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Abstract. Secure computation consists of protocols for secure arith-
metic: secret values are added and multiplied securely by networked pro-
cessors. The striking feature of secure computation is that security is
maintained even in the presence of an adversary who corrupts a quorum
of the processors and who exercises full, malicious control over them.
One of the fundamental primitives at the heart of secure computation
is secret-sharing. Typically, the required secret-sharing techniques build
on Shamir’s scheme, which can be viewed as a cryptographic twist on
the Reed-Solomon error correcting code. In this work we further the
connections between secure computation and error correcting codes. We
demonstrate that threshold secure computation in the secure channels
model can be based on arbitrary codes. For a network of size n, we then
show a reduction in communication for secure computation amounting
to a multiplicative polylogarithmic factor (in n) compared to classical
methods for small, e.g., constant size fields, while tolerating t < ( 1

2
− ǫ)n

players to be corrupted, where ǫ > 0 can be arbitrarily small. For large
networks this implies considerable savings in communication. Our re-
sults hold in the broadcast/negligible error model of Rabin and Ben-Or,
and complement results from CRYPTO 2006 for the zero-error model of
Ben-Or, Goldwasser and Wigderson (BGW). Our general theory can be
extended so as to encompass those results from CRYPTO 2006 as well.
We also present a new method for constructing high information rate
ramp schemes based on arbitrary codes, and in particular we give a new
construction based on algebraic geometry codes.
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1 Introduction

Secure computation consists of protocols for secure arithmetic: secret values are
added and multiplied securely by networked processors. The striking feature
of secure computation is that security is maintained even in the presence of
an adversary who corrupts a quorum of the processors and who exercises full,
malicious control over them. A crowning achievement of cryptography in the late
’80s was the following result (stated informally):

Any function that can be computed, can be computed securely.

This statement (appropriately formalized) was shown in the computational
setting by Goldreich, Micali and Wigderson [16] and in the information-theoretic
setting by Ben-Or, Goldwasser and Wigderson [2] and Chaum, Crépeau and
Damgaard [5]. Our focus in this paper will be on the information-theoretic set-
ting.

One of the fundamental primitives at the heart of information-theoretic se-
cure computation is secret-sharing. Typically, the required secret-sharing tech-
niques build on Shamir’s scheme, which can be viewed as a cryptographic twist
on the Reed-Solomon error correcting code. In this work we further the study
on the connections between secure computation and error correcting codes. We
demonstrate that threshold secure computation in the secure channels model
can be based on arbitrary codes, in two steps.

First we identify sufficient, specialized conditions on a secret sharing scheme
in order that it can serve as an essentially seamless replacement of Shamir’s
scheme in the context of secure computation. Second, we show how arbitrary
error correcting codes give rise to such dedicated secret sharing schemes, and
we prove various bounds on the relevant achievable parameters. We also analyze
high information rate ramp schemes based on arbitrary codes, and in particular
we give a new construction based on algebraic geometry codes.

A t-threshold secret-sharing scheme among n players typically has the fol-
lowing complementary pair of guarantees: (1) Privacy: The shares of any set of
at most t players reveal no information about the secret, and (2) Reconstruction:
The shares of t+1 players, together, reveal the entire secret. Linear threshold se-
cret sharing schemes are known to be equivalent to maximum-distance-separable
(MDS) codes. By known lower bounds on MDS codes (or equivalently, on ma-
troids), the smallest possible field K on which the shares can lie is of size at least
max{n− t, t+ 2} ≥ n+2

2
6. We show that this obstacle can be circumvented by

bounding corruption tolerance an arbitrary constant fraction of n away from its
maximal value ⌊n−1

2 ⌋.
In turn, we use this result to improve the existing results on information-

theoretic secure computation. The existing approaches, which use variants of
Shamir’s threshold secret-sharing scheme, incur a communication overhead as
the size of the working field is larger than n due to Shamir’s scheme. This can

6 In fact, the so-called Main Conjecture on MDS codes implies that |K| is at least n
minus a constant.



amount to a multiplicative factor of a (large) power of logn bits. Our results
alleviate this and allow, for instance, constant size fields K as opposed to linear
size, while corruption tolerance t is at most an (arbitrary) constant fraction of n
away from optimal. Such a (small) loss is unavoidable over sub-linear size fields
due to (the above-mentioned) impossibility results from combinatorics.

Concretely, by using Gilbert-Varshamov type of arguments, we show that for
each ǫ there is a constant size field K and an infinite family of quasi-threshold
(i.e., ramp) parameters (ti, ni) such that for each of them there is an ideal (or
information rate 1/2) linear secret sharing scheme over K that has multiplica-
tion, ti-privacy and (ni − ti)-reconstruction and (1

2 − ǫ)ni ≤ ti <
1
2ni. Other

interesting examples include schemes over F2 where corruption tolerance t is
about n

10 , or in fact, t ≈ n
5 for n ≤ 100.

Trading corruption tolerance for small fields was first used in [6] where a
class of algebraic geometric secret sharing schemes was introduced that are ideal,
linear, offer t-privacy and (n − 2t)-reconstruction and satisfy the strong multi-
plication property rather than only the multiplication property. It was shown
there how this enables low-communication threshold multi-party computation
over small (e.g. constant) size fields in the zero-error/perfect security/active ad-
versary model of Ben-Or, Goldwasser and Wigderson (BGW) [2]. This result
owes to the special multi-linear algebraic structure induced by rational function
evaluation (for the strong multiplication property, which also implies efficient
error correction algorithms), the existence of families of algebraic curves with
many rational points (to enable a small field), and reductions from secure com-
putation to these dedicated secret sharing schemes. Of course, the techniques
from [6] can be adapted to obtain the quasi-threshold schemes of the type we
consider in this work (at least when |K| is a square); their properties are different
but similar enough to facilitate easy adaptation.

However, our first point is that quasi-threshold schemes of the type we con-
sider here are much easier to design. In fact, they can be constructed from
arbitrary (or even randomly chosen) error correcting codes. Our second point
is that, although these quasi-threshold schemes cannot be used as the basis for
BGW type of secure computation (as opposed to the schemes from [6]), they
can serve as an essentially seamless replacement of Shamir’s scheme in known
secure computation protocols in the broadcast model of Rabin and Ben-Or (such
as [26, 9, 12]) supplemented with preprocessing. In this model a broadcast prim-
itive is given and small, non-zero errors are tolerated, but corruption tolerance
is greater, i.e., up to 1

2n instead of 1
3n as in the BGW model. An important

advantage of the use of our quasi-threshold schemes here is that they can lead to
much more communication-efficient protocols. More concretely, when operating
in Beaver’s preprocessing model [1], we can obtain a reduction in communication
amounting to a multiplicative polylogarithmic factor (in n), while tolerating a
number of corrupted players that is arbitrarily close to the optimal value of n/2.
Note that this may offer a considerable gain in case of very large networks. For
similar results in the zero-error BGW model, see [6].



We also consider high information rate ramp schemes based on arbitrary
codes. These are schemes where the secret is a vector of field elements, but shares
consist of a single field element (or at least a shorter vector than the secret).
This of course is impossible in perfect secret sharing schemes, which necessarily
have shares of size at least the size of the secret. In ramp schemes one has t-
privacy and r-reconstruction, and one does care if there are sets of size in between
these bounds whose joint shares reveal partial information about the secret. The
earliest example of such a scheme we are aware of is the one by Blakley and
Meadows [4] (see also [19, 24] in the references therein), which is a variation on
Shamir’s scheme. We give a full treatment of linear ramp schemes from arbitrary
error correcting codes, and show various bounds. As an application we give a
new scheme based on algebraic geometry that improves the high information
rate scheme given at the end of [6].

1.1 Organization of the paper

This paper is organized as follows. In Section 3 we study linear quasi-threshold
secret sharing schemes with multiplication and show how these can be con-
structed from codes. Additionally, we prove several bounds on the achievable
parameters. We also argue there how these schemes can essentially seamlessly
replace Shamir’s scheme in secure computation in the Rabin/Ben-Or model with
preprocessing and indicate what savings can be achieved due to our results.

In Section 4.1 and Section 4.2, we describe a general approach for construct-
ing high information rate ramp schemes from linear codes. Finally, in Section 4.3,
we present a new high information rate ramp scheme based on algebraic geome-
try that improves the one presented in [6] and demonstrate that we can obtain
high information rate ramp schemes from randomly generated codes and can
predict bounds on their parameters with high probability.

2 Preliminaries and Definitions

2.1 Basic Definitions from Coding Theory

We establish notational conventions that we will use throughout this paper. Let
K be a finite field.

Definition 1 The Hamming weight wH(c) of a vector c ∈ Kn is the number of
non-zero positions in c. For a subspace C ⊂ Kn, the minimum distance dmin(C)
is defined as min{wH(c) | c ∈ C\{0}}.

An [n, k, d]-code C over K is defined to be a k-dimensional subspace of Kn

with dmin(C) = d.

Definition 2 The dual code C⊥ for a code C consists of all vectors c∗ ∈ Kn

such that 〈c∗, c〉 = 0 for all c ∈ C, where 〈·, ·〉 denotes the standard inner product.
Whenever d is used to denote the minimum distance of C, d⊥ is used to denote
the minimum distance of C⊥.



2.2 Threshold and Ramp Secret Sharing Schemes

In what follows, the reader is assumed to be familiar with linear secret sharing
schemes (For details, see [10, 11, 6]). However, we give a brief survey of the most
relevant properties below.

A secret-sharing scheme with t-privacy and r-reconstruction over a field K
is an algorithm that, on input a secret s0 ∈ Kd0, outputs a vector (s1, . . . , sn)
of shares, where si ∈ Kdi for certain di > 0, such that for any A ⊂ {1, 2, . . . , n}
the following properties hold:

1. If |A| ≥ r, then the shares (si)i∈A jointly determine the value s0.
2. If |A| ≤ t, then the shares (si)i∈A jointly give no information about s0.

Such a scheme is called a t-threshold secret-sharing scheme when r = t + 1.
In general (that is, when this is not the case), the scheme is called a ramp
(quasi-threshold) scheme with t-privacy and r-reconstruction.

The sets A for which the shares allow for reconstruction are referred to as
the accepted sets, whereas the sets for which the shares give no information
are called the rejected sets. The information rate of a secret sharing scheme is
d0/max{d1, . . . , dn}. A secret sharing scheme with information rate 1, which is
maximal for threshold secret sharing schemes, is said to be ideal.

A secret sharing scheme is said to be linear if for any two secrets s and
s′ and respective share vectors (s1, s2, . . . , sn) and (s′1, s

′
2, . . . , s

′
n), the vectors

(s1 + s′1, s2 + s′2, . . . , sn + s′n) and (λs1, λs2, . . . , λsn) are valid share vectors for
the secrets s+s′ and λs respectively. It is said to have the multiplication property
if given any two full share vectors (s1, s2, . . . , sn) and (s′1, s

′
2, . . . , s

′
n) for secrets

s and s′, there is a vector r such that 〈r, (s1s′1, s2s′2, . . . , sns
′
n)〉 = ss′, where 〈·, ·〉

denotes the standard inner product. It has strong multiplication with respect to
a t-adversary structure if the multiplication property holds with respect to any
combination of n− t shares. The latter property allows for reconstruction of the
secret after a pooling of all shares, even when the shares for up to t indices are
replaced by random values.

3 Linear Ramp Schemes with Multiplication from Codes

3.1 Massey’s Secret Sharing From Codes

Massey [22, 23] gave the following construction of a secret sharing scheme from
an error correcting code. Let C be an [n + 1, k, d]-code over a finite field K.
We use coordinates (c0, c1, . . . , cn) for codewords. The dual code C⊥ is then an
[n + 1, n + 1 − k, d⊥]-code. We tacitly assume in this section that C is non-
degenerate, i.e., that the minimum distances of both C and C⊥ are greater than
1.

Let s ∈ K be a secret value. Select a codeword c = (c0, c1, . . . , cn) ∈ C
uniformly at random such that c0 = s, and define the share-vector as (c1, . . . , cn).
Let LSSS(C) denote this linear secret sharing scheme. The access structure Γ (C),
i.e., the collection of accepted sets, is as follows. For a vector x, define sup(x) =



{i : xi 6= 0}. Consider the set V0 of all c∗ ∈ C⊥ such that c∗0 = 1. Then
Γ (C) = {sup(c∗) \ {0} : c∗ ∈ V0}.

We now extend this idea in several ways in order to obtain the claimed quasi-
threshold schemes, and we prove bounds on their existence.

3.2 Extensions of Massey’s Idea

We first report the following consequence (which appears to be part of folklore)
about the ramp parameters of this scheme and include a proof.

Theorem 1 Let C be an [n+ 1, k, d]-code over a finite field K. Then LSSS(C)
offers linearity, (d⊥ − 2)-privacy and (n− d+ 2)-reconstruction.

Proof. Linearity is clear; the sum of two code-words is a share-vector for
the sum of the secrets, and likewise for scalar multiplication. First, we argue that
Γ (C) = (Γ (C⊥))∗, i.e., the access structure of LSSS(C) is the dual of the access
structure of LSSS(C⊥), and vice versa.7 Indeed, A ∈ Γ (C) if and only if there
is c∗ ∈ C⊥ with c∗0 = 1 and ci = 0 for all i ∈ {1, . . . , n} \ A (:= A). The latter
is a share vector with secret equal to 1 in LSSS(C⊥), with shares equal to 0 for
A. The existence of such a share vector is equivalent to A 6∈ Γ (C⊥). Now, from
the characterization of Γ (C) it is immediate that LSSS(C) rejects all sets of size
d⊥−2. Since LSSS(C⊥) rejects all sets of size d−2 and since Γ (C) = (Γ (C⊥))∗,
it must be that LSSS(C) accepts all sets of size n− d+ 2. △

The exact privacy threshold tmax is equal to −2 + min{wH(c∗) : c∗ ∈ C⊥ :
c∗0 = 1}, i.e., this is the largest cardinality such that the joint shares of any set
of this cardinality give no information on the secret. The exact reconstruction
threshold rmin is equal to n+ 2 − min{wH(c) : c ∈ C : c0 = 1}.

For A ⊂ {1, . . . , n}, let φA(C) denote the code restricted to the coordinates
from the set i ∈ A ∪ {0}, i.e., consisting of all codewords of C stripped of the
coordinates not in A ∪ {0}.

Definition 3 A self-dual code C is one for which C = C⊥. A code is weakly
self-dual if it there is a diagonal matrix W ∈ Kn+1,n+1 such that w00 = 1 and
Wc ∈ C⊥ for all c ∈ C. A code C is t-locally weakly self-dual if for all sets
B ⊂ {1, . . . , n} with |B| = n− t the code φB(C) is weakly self-dual.

The definition of self-dual is standard in the coding literature, while our def-
inition for weakly self-dual codes is a slight relaxation of the notion of quasi
self-orthogonal8 codes. The t-local variation appears to be novel. Simple exam-
ples are the following: the [n+ 1, t+ 1, n− t+ 1]-Reed Solomon code is weakly
self-dual if t < n

2 and t-locally weakly self-dual if t < n
3 . The following theorem

demonstrates the relevance of these notions in secure computation.

7 The dual Γ ∗ is defined as A ∈ Γ ∗ if and only if {1, . . . , n} \ A 6∈ Γ . It holds that
(Γ ∗)∗ = Γ .

8 For quasi self-orthogonal codes, the matrix W is required to be regular.



Theorem 2 If C is a self-dual code of length n + 1 with minimum distance d,
then LSSS(C) offers linearity, t-privacy and (n−t)-reconstruction with t = d−2,
and it has the multiplication property. If C is weakly self-dual, then C has the
multiplication property and t = d⊥ − 2 if the matrix W is regular and otherwise
t = min{d− 2, d⊥ − 2}. If C is t-locally weakly self-dual then LSSS(C) has the
strong multiplication property with respect to the t-adversary structure.

Proof. Since d = d⊥ for self-dual codes, the privacy and reconstruction
claims follow from Theorem 1. From 〈c, c′〉 = 0 for all c, c′ ∈ C we get c0c

′
0 =

−c1c′1 − · · · − cnc
′
n. This implies the multiplication property (see [10, 11, 6] for

the definition). For weakly self-dual codes, if W is regular then the minimum
distance of WC is the same as that of C. Since WC ⊂ C⊥, we must have
d⊥ ≤ d, and we apply Theorem 1. As to multiplication, we now have 〈Wc, c′〉 = 0,
so c0c

′
0 = −w1c1c

′
1 − · · · − wncnc

′
n. The claim about the strong multiplication

property is now obvious from the definition. △
We can generalize this as follows, using a twist on an idea from [10]. Let C

be a code of length n + 1 and minimum distance d. Consider the linear secret
sharing scheme LSSS†(C) defined as follows. Take the secret s, and generate
random shares (c1, . . . , cn) according to LSSS(C), and generate independently
random shares (c∗1, . . . , c

∗
n) according to LSSS(C⊥). The share vector is then

defined as ((c1, c
∗
1), . . . , (cn, c

∗
n)).

Theorem 3 Let C be a code of length n + 1 and minimum distance d. Define
t(C) = min{d− 2, d⊥ − 2}. Then: LSSS†(C) offers t(C)-privacy and (n− t(C))-
reconstruction and it has the multiplication property. In particular, t(C) < n/2.

The claim that t(C) < n/2 can for instance be verified by applying the Singleton-
bound to C as well as to C⊥. Note however that this scheme has information
rate 1/2.

Strong multiplication is much more elusive and is not achieved by the con-
struction above. In fact, the only way known to ensure strong multiplication
(with respect to the t-adversary structure) for LSSS(C) is when C is an alge-
braic geometry code defined by the Riemann-Roch space of a divisor of degree
2g + t on a genus g algebraic curve over a finite field, where 3t < n − 4g [6]. If
2t < n− 4g it is weakly self-dual. For the special case where g = 0, these corre-
spond to the well-known Reed-Solomon codes with the appropriate parameters.

3.3 Existence and Bounds

Our main objective in this section is to prove several lower bounds on the max-
imal value T taken over all values t = min{d − 2, d⊥ − 2} as C ranges over all
K-linear codes of length n + 1. In the following, an [n + 1, k]-code C is simply
a k-dimensional subspace of F

n+1
q and q is some fixed prime power. Where the

parameters n and k are clear, [n+ 1, k]-code is simply abbreviated to code.



General lower bounds on T In Theorem 5 we give a general lower bound
on the maximal t. In Corollary 2 we treat the general case when K = F2. In
Theorem 6 we show that one can asymptotically get arbitrarily close to 1

2n, over
some constant size field. We also treat in that same corollary the parameterized
case where C is randomly selected and a security parameter regulates the error
probability that t is below a certain bound.

Definition 4 Let n ∈ Z>0 be fixed. Then T (n + 1, q) := maxC t(C), where C
ranges over all subcodes of F

n+1
q . Similarly, T ′(n+ 1, q) := maxC t(C), where C

ranges over all weakly self-dual subcodes of F
n+1
q .

Definition 5 Let Ck have the uniform distribution over the set of [n + 1, k]-
subcodes of F

n+1
q . Then we define

T (n+ 1, q,m, k) := max{d− 2 : P (min{dmin(Ck), dmin(C⊥
k )} < d) < 2−m}

and T (n+ 1, q,m) := maxk T (n+ 1, q,m, k).

It is easy to see that T (n+ 1, q) ≥ T (n+ 1, q, 0). The following lemma is trivial.

Lemma 1 Suppose k ≤ n. For each pair (x, y) with x ∈ F
k
q \{0} and y ∈ F

n
q \{0}

there exists an n× k matrix M of rank k such that Mx = y.

The following theorem bounds the probability that a randomly chosen code
has a minimum distance less than some fixed value d. It is used for most of the
bounds that follow later.

Theorem 4 Let C have the uniform distribution over the set of [n, k]-subcodes
of F

n
q . Furthermore assume that d = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃y ∈ C : wH(y) < d) < qk+n(Hq(α)−1),

where Hq(λ) = λ logq(q − 1) − λ logq λ− (1 − λ) logq(1 − λ).

Proof. Let H have the uniform distribution over the set of n×k matrices of
rank k over Fq. Every such matrix corresponds to an ordered basis for a subcode
V of F

n
q . Since there is a one-to-one correspondence between the ordered bases

for V and the linear isomorphisms between V and F
k
q , each such subcode has the

same number of ordered bases. Therefore, the variable H induces a uniformly
random selection of an [n, k]-subcode of F

n
q .

Fix some non-zero x ∈ F
k
q . The variable Hx then corresponds to a uniformly

random selection from F
n
q , which can be seen as follows: First, by Lemma 1 for

any non-zero y ∈ F
n
q there exists an n×k matrix M of rank k such that Mx = y.

Now fix some y ∈ F
n
q and assume that Mx = y for some n×k-matrix M of rank

k. Then #{M ′ : M ′x = y} = #{M ′ : (M −M ′)x = 0} = #{M ′ : M ′x = 0},
so for every y ∈ F

n
q there are the same number of matrices of rank k such that

Mx = y.



Now let x range over the elements of F
k
q . It follows that

P (∃y ∈ C : wH(y) < d) = P (∃x ∈ F k
q : wH(Hx) < d) ≤

∑

x∈(Fk
q)∗

P (wH(Hx) < d)

=
qk − 1

qn − 1
·

d−1
∑

i=1

(

n

i

)

(q − 1)i <
qk

qn
· (q − 1)d

d−1
∑

i=1

(

n

i

)

<
qk

qn
· qαn logq(q−1) · 2nH2(α) = qk+n(Hq(α)−1).

△
Since there is a one-to-one correspondence between subcodes C of F

n
q and

their dual codes C⊥, the random variable C⊥ corresponds to a uniformly random
selection from the set of [n, n − k]-subcodes of F

n
q . Therefore, we immediately

obtain the following corollary.

Corollary 1 Let C have the uniform distribution on the set of [n, k]-subcodes
of F

n
q . Furthermore assume that d∗ = αn ∈ Z, where 0 < α < 1

2 . Then

P (∃y ∈ C⊥ : wH(y) < d∗) < qnHq(α)−k.

Using the fact that −λ lnλ− (1−λ) ln(1−λ) < 3.3λ for 1/10 ≤ λ ≤ 1/2, we
obtain that

Hq(λ) < λ logq(q − 1) − 3.3

ln q
λ (1)

for 1/10 ≤ λ ≤ 1/2. This gives rise to the following theorem.

Theorem 5 T (n+ 1, q,m) ≥ ⌊β(n+ 1, q,m)⌋ − 2 with

β(n+ 1, q,m) =
(n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
,

provided that ⌊β(n+ 1, q,m)⌋ ≥ n/10.

Proof. Set k = (n+ 1)/2 and let C be as in Theorem 4. By Theorem 4 and
Corollary 1,

P (min{dmin(C), dmin(C⊥)} < d) ≤ P (dmin(C) < d) + P (dmin(C⊥) < d)

< 2 · q(n+1)Hq(α)−(n+1)/2.

We want P (min{dmin(C), dmin(C⊥)} < d) < 2−m. Filling in (1) and rewriting,
we see that this is the case if

d ≤ (n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
·

△



Corollary 2 If n ≥ 21, then T (n+ 1, 2) ≥ ⌊0.1n⌋ − 2.

Theorem 6 Fix any arbitrarily small ǫ > 0 and any m ∈ Z>0. Then there exists
a fixed finite field Fq over which for infinitely many n there exist [n+ 1, k]-codes
C ⊂ F

n+1
q with (1/2 − ǫ)n ≤ t(C) ≤ n/2 where such a code can be selected with

probability at least 1 − 2−m using a random selection among the [n, k]-subcodes
of F

n+1
q .

Proof. Let d be the minimum distance of C and d⊥ the minimum distance
of C⊥. By Theorem 3, t(C) < n/2. Therefore, it suffices to show that (d − 2)
and (d⊥ − 2) can simultaneously get arbitrarily close to n/2 (relative to n) with
probability at least 1 − 2−m.

By Theorem 5,

T (n+ 1, q,m) ≥ β(n+ 1, q,m) − 2 =
(n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
− 2

and we have that

lim
q→∞

(n+ 1) ln q − 2(m+ 1) ln 2

2 ln(q − 1) + 6.6
− 2 = lim

q→∞

(n+ 1) ln q

2 ln(q − 1) + 6.6
− 2

≥ lim
q→∞

(n+ 1) ln q

2 ln q + 6.6
− 2.

Since limx→∞
x

x+3.3 = limy→∞
y−3.3

y = limy→∞(1 − 3.3
y ) = 1, the final term

converges to (n + 1)/2 − 2 as q → ∞. We can therefore for any δ > 0 select
a q large enough such that T (n, q,m) ≥ n/2 − 3/2 − δ. For large enough n,
(3/2 + δ)/n < ǫ and the claim follows. △

So far we have assumed a random selection from the set of [n, k]-subcodes
of F

n
q . The lemma below demonstrates, together with the proof of Theorem 4,

that we can in fact perform this random selection by selecting n× k matrices at
random, where we obtain a matrix of rank k with probability at least 1/4.

Lemma 2 The probability that a randomly selected n×k-matrix over Fq has full
rank is larger than 1 − 1/q − 1/q2.

Bounds from (Weakly) Self-Dual Codes In Corollary 3 we prove a general
lower bound on T for binary self-dual codes, and Theorem 8 shows that for
n < 100 the situation is much better than the bound indicates. We are especially
interested in self-dual codes, because secret sharing schemes based on self-dual
codes do not suffer from the 1/2 information rate loss that occurs in the general
case. Finally, in Theorem 9 we prove a much better lower bound for weakly
self-dual codes based on algebraic geometry, and not random codes. Note that
the results based on algebraic geometry are only known to hold if the size of the
field is a square.



Theorem 7 Let n be any positive integer and let dGV be the largest integer such
that

∑

0<i<d

2|i

(

n

i

)

< 2n/2−1 + 1.

Then there exists a self-dual binary code of length n and minimum distance at
least dGV .

Proof. See [21, 29, 27]. △

Corollary 3 Fix ǫ > 0. For large enough n, T ′(n, 2) ≥ ⌊(δ − ǫ)n⌋ − 2, where
δ ≈ 0.11002786 is any truncated approximation of the unique solution less than
1/2 of H2(δ) = 1/2.

Proof. ([21, 29, 27]) Let d = α(n + 1). Since for α < 1/2,
∑

0<i<d

(

n+1
i

)

≤
2(n+1)H(α), the conditions of Theorem 7 are met if

(n+ 1)H(α) ≤ n+ 1

2
− 1 ⇔ H(α) ≤ 1

2
− 1

n+ 1
.

The solution for α then comes arbitrarily close to δ as n increases.
△

Theorem 8 There exist self-dual binary codes C of length n + 1 < 100 for
which dmin(C) > n/5. In particular, there exist self-dual binary codes C with
the following parameters:

n+ 1 dmin(C)
12 4
22 6
24 8
46 10
48 12

Proof. See [14]. △

Theorem 9 When we take the maximum over algebraic geometry codes, then

T (n+ 1, q2) >

(

1

2
− 1

q − 1

)

n.

Proof. This follows from a suitable choice of parameters for algebraic geom-
etry codes and their duals and the existence of Garcia-Stichtenoth curves, using
techniques similar to those in [6]. △
For a corresponding result that ranges over t-locally weakly self-dual codes,
see [6].



3.4 Application to VSS and Secure Computation

Using the results from Sections 3.2 and 3.3, we are now ready to discuss the fact
that our specialized secret sharing schemes can essentially seamlessly replace
Shamir’s scheme in the broadcast model of Rabin/Ben-Or, yielding significant
reductions in communication when working over a small field. More concretely,
when operating in Beaver’s preprocessing model [1] with a network of size n, this
results in a reduction in communication amounting to a multiplicative polylog-
arithmic factor (in n) in the on-line phase, while tolerating (1

2 − ǫ)n corrupted
players, where ǫ > 0 is arbitrarily small. Note that this may offer a considerable
gain in case of very large networks. For similar results in the zero-error BGW
model, see [6].

As an illustration, Theorem 6 together with Theorem 3 implies that for any
ǫ > 0, there exists a (fixed) finite field K and an infinite family of specialized
secret sharing schemes tolerating a (1

2 − ǫ)n-fraction of corrupted players. We
now focus on the communication-efficient protocol of Cramer, Damgaard and
Fehr [12] and outline the main changes necessary to enable the use of these
specialized secret-sharing schemes.The CDF protocol is stated in the broadcast
model of Rabin and Ben-Or [26] supplemented with a preprocessing phase as in-
troduced by Beaver [1]. The claimed reduction in communication will be achieved
in the on-line phase of the adapted CDF protocol.

The model of Rabin and Ben-Or assumes the presence of a broadcast chan-
nel and induces a non-zero (negligible) error probability. In Beaver’s model, an
independent preprocessing phase is implemented, which can take place even be-
fore the selection of the type of computation, that is used to compute VSSes
of random values and secret-shared “multiplication tables” of random values.
The attractive feature of this model is that, during the subsequent on-line phase
when the actual computation is performed, players only need to open a constant
number of VSSes for every secure multiplication (which saves a lot of commu-
nication). Moreover, no secure channels are required at all during this on-line
phase, as all communication is by broadcast. 9

Briefly, the main changes are as follows. First, in VSS we modify the usual
bivariate Shamir-sharing by using a technique from [10] for extending a linear
secret sharing scheme so as to enable the pair-wise checking protocols for VSS.
This is by having the fixed secret sharing matrix operating on random symmetric
matrices, rather than on random vectors. This can trivially be adapted to our
scenario here. Exactly as in the CDF protocol, the resulting two-level secret-
sharings are then augmented with unconditionally secure Information Checking
(IC) signatures. This completes the basis for VSS with a two-level sharing, where
all shares and sub-shares are signed. Multiplication of VSS’ed values can be
performed based on the linearity of the scheme and the multiplication property,
while addition essentially comes for free due to linearity of the VSS itself.

The preprocessing in the CDF protocol is a secure multi-party computation
that prepares VSSes of random multiplication tables, as well as VSSes of random

9 In some implementations broadcast isn’t even necessary in the on-line phase, but in
our case it is.



inputs of players. The point however, is that by a specialized secure multi-party
computation the CDF preprocessing strips off one layer of shares, resulting in
VSSes with just a single layer of signed shares. This makes an on-line phase
possible that is much more communication-efficient. We assume now that the
security parameters are set so that these signatures in these one-level sharings
are correct except with negligible probability. This can be done by repeating the
information checking step sufficiently many times; the total amount of commu-
nication in this preprocessing phase would be the same as in CDF though, since
our field is small.

In the on-line phase each player first VSSes his real inputs, by broadcasting
the difference of this input with the random VSSed input that he has been
given in the pre-processing. The corresponding VSS is accordingly updated (non-
interactively). Secure computation in the on-line phase can subsequently take
place. Note that, as opposed to CDF, we are working here over a constant size
field. This means that, though the signatures themselves are correct with high
probability as a result of the CDF preprocessing as instructed above, they are “so
small” (as a matter of fact, equal to field elements) that successful forgeries can
be constructed with high probability. Thus, when opening such a (stripped) VSS,
a corrupted player could in principle make an individual honest player accept
a false share with high probability, by guessing the “small signature value” for
this individual player. An additional concern would be the following. For their
use in secure addition and secure multiplication, these signatures enjoy a certain
linearity property [9]. This requires, for each ordered pair of players, a secret
key part held by one of those players. This part remains fixed throughout the
protocol. Now, this fixed key part can be extracted from an honest player in a
single successful forgery, which, as we have seen above, has a high probability of
success. So, at first sight, there seems to be a risk that security might degrade
fatally over time, if there was any in the first place.

What saves the day completely is the ǫ-gap with n/2 in the number of cor-
rupted players, in combination with a simple elimination strategy regarding cor-
rupted players. Consider a corrupted player, and focus on his very first attempt
at cheating in the on-line phase. It is easy to see that if he doesn’t modify his
correct share, he can predict the behavior all of all honest players; rejection if the
corresponding correct signature was modified and acceptance otherwise. This is
due to the fact that the signature is deterministic given all secret information
held by the receiver and the purported share. So, he cannot gain advantage un-
less he modifies the correct share. In our adaptation of the CFD protocol, we
instruct that he broadcasts that purported share. Thus, if the correct share is
modified, he must also modify the corresponding correct signatures for many
honest players individually. More precisely, we instruct that a purported share
is accepted only if a majority of the players individually accept it. This is done
by local verification of individual signatures followed by majority voting using
broadcast. 10 This means that he must guess the signatures for roughly ǫn hon-

10 There is a slightly more sophisticated strategy involving error correction that gives
still better error probabilities.



est players, so as to get a majority (assuming that the adversary appropriately
coordinates this with the actions of the other t − 1 corrupted players). Now, if
the field size |K| is, say, about 2/ǫ, then this probability is exponentially small
in n. Note that we can always replace our original fixed finite field K with a
large enough fixed extension field so that this condition holds, without changing
the other parameters and properties of the underlying specialized secret sharing
scheme. Thus, if a corrupted player makes his first attempt, he will be caught in
the voting phase with very high probability, and he is subsequently eliminated
from the network. This also means that the entropy of the fixed secret keys of
all honest players remains essentially intact, so the error probability analysis
is essentially the same throughout the on-line phase if n is indeed very large.
The network then moves to the next computation with the remaining players,
applying the same strategy as above. All in all, this reduces the communication
by a multiplicative factor (logn)2, due to the fact that in the stripped VSS each
of the n shares now carries a signature for each individual receiving player that
is a logn factor smaller.

A Concrete Example. The case K = F2 is especially interesting, since the alge-
braic geometry results have no known strong bearing on this case. Our results
show that in the secure channels model (passive case), secure multiplication over
F2 can be done with just n2 bits communication, with corruption tolerance of a
constant fraction of n. This saves a multiplicative factor of O(log n)2 bits com-
pared to the standard approach based on Shamir’s scheme. For n below 100,
about 20 percent of the network may be corrupted, while the underlying scheme
is ideal due to the use of a self-dual code. For instance, with n = 48 − 1 = 47,
an adversary corrupting t = 12 − 2 = 10 players can be tolerated. In the ac-
tive adversary case (with preprocessing, as in [12]), the savings also amount
to a multiplicative factor of O(log n)2 bits. For large networks these savings in
communication can be rather substantial.

4 Ramp Schemes with High Information Rate

In a secret sharing scheme each subset of the player set is either rejected, which
means that the shares held by the players in the given set jointly do not give any
information about the underlying secret-shared value, or it is accepted, which
means that those shares jointly determine that secret uniquely. In other words,
there is no way in between. As a consequence (by an argument very similar to
the one used to show that the key is at least the size of the plain-text in the
perfectly secure one-time pad encryption scheme), the size of a share is at least
the size of the secret.

In what is sometimes called a non-perfect secret sharing scheme, there is a
third category of subsets, consisting of subsets whose joint shares gives some
partial (but not full) information about the secret. In such schemes it is possible
to have high information rate, i.e., the size of a share may be much smaller than
the size of the secret.



Ramp schemes are a special case, and a variation on Shamir’s threshold secret
sharing scheme constitutes a well-known example [13]. This goes as follows. Let
K be a finite field with |K| > n+ ℓ, let x1, . . . , xℓ, y1, . . . , yn ∈ K be distinct and
let the yi’s be non-zero. Let τ, ℓ be positive integers with 1 ≤ ℓ ≤ τ . Consider a
secret vector α ∈ Kℓ of length ℓ. Sample a polynomial f(X) ∈ K[X ] uniformly at
random such that its degree is at most τ and such that f(x1) = α1, . . . , f(xℓ) =
αℓ, and define the shares as s1 = f(y1), . . . , sn = f(yn). This is a scheme on n
players, and using Lagrange interpolation one proves that all player sets of size
at least τ + 1 are accepted, while all player sets of size at most τ + 1 − ℓ are
rejected. Note that the scheme has information rate ℓ, i.e., each player gets one
element of K as a share while in fact the secret is a K-vector of length ℓ. In other
words, this is an (n, τ + 1, τ + 1 − ℓ, ℓ)-ramp scheme over K. It is also linear in
that each share is a K-linear combination of the coordinates of the secret vector
and (random) field elements.

An alternative [7] is to encode the secret vector in the first ℓ lower order
coefficients of the polynomial f instead. This yields a ramp scheme with the
same parameters, except that the requirement on the size of the field K can be
relaxed, namely, |K| > n suffices here. Later we analyze this scheme in terms of
our general results from Section 4.1 and in Section 4.3 we generalize this result
in terms of algebraic geometry codes.

Interestingly, these two schemes give rise to complementary applications in
secure computation. The first one to parallel secure multi-party computation
with good amortized communication complexity [13], and the second to secure
atomic multiplication with low communication [7].

We generalize Massey’s scheme from Section 3.1 to high information rate
ramp schemes in Section 4.1. In Section 4.2, we give a completely general con-
struction that does not consume codelength (which corresponds to the number
of players in the scheme) for an increased information rate. As an application
we use this theory to analyse the alternative high information rate ramp scheme
based on Shamir presented above. Also, our general method gives rise to a new
high information rate ramp scheme based on algebraic geometry code which we
introduce in Section 4.3.

4.1 A High Information Rate Ramp Scheme

Let C be an [n + ℓ, k, d]-code over a finite field K. We now extend Massey’s
scheme from Section 3.1 in the direction of high information rate as follows. Let
ℓ be a non-negative integer such that ℓ < d⊥.

Let s ∈ Kℓ. Select a codeword c = (c′0, . . . , c
′
ℓ−1, c1, . . . , cn) ∈ C at random

such that s = (c′0, . . . , c
′
ℓ−1). Such c always exists. Define the coefficients of

(c1, . . . , cn) to be the shares. We claim that this is a linear ramp scheme with
information rate ℓ that has (d⊥−ℓ−1)-privacy and (n+l−d+1)-reconstruction.
This can be verified from the following facts.

Reconstruction follows from the fact that if there would exist two codewords
in C that agreed on n+ l − d + 1 share locations, their difference would give a
codeword in C with Hamming weight less than d. As for privacy, note that in



a generator matrix for C, any collection of m < d⊥ rows (the code is generated
by the columns) are linearly independent. So the corresponding columns span
Km. Therefore, for each j ∈ {0, . . . , ℓ − 1} and for each A ⊂ {1, . . . , n} with
|A| ≤ d⊥ − ℓ − 1 there exists a codeword c such that c′j = 1 and c′i = 0 for all
i ∈ {0, . . . , ℓ− 1} \ {j} and cu = 0 for all u ∈ A. This implies privacy as claimed.

4.2 A More Fruitful Approach

A disadvantage of the scheme above is that it consumes code-length in exchange
for secret-length. Below we describe an entirely general approach that doesn’t
have this disadvantage, and by means of which one can prove the existence of
improved ramp schemes (see Section 4.3).

Let Ĉ and C be linear codes of length n over K, i.e., they are subspaces of
the vector space Kn. Assume that C has dimension greater than 0 and that it
is a proper subspace of Ĉ. Choose an arbitrary linear code S such that

Ĉ = S + C and S ∩ C = {0},

i.e., a direct sum. This is always possible of course, for instance by completing
a basis of C to one of Ĉ. Write

ℓ = dimKĈ − dimKC (= dimKS)

and fix an arbitrary isomorphism ψ : Kℓ −→ S.

We now define the following linear ramp scheme. Let s ∈ Kℓ be the secret
vector. Sample uniformly at random c ∈ C and define the share vector ĉ as
ĉ = ψ(s) + c. 11

Note that this is a generalization of a scheme used by Ozarow and Wyner [25],
who considered the case Ĉ = Kn. In fact, all possible linear ramp schemes are
captured by this general scheme we consider here.

For A ⊂ {1, . . . , n}, let φA denote the function φA : Kn −→ K |A| where
(x1, . . . , xn) 7→ (xi)i∈A, i.e., restriction to the coordinates labeled with A. Given
A, consider the restriction of φA to Ĉ. The set A is said to offer privacy if
the collection of shares {ĉi}i∈A give no information on the secret vector, and
reconstruction if those shares always determine the secret vector uniquely.

Theorem 10 Let ℓ = dim Ĉ − dim C. The set A offers privacy if and only
if dim φA(Ĉ) − dim φA(C) = 0. The set A offers reconstruction if and only if
dim φA(Ĉ) − dim φA(C) = ℓ. More generally, the uncertainty about the secret
vector s, given the shares of A, is equal to r elements of K, where r is such that
ℓ− r = dim φA(Ĉ) − dim φA(C).

11 Equivalently, one can say that we fixed an arbitrary isomorphism from Kℓ to Ĉ/C,
and that the share vector is selected by mapping s to the residue-class of ψ(s)
modulo C, and that ĉ is chosen uniformly at random from that residue-class.



Proof. Privacy (for the set A) is equivalent to saying that for each possible
secret vector s ∈ Kℓ, there is a share vector ĉ that “encodes” s and that satisfies
φA(ĉ) = 0. This is the same as saying that for each z ∈ S, there exists c ∈ C
such that 0 = φA(z + c) = φA(z) + φA(c). Thus, φA(Ĉ) ⊂ φA(C). Since the
other inclusion holds regardless of A, the privacy claim follows. As for unique
reconstruction (for the set A), this is equivalent to saying that there are no
two distinct z, z′ ∈ S so that φA(z + c) = φA(z′ + c′) for some c, c′ ∈ C. This
is equivalent to saying that dim φA(S) = ℓ and φA(S) ∩ φA(C) = {0}. Since
dim φA(Ĉ)−dim φA(C) = dim φA(S)−dim φA(S)∩φA(C), the reconstruction
claim follows. The cases in between these two extremes should now be obvious.

△

We give the following estimate with respect to privacy and reconstruction
(which, as one can prove by giving counter-examples, is not always sharp).

Corollary 4 The set A offers privacy if |A| < dmin(C⊥). The set A offers

reconstruction if |A| > n− dmin(Ĉ).

Proof. As for privacy, if |A| < dmin(C⊥), then φA(C) clearly has rank |A|,
since otherwise we could construct a codeword in C⊥ whose weight is smaller
than dmin(C⊥). Since φA(C) ⊂ φA(Ĉ) ⊂ K |A|, we must have φA(C) = φA(Ĉ),
and privacy follows from the theorem. As for reconstruction, if |A| > n −
dmin(C), then φA(ĉ) = 0 if and only if ĉ = 0, since otherwise C would con-
tain a codeword whose weight is smaller than dmin(C). Thus, φA is injective

when restricted to Ĉ, and ĉ follows uniquely from φA(ĉ). Since S ∩ C = {0},
ψ(s) and c follow uniquely from ĉ. The secret vector s now follows uniquely from
ψ(s) since ψ is bijective.

△

Note that from the Singleton-bound, we have dimKĈ ≤ n − dmin(Ĉ) + 1 and

dmin(C⊥)− 1 ≤ n−dimKC
⊥ = dimKC. Thus, r− t ≥ dimKĈ−dimKC in any

linear ramp scheme.

Before presenting constructive results, we argue as an example that the
Shamir ramp scheme discussed earlier can be easily analyzed with this the-
ory. Suppose n > |K|, and let x1, . . . , xn be distinct non-zero elements of K.
Consider the Vandermonde matrix M with n rows and t columns whose i-th
row is (1, xi, . . . , x

t). Let Ĉ be the code generated by all the columns. This
is an (n, t + 1, n − t)-MDS code. So its dual is an (n, n − t − 1, t + 2)-code.
Let C be the code generated by the last t + 1 − ℓ columns. Clearly C ⊂ Ĉ.
By appropriately scaling the rows of C it is immediate that C is equivalent
to an (n, t + 1 − ℓ, n − t + ℓ)-code. This is an MDS code, so its dual is an
(n, n− t − 1 + ℓ, t+ 2 − ℓ)-code. So by our theorem the resulting ramp scheme
rejects all sets of size t+ 1 − ℓ, and accepts all sets of size t+ 1. Note that the
gap between the two bounds here is ℓ, so that is optimal.



4.3 High Information Rate Ramp Schemes: Existence and Bounds

In this section we demonstrate two methods for constructing high information
rate ramp schemes. First, we present a new high information rate ramp scheme
that improves the one presented in [6], where Ĉ will be an algebraic geometry
code and C will be a carefully selected algebraic geometry subcode of Ĉ. Then,
we demonstrate that high information rate ramp schemes can be obtained from
random codes and bound the error probabilities on their predicted parameters.

Algebraic Geometry Codes Select an absolutely irreducible smooth projec-
tive curve over a finite field K, write g for its genus and let {Q,P1, P2, . . . , Pn}
denote distinct points on the curve. Consider the rational divisor D̂ = (2g+t)·Q,
and let L(D̂) denote the corresponding Rieman-Roch space of rational functions.
Write Ĉ for the Goppa-code consisting of the codewords (f(P1), . . . , f(Pn)),
where f ranges over L(D̂). Also define the rational divisor D = (2g + t− ℓ) ·Q,
and let L(D) denote the corresponding Rieman-Roch space of rational functions.
Write C for the Goppa-code consisting of the codewords (f(P1), . . . , f(Pn)),
where f ranges over L(D).

By the Riemann-Roch Theorem the dimension of Ĉ is g+ t+ 1, whereas the
dimension of C is g+ t+ 1− ℓ. Since D̂ ≥ D, we have L(D) ⊂ L(D̂), and hence
C ⊂ Ĉ. It is fact that the minimum distance of C⊥ is at least deg D− 2g+ 2 =
t− ℓ+ 2. Furthermore, it has been proven in [6] that we have reconstruction for
deg D̂ + 1 = 2g + t + 1 shares. Thus, by our theorem, we have a linear ramp
scheme over K with t− ℓ+ 1 privacy, 2g+ t+ 1 reconstruction and information
rate ℓ. Note that the improvement consists in the fact that the scheme above
does not use up any points on the curve in order to encode the secret vector.
Also note that by taking the projective line (i.e., g = 0) we recover the earlier
Shamir ramp scheme example. Using Garcia-Stichtenoth towers [15] our ramp
scheme can be defined over constant size fields. See [6] for more details.

Random Codes Finally, the results in Section 3.3 demonstrate that we can also
obtain high information rate ramp schemes from randomly selected codes Ĉ and
C, provided that C ⊂ Ĉ. Theorem 10 demonstrates that for such codes C and
Ĉ, the corresponding ramp scheme provides privacy for any subset consisting of
at most dminC⊥) − 1 players and reconstruction for any subset consisting of at

least n− dmin(Ĉ) + 1 players.

One method of obtaining the appropriate distribution for C and Ĉ, as demon-
strated in the proof of Theorem 4, is to randomly select a matrix M from the
set of n× k̂-matrices of rank k̂ and let Ĉ be the code spanned by the columns. It
is easy to see that if we now look at the last k columns of M , these columns in
turn span a random [n, k]-subcode C of Kn that is furthermore contained in Ĉ.

Clearly, the corresponding scheme allows for a secret vector of length ℓ = k̂− k.
Suppose that we want the scheme to provide privacy for up to t players and

reconstruction for at least n−t̂ players. Using a similar argument as in Theorem 4
and using the fact that −λ lnλ − (1 − λ) ln(1 − λ) < 1.2

√
λ for 0 ≤ λ ≤ 1/2,



the following theorem is now straightforward to obtain. It provides, for many
different parameters and with arbitrarily high probability, a lower bound on t
and t̂ when we select the codes C and Ĉ at random.

Theorem 11 Select an [n, k]-code C and an [n, k̂]-code Ĉ over Fq at random

under the restriction that C ⊂ Ĉ. Then

P (dmin(C⊥) < t) < q−(k−t logq(q−1)− 1.2
√

tn
ln q

)

and

P (dmin(Ĉ) < t̂) < q−(n−k̂−t̂ logq(q−1)− 1.2
√

t̂n
ln q

).
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