of the column vectors of dθu.) This is a vector
subspace of Rn which we denote by TxX. Geometrically,

x + TxX = {x + v | v ∈ TxX}
consists of all vectors starting at x that are tangent there to X. In other words,
it is the best approximation of X near x by a linear subspace. One can easily
check that if (θ′, U ′, V ′) is another coordinate chart near x with θ′(u′) = x, then
Image(dθu) = Image(dθ′u) – that is, TxX is well-defined and independent of our
choice of coordinate chart.
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3.3. Smooth maps and differentials. If Xk and Y l are smooth manifolds of
respective dimensions k and l, then a continuous map f : X → Y is called smooth
if, for every coordinate chart (θ, U, V ) for X and (θ̃, Ũ , Ṽ ) for Y , the restriction

θ̃−1 ◦ f ◦ θ|(f◦θ)−1(Ũ)

is smooth when considered as a map defined in an open subset of Rk with values
in Rl. If X ⊂ Rm and Y ⊂ Rn for some m > k, n > l, it is equivalent to say that
f : X → Y is smooth if around any point x ∈ X there is an open ball Bx and a
smooth map F : Bx → Rn such that the restriction of F to X ∩Bx equals f :

F |X∩Bx = f.

If f is smooth and f(x) = y, then the derivative of f at x is a linear map

dfx : TxX → TyY.

To define the derivative, suppose that (θ, U, V ) is a coordinate chart near x with
θ(u) = x, and (θ̃, Ũ , Ṽ ) is a coordinate chart near y with θ̃(ũ) = y. Set h = θ̃−1◦f ◦θ
on (f ◦ θ)−1(Ṽ ) so that the diagram

U

V

Ũ

Ṽ

-

-

6 6

h

f

θ θ̃

commutes. Note in particular that h(u) = ũ. We then set

dfx(ν) = dθ̃ũ ◦ dhu ◦ (dθu)−1(ν), for ν ∈ Image(dθu) .

(If we think of the derivatives of θ̃, h and θ as matrices, then the latter com-
position is a product of matrices.) This clearly maps TxX = Image(dθu) into
TyY = Image(dθ̃ũ). If X ⊂ Rm, Y ⊂ Rn and f near x equals the restriction of
F : Bx → Rn, then it is not hard to show that dfx equals the restriction of dFx to
TxX ⊂ Rm.

If x ∈ X and dfx = 0, that is, dfx(ν) = 0 for all ν ∈ TxX, then x is called a
critical point of f . If y ∈ Y and there is some x ∈ f−1(y) such that dfx = 0, then
y is called a critical value of f . If no such x exists for y, then y is called a regular
value of f .

3.4. Transversality. The smooth map f : X → Y is transversal to the submani-
fold Z ⊂ Y if

Image(dfx) + Tf(x)(Z) = Tf(x)Y

for every point x in the preimage of Z.

Theorem 2 (Preimage Theorem). Let f : X → Y be a smooth map of manifolds.
If f is transversal to a submanifold Z ⊂ Y , then f−1(Z) is a submanifold of X and
the codimension of f−1(Z) in X equals the codimension of Z in Y .

Note: The codimension of Z in Y is codim Z = dim Y − dim Z.

Definition 2. Suppose X ⊂ Y . The inclusion map i : X → Y is defined by
i(x) = x for all x ∈ X.
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When X and Z are both submanifolds of the same manifold Y , then a point
x ∈ X lies in the intersection X ∩Z if and only if x lies in the preimage of Z under
the inclusion map i : X ↪→ Y . We say that X and Z intersect transversally in Y if

TxX + TxZ = TxY

for every x ∈ X ∩ Z. Since the derivative dix : TxX → TxY is simply the inclusion
of TxX into TxY , the next result is a direct consequence of the Preimage Theorem.

Theorem 3. If the submanifolds X and Z intersect transversally in Y , then their
intersection X ∩ Z is again a submanifold and

codim(X ∩ Z) = codim X + codimZ .

Theorem 4 (Transversality Theorem, [6]). Let F : X×S → Y be a smooth map of
manifolds. Let Z ⊂ Y be a smooth submanifold without boundary. If F is transverse
to Z then for almost every s ∈ S, Fs = F (·, s) is transverse to Z.

The theorem follows from an application of Sard’s theorem, which we now state.
(See [6, Chap 2,§1].)

Theorem 5 (Sard’s Theorem). For any smooth map of a manifold X (with bound-
ary) into a boundaryless manifold Y , almost every point of Y is a regular value of
f : X → Y (and of ∂f = f |∂X : ∂X → Y ).

The idea behind the proof of Theorem 4 is this. By the Preimage theorem,
W = F−1(Z) is a submanifold of X × S. Let π : X × S → S be the natural
projection map, and consider its restriction to W ⊂ X × S. By Sard’s theorem,
almost every value of s ∈ S is a regular value of π : W → S. Using the fact that F
is transversal to Z, one can show that the regular values of π|W correspond to the
values of s for which Fs is transversal to Z. For details of the proof, we refer the
reader to [6, Chap 2, §3].

Combining the Transversality theorem with the Preimage theorem, one can prove
that given a submanifold Z ⊂ Y , any smooth map X → Y can be deformed by an
arbitrarily small amount to a map that is transversal to Z. As a special case of
this, we have the following.
Notation: Given an open set V , we write U ⊂⊂ V to signify that there is a compact
set K with U ⊂ K ⊂ V .

Theorem 6. Let 2k denote the k-cube

2k = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 for 1 ≤ i ≤ k , xk+1 = · · · = xn = 0},
with boundary

∂2k = {(x1, . . . , xn) ∈ 2k : xi = ±1 for some i ∈ {1, . . . , k}.}.
Let Z1, . . . , ZL be smooth submanifolds of Rn, and suppose each has the property
that Zl ∩2k ⊂⊂ int2k. Then we can homotope 2k relative to its boundary to a k-
manifold Γ with ∂Γ = ∂2k, so that Γ intersects Zl transversally for all l = 1, . . . , L.

Proof. There exists a compact set K such that Zl ∩ 2k ⊂ K ⊂ int2k for all
l. Take ε : 2k → R to be a smooth, compactly supported bump function with
spt(ε) ⊂ int2k. We can assume that K ⊂ {x : ε(x) 6= 0}.

Let S denote the open unit ball in Rn and let F : 2k×S → Rn be the smooth map
F (x, s) = x+ ε(x) · s. For any fixed point x where ε(x) 6= 0, the map s 7→ F (x, s) is
a rescaling followed by translation of the ball S, hence is a submersion. If Z ⊂ Rn
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is a submanifold and Z ∩2k ⊂ {x : ε(x) 6= 0}, then it follows that F is transversal
to Z. So by the transversality theorem of Guillemin-Pollack, the map x 7→ F (x, s)
is transverse to Z for almost every s ∈ S.

By our hypotheses, Zl ∩ 2k ⊂ {x : ε(x) 6= 0} for every l. Thus for each l, there
is a subset Ωl ⊂ S of measure zero such that Fs = F (·, s) is transverse to Zl for
any s ∈ S\Ωl. The union Ω = Ω1 ∪ · · · ∪ ΩL again has measure zero, and for any
s ∈ S\Ω, Fs is transverse to all the Zl. Now the set S ∩ 2k also has measure zero
and for any s ∈ S\2k,

Γs = {x + ε(x) · s : x ∈ 2k}
is a smooth submanifold of Rn with boundary (and corners). Moreover, if s ∈
S\(Ω ∪2k), then saying that Fs is transverse to Zl is equivalent to saying that Γs

and Zl intersect transversally.
Let us fix one such s and take Γ = Γs to be our desired k-manifold. The homotopy

from 2k to Γ is given by

ht(x) = x + tε(x) · s , t ∈ [0, 1].

Clearly h0 : 2k → 2k is the identity map and h1 maps 2k homeomorphically
onto Γ. For any x ∈ ∂2k, we have ε(x) = 0 because spt(ε) ⊂ int2k. Therefore
ht(x) = x for all x ∈ ∂2k and all t ∈ [0, 1], which is to say that the homotopy fixes
the boundary and, in particular, ∂Γ = ∂2k.

4. Proof of Lemma 1.

4.1. Review of Singular Homology (with integer coefficients). For a quick
introduction to singular homology (and cohomology), we refer the reader to Appen-
dix A of [11]. More details can also be found in the graduate text by [5].

The basic objects of singular homology are equivalence classes of singular sim-
plices in a predetermined topological space. These in turn are modeled on standard
simplices in Euclidean space.

Definition 3. Let K ≥ 0. The standard K-simplex is the convex set ∆K ⊂
RK+1, consisting of all (K + 1)-tuples (y0, . . . , yK) with

yi ≥ 0 , y0 + y1 + · · ·+ yK = 1.

Any continuous map σ from ∆K to a topological space X is called a singular
K-simplex in X.

Let K ≥ 0 be an integer and let CK(X) be the free Z-module obtained by taking
one generator [σ] for each singular K-simplex in X. We call CK(X) the K-th
singular chain group of X. For K < 0, CK(X) is defined to be zero.

To define the equivalence relation on CK(X), we need to introduce the following
boundary operator.

Definition 4. Let σ : ∆K → X be a singular K-simplex in X. The i-th face of σ
is the singular (K − 1)-simplex

σ ◦ λi : ∆K−1 → X,

where the linear embedding λi : ∆K−1 → ∆K is defined by

λi(y0, . . . , yi−1, yi+1, . . . , yK) = (y0, . . . , yi−1, 0, yi+1, . . . , yK).

The homomorphism
∂ : CK(X) → CK−1(X)
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given by
∂[σ] = [σ ◦ λ0]− [σ ◦ λ1] +− · · ·+ (−1)K [σ ◦ λK ]

is called the boundary homomorphism.

It is an exercise in algebra to verify that

∂ ◦ ∂ = 0. (6)

Let ZK(X) be the kernel of ∂ : CK(X) → CK−1(X), and let BK(X) be the image
of ∂ : CK+1(X) → CK(X). By (6), BK(X) ⊂ ZK(X) so the quotient

HK(X) = ZK(X)/BK(X) (7)

makes sense. We call HK(X) the K-th singular homology group of X, and an
element of HK(X) is called a homology class.

Suppose f : X → Y is a continuous map. By composing with f , we get a map

f◦ : {K-simplices in X} → {K-simplices in Y }
which maps σ to f ◦ σ. One can show further that there is an “induced” map

f∗ : HK(X) → HK(Y ).

See Appendix A of [11], or [5] for details.

Definition 5. We call f∗ : HK(X) → HK(Y ) the push forward map of f .

The following is a basic result in homology theory.

Proposition 1. Let f1, f2 : X → Y be continuous maps and suppose that f1 is
homotopic to f2. Then the push-forward maps (f1)∗ : HK(X) → HK(Y ) and
(f2)∗ : HK(X) → HK(Y ) are equal. That is, (f1)∗ = (f2)∗ as maps from HK(X)
to HK(Y ).

Proposition 2. Let m be a positive integer and let Sm be the m-dimensional sphere.
Then

Hi(Sm) ∼=
{
Z if i = 0 or i = m
0 otherwise.

Remark: in the case m = 1, the boundary of S0 is the two points {−1, 1} ∈ R.

Lemma 2. Q\2n is homotopic to Sk−1.

Lemma 3. ∂X2n is homotopic to Sk−1.

Lemma 4. If φ satisfies the Standardized (n, k)-ICP then φ|∂X2n : ∂X2n → Q\2n

induces an isomorphism in homology, that is,

φ∗ : Hr(∂X2n) → Hr(Q\2n)

is an isomorphism for all r.

Proof of Lemma 2. By definition,

2n = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 for all i = 1, . . . , n} (8)

2k = {(x1, . . . , xk) ∈ Rk : |xi| ≤ 1 for all i = 1, . . . , k}
Q = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 + ε for i = 1, . . . , k, and (9)

|xi| ≤ 1− ε for i = k + 1, . . . , n}.
We identify 2k with the cross section

{(x1, . . . , xn) ∈ 2n : xk+1 = · · · = xn = 0}.
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By (8) and (9),

Q\2n = {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1 + ε for i = 1, . . . , k and
|xi| ≤ 1− ε for i = k + 1, . . . , n and
|xj | > 1 for some j}.

If j ≥ k+1, then |xj | ≤ 1−ε < 1; therefore |xj | > 1 is only possible when 1 ≤ j ≤ k.
Thus

Q\2n =





|xi| ≤ 1 + ε for i = 1, . . . , k
(x1, . . . , xn) ∈ Rn : |xi| ≤ 1− ε for i = k + 1, . . . , n

|xj | > 1 for some j, 1 ≤ j ≤ k



 . (10)

Next we define a retraction of Q\2n onto 2k(1 + ε)\2k. For each t ∈ [0, 1],
set ft(x1, . . . , xn) = (x1, . . . , xk, txk+1, . . . , txn). If |xi| ≤ 1 − ε then |txi| ≤ |xi| ≤
1 − ε, so ft(Q\2n) ⊂ Q\2n for all t. Note also that f1 is the identity map and
f0(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0) lies in the set

2k(1 + ε)\2k = {(x1, . . . , xk, 0, . . . , 0) : |xi| ≤ 1 + ε for i = 1, . . . , k and
|xj | > 1 for some j = 1, . . . , k}.

This proves that f0 is homotopic to the identity map and is a retraction. It follows
that Q\2n is homotopic to 2k(1 + ε)\2k.

On the other hand, we can show that 2k(1 + ε)\2k retracts onto ∂2k. For any
x = (x1, . . . , xn), let m(x) = {|xi| : 1 ≤ i ≤ n}. If x 6= 0 then m(x) 6= 0, so
p(x) = 1

m(x) ·x is well-defined. In particular, p is defined on 2k(1+ε)\2k and maps
this set onto ∂2k. The function pt(x) := ( 1

m(x) )
t ·x, for t ∈ [0, 1], gives a homotopy

from p0 = id to p = p1. This proves that p is a retraction.
In conclusion, p ◦ f0 maps Q\2n onto ∂2k and is a homotopy equivalence. As

∂2k is homotopy equivalent to Sk−1, the lemma is proved. 2

We will need a preferred generator for the proof of Lemma 4 below, so let us
specify one now. By Proposition 2 and Lemma 2, Hk−1(Q\2n) ∼= Z has two possible
generators. First, observe that ∂2k has a natural decomposition as a formal sum of
(k − 1)-simplices, and that ∂(∂2k) = 0. It follows that ∂2k represents an element
in Zk−1(∂2k). In fact, the homology class represented by ∂2k generates the group
Hk−1(∂2k) ∼= Z. We denote this class by [∂2k]. Next let i1 : ∂2k ↪→ Q\2n denote
the natural inclusion. Note that i1 is a homotopy inverse to p ◦ f0.

Definition 6. The class [i1] = (i1)∗[∂2k] will be our preferred generator for
Hk−1(Q\2n).

Proof of Lemma 3. By definition,

∂X2n = {(x1, . . . , xn) ∈ 2n : |xj | = 1 for some j = 1, . . . , k }. (11)

For t ∈ [0, 1], define gt : ∂X2n → ∂X2n by

gt(x1, . . . , xn) = (x1, . . . , xk, txk+1, . . . , txn).

Note that if |xi| ≤ 1, then |txi| ≤ |xi| ≤ 1, so indeed gt(∂X2n) ⊂ ∂X2n. As in the
proof of Lemma 2, g1 is the identity map and g0(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0) ∈
∂2k, which proves that g0 ' g1. Thus g0 is a retraction of ∂X2n onto ∂2k.

On the other hand, ∂2k ' ∂Dk = Sk−1, so we have proved

∂X2n ' ∂2k ' Sk−1,

as required.
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Remark. Let i2 denote the natural inclusion of ∂2k into ∂X2n, and note that i2 is a
homotopy inverse to g0. We will take [i2] = (i2)∗[∂2k] to be the preferred generator
of Hk−1(∂X2n) ∼= Z.
Proof of Lemma 4. Let ϕ be a diffeomorphism satisfying (n, k)-ICP, and φ be the
associated form of ϕ in standardized co-ordinates that satisfies the Standardized
(n, k)-ICP. Then φ maps ∂X2n into the set Q\2n. We claim that

i) φ|∂X2n
is homotopic to h|∂X2n

, where h is the “hyperbolic map” defined
by

h(x1, . . . , xn) = ((1 + ε)x1, . . . , (1 + ε)xk, (1− ε)xk+1, . . . , (1− ε)xn); (12)

ii) h|∂X2n : ∂X2n → Q\2n induces an isomorphism in homology.

We begin by proving (i). For each j = 1, . . . , k, let

Qj+ = Q ∩ {xj > +1}, Qj− = Q ∩ {xj < −1}.
Thus, for example, Qj+ consists of all points (x1, . . . , xn) such that |xi| ≤ 1 + ε for
1 ≤ i ≤ k, |xi| ≤ 1− ε for k + 1 ≤ i ≤ n, and xj > +1.

Each of these sets is a product of intervals; namely,

Qj+ = [−1− ε, 1 + ε]k−1 × (1, 1 + ε]× [−1 + ε, 1− ε]n−k

Qj− = [−1− ε, 1 + ε]k−1 × [−1− ε,−1)× [−1 + ε, 1− ε]n−k.

Therefore Qj± is fully contractible.
By the Standardized (n, k)-ICP, φ maps the set

Bj± := ∂X2n ∩ {xj = ±1}
into Qj±. The hyperbolic map h defined by (12) also maps Bj± into Qj±. As Qj±
is contractible, the two maps

φ|Bj± : Bj± → Qj± and h|Bj± : Bj± → Qj±

must be homotopic. Let Hj± : Bj± × I → Qj± be a homotopy between them with
Hj±(·, 0) = φ and Hj±(·, 1) = h.

For any j′ 6= j, Hj± maps the “overlap” (Bj± ∩Bj′±)× I into Qj± ∩Qj′±. The
same is true for Hj′±. But the intersection of Qj± and Qj′± is also a product of
intervals, hence contractible. This implies that we can choose the homotopy maps
Hj± in such a way that they agree on overlaps; i.e., if x ∈ Bj± ∩ Bj′± and t ∈ I,
then Hj±(x, t) = Hj′±(x, t).

Now ∂X2n equals the union, over all j = 1, . . . , k, of Bj+ ∪ Bj−. Thus, given
any (x, t) ∈ ∂X2n × I, we can find j such that x ∈ Bj+ or Bj−. We therefore
construct a homotopy H : ∂Γ × I → Q\2n from φ = H(·, 0) to h = H(·, 1) by
patching together the various maps Hj±. To be precise, if (x, t) ∈ ∂Γ × I, then
choose j ∈ {1, . . . , k} such that x lies in Bj+ or Bj−. Suppose for example that
x ∈ Bj+. Then we define H(x, t) := Hj+(x, t). If x ∈ Bj′± for some other j′ 6= j
in the set {1, . . . , k}, then Hj′±(x, t) = Hj+(x, t) by the remarks of the preceding
paragraph. Thus H is a well-defined map, and (i) is proved.

To prove (ii), we will show that h∗ maps [i2] to [i1]. Thus we need to show that
h∗(i2)∗[∂2k] = (i1)∗[∂2k]. Since i1 and p◦f0 are homotopy inverses, it is equivalent
to show that

(p ◦ f0)∗h∗(i2)∗[∂2k] = [∂2k]. (13)
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Now consider p ◦ f0 ◦ h ◦ i2, which maps ∂2k to itself. It is simple to check that for
any (x1, . . . , xk, 0, . . . , 0) ∈ ∂2k,

p ◦ f0 ◦ h ◦ i2(x1, . . . , xk, 0, . . . , 0)
= p ◦ f0((1 + ε)x1, . . . , (1 + ε)xk, 0, . . . , 0)
= p((1 + ε)x1, . . . , (1 + ε)xk, 0, . . . , 0)

=
1

1 + ε
· ((1 + ε)x1, . . . , (1 + ε)xk, 0, . . . , 0).

Thus p ◦ f0 ◦ h ◦ i2|∂2k
equals the identity map. But the identity map induces the

identity map in homology, so we have proved (13).
Proof of Lemma 1. By transversality, Γ′ = φ(Γ)∩2n is a k-manifold with boundary,
and its boundary equals φ(Γ) ∩ ∂2n. To see that Γ′ 6= ∅, we use Lemma 4. For
suppose that φ(Γ) ∩ 2n = ∅. Then φ(Γ) ⊂ Q\2n and ∂(φ(Γ)) = φ(∂Γ), which
is to say that φ(∂Γ) is a boundary element in Q\2n, i.e., it represents an ele-
ment in Bk−1(Q\2n). By the definition of singular homology (7), [φ(∂Γ)] = 0 in
Hk−1(Q\2n). On the other hand, [φ(∂Γ)] = φ∗[∂Γ] because φ is a diffeomorphism,
and [∂Γ] 6= 0 by our wrap-around assumption. By Lemma 4, φ∗ : Hk−1(∂X2n) →
Hk−1(Q\2n) is an isomorphism, meaning that φ∗[∂Γ] 6= 0, a contradiction. Thus
our assumption on φ(Γ)∩2n must have been false. We conclude that φ(Γ)∩2n is
non-empty. This proves (i).

By the Standardized (n, k)-ICP, φ(Γ) ⊂ Q and so φ(Γ)∩ ∂C2n = ∅. This proves
(ii).

Let ι denote the inclusion ∂X2n ↪→ Q\2n. We have

ι ◦ i2 = i1, (14)

where i1 : ∂2k ↪→ Q\2n and i2 : ∂2k ↪→ ∂X2n denote, as before, the natural in-
clusion maps. Since [i2] generates Hk−1(∂X2n) ∼= Z, there are uniquely determined
integers d, d′ ∈ Z such that

[∂Γ] = d · [i2] and [∂Γ′] = d′ · [i2].
Let A = φ(Γ)\Int(2n). By our transversality assumption, A is a k-manifold

with boundary, and its boundary equals

φ(∂Γ)− ∂Γ′. (15)

This is to say that ∂A is the disjoint union of φ(∂Γ) and ∂Γ′, and that ∂Γ′ is included
with its orientation reversed (hence the minus sign in (15)). By the Theorem of
Whitehead [11], A is triangulable, hence represents a class [A] ∈ Ck(Q\2n) with
the property that ∂[A] = [φ(∂Γ)]− [ι(∂Γ′)]. By the definition of singular homology
(7), we therefore have

[φ(∂Γ)]− [ι(∂Γ′)] = 0 (16)
in Hk−1(Q\2n).

Since φ is a diffeomorphism, [φ(∂Γ)] = φ∗[∂Γ]. From the proof of Lemma 4 we
also know that φ ' h and h∗[i2] = [i1]. Therefore

[φ(∂Γ)] = φ∗[∂Γ] = h∗d · [i2] = d · h∗[i2] = d · [i1]. (17)

On the other hand, by (14),

[ι(∂Γ′)] = ι∗[∂Γ′] = ι∗d′ · [i2] = ι∗(i2)∗d′ · [∂2k] = (i1)∗d′ · [∂2k] = d′ · [i1]. (18)

Combining (16), (17) and (18), we find that d[i1] = d′[i1]. Since [i1] generates
Hk−1(Q\2n), it follows that d′ = d. Thus [∂Γ′] = [∂Γ], and we are done.
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