The restriction method in circuit and proof complexity

Paul Beame

University of Washington

PCMI 2000 Friday July 28
Circuit lower bound for parity

- Theorem [Hastad] The n-bit parity function $x_1 \oplus x_2 \oplus \ldots \oplus x_n$ cannot be computed by unbounded fan-in circuits in size S and depth d unless $S \geq 2^{cn^{1/d}}$

- Corollary: Polynomial-size circuits for parity require $\Omega(\log n / \log \log n)$ depth
 - $\text{Parity} \notin \mathcal{AC}^0$

- Original proof used restriction argument
Restrictions

- **Defn:** Given a set X of Boolean variables, a restriction ρ is a partial assignment of values to the variables of X
 - formally $\rho : X \rightarrow \{0, 1, *\}$ where $\rho(x_i) = *$ indicates that the variable x_i is not assigned a value

- If F is a function, formula, or circuit, write $F\rvert_\rho$ for the result of substituting $\rho(x_i)$ for each x_i s.t. $\rho(x_i) \neq *$
Unbounded fan-in circuits

- Restrict to connectives \lor, \land
 - Results for other connective is easily defined
- Defn: The **depth** of a formula F (circuit C) is \max # of \lor on any path from an input to an output
- E.g. CNF/DNF have depth 2

```
\overline{x} \lor \overline{y} \lor z \lor \overline{x} \lor \overline{z} \lor w \lor \overline{z} \lor w \lor y
```
Unbounded fan-in circuits

- Restrict to connectives \(\lor, \neg \)
 - results for other connective is easily defined

- **Defn:** The **depth** of a formula \(F \) (circuit \(C \)) is \(\max \# \) of \(\lor \) on any path from an input to an output

- e.g. CNF/DNF have depth 2
Why restrictions might be useful for circuit lower bounds

- Restrictions simplify functions, circuits, formulas
 - Given \(F = (V_i x_i \lor V_j \neg x_j) \)
 - assigning a single \(\rho(x_i) = 1 \) or \(\rho(x_j) = 0 \) makes \(F|_{\rho} \) a constant; i.e. wiping out \(F \) but only setting one variable
 - Simplification is substantially more than \# of variables assigned

- Basic idea: To prove that small circuit \(C \) cannot compute function \(f \), choose a restriction \(\rho \) such that
 - \(f|_{\rho} \) is still complicated but
 - \(C|_{\rho} \) is extremely simple so that it obviously cannot compute \(f|_{\rho} \)
Boolean decision trees

Defn: A *Boolean decision tree* T is a binary rooted tree s.t.

- each internal node is labelled by some x_i
- leaf nodes are labelled 0 or 1
- edges out of each internal node are labelled 0 or 1
- no two nodes on a path have the same variable label
A Boolean Decision Tree
Paths in decision trees

■ Every root-leaf path (branch) corresponds to a restriction ρ of the input variables.
 For $b \in \{0,1\}$, $x_i \leftarrow b$ is in ρ iff on that branch the out-edge labelled b is taken from node labelled x_i.

■ The tree T computes f iff for every branch B of T
 the restriction ρ corresponding to branch B has the property that $f|_\rho$ equals the leaf label of B.
Tree for $f(x) = x_1 + x_2 + x_3 \geq 2$
Property of Decision Trees

- Decision trees \Rightarrow DNF: Every function computed by a decision tree of height t can be represented
 - in CNF with clause size at most t
 - clauses correspond to branches with leaf label 0
 - in DNF with term size at most t
 - terms correspond to branches with leaf label 1

- DNF \Rightarrow decision tree
 - Canonical conversion
DNF \implies decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow decision tree

$$F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6$$
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow decision tree

$$F = x_1 \overline{x_3} \lor x_3x_4 \lor \overline{x_4}x_6$$
DNF \Rightarrow decision tree

$F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 \overline{x}_6$
DNF ⇒ decision tree

\[F = x_1 \overline{x_3} \lor x_3 x_4 \lor \overline{x_4} x_6 \]
$\mathsf{DNF} \implies \mathsf{decision\ tree}$

\[
F = x_1 \overline{x}_3 \vee x_3 x_4 \vee \overline{x}_4 x_6
\]
DNF \Rightarrow decision tree

$F = x_1\overline{x}_3 \lor x_3x_4 \lor \overline{x}_4x_6$
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow \text{decision tree}

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
$\text{DNF} \Rightarrow \text{decision tree}$

$F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6$
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
Dnf \Rightarrow decision tree

\[F = x_1 \overline{x_3} \lor x_3 x_4 \lor \overline{x_4} x_6 \]
DNF \Rightarrow decision tree

$$F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6$$
DNF \Rightarrow \text{decision tree}

\begin{align*}
F &= x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6
\end{align*}
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \implies decision tree

$$F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6$$
DNF \Rightarrow decision tree

$$F = x_1 \bar{x}_3 \lor x_3 x_4 \lor \bar{x}_4 x_6$$
DNF \Rightarrow decision tree

$F = x_1 \overline{x_3} \lor x_3 x_4 \lor \overline{x_4} x_6$
DNF \Rightarrow decision tree

\[F = x_1 \overline{x}_3 \lor x_3 x_4 \lor \overline{x}_4 x_6 \]
DNF \Rightarrow decision tree

\[F = x_1 \overline{x_3} \lor x_3 x_4 \lor \overline{x_4} x_6 \]
DNF \Rightarrow decision tree

$F = x_1 \overline{x}_3 \vee x_3 x_4 \vee \overline{x}_4 x_6$
Parity properties

- For any restriction ρ, Parity_ρ is either parity or its negation on the variables that are still not assigned values.

- Parity or its negation requires a decision tree of height n.

 - Compare with $x_1 \lor \ldots \lor x_n$
 - any decision tree also requires height n
 - but most restrictions of it are constant and so only require height 0.
Restriction for constant-depth circuits

- An \((S,d)\)-circuit will be an unbounded fan-in circuit of size \(\leq S\) and depth \(\leq d\)

- To show that no \((S,d)\)-circuit \(C\) computes function \(f\), find a set \(R_{S,d}(f)\) of restrictions s.t.
 - For any \((S,d)\)-circuit \(C\), there is a \(\rho \in R_{S,d}(f)\) s.t. we can associate a short\(^*\) Boolean decision tree \(T(g)\) to each gate \(g\) of \(C\), s.t. \(T(g)\) computes \(g\rvert_{\rho}\)

 - For any \(\rho \in R_{S,d}(f)\), \(f\rvert_{\rho}\) is not computed by any short\(^*\) decision tree

\(^*\)relative to the number of variables unset by \(\rho\)
Restriction for constant-depth circuits

- An \((S, d)\)-circuit will be an unbounded fan-in circuit of size \(\leq S\) and depth \(\leq d\)

- To show that no \((S, d)\)-circuit \(C\) computes function \(f\), find a set \(R_{S,d}(f)\) of restrictions s.t.
 1. For any \((S, d)\)-circuit \(C\), there is a \(\rho \in R_{S,d}(f)\) s.t. we can associate a short* Boolean decision tree \(T(g)\) to each gate \(g\) of \(C\), s.t. \(T(g)\) computes \(g\mid_\rho\)
 2. For any \(\rho \in R_{S,d}(f)\), \(f\mid_\rho\) is not computed by any short* decision tree

*in case of parity this just means \(<\) number of variables
How to find restrictions for Parity circuits

- Start at the inputs of the circuit and work upwards a layer at a time,
 - maintaining a current restriction ρ_i and a tree $T_i(g)$ for each gate g in the first i layers s.t. $T_i(g)$ computes $g|_{\rho_i}$

- For layer 0, gates are input variables, ρ_0 is empty and decision trees have height 1
How to find restrictions for Parity circuits

Working up the layers of the circuit

1. If \(h = \neg g \) then let \(T_i(h) \) be \(T_i(g) \) with its leaf labels toggled between 0 and 1.

2. If \(h = (g_1 \lor \ldots \lor g_t) \) then the function \(h|_{\rho_i} \) may require tall decision trees even if all \(T_i(g_j) \) are short.
 - so we look for a further small restriction \(\pi \) to the inputs in the hopes of simplifying \(h|_{\rho_i} \) so that the tree will be short

We'd like to choose one \(\pi \) that simultaneously does this for all the unbounded fan-in V's in this layer (up to \(S \) of them!)
What will we do once we have π

Once we have such a restriction π - a tall order it seems

- Set $\rho_{i+1} = \rho_i \pi$
- Short $T_{i+1}(h)$ for h in this layer exist by our assumed properties of π
- For all gates g below this layer, set $T_{i+1}(g)=T_i(g)|_{\pi}$
- continue upward...

We end by letting $\rho=\rho_d$ and we will have chosen the various π so that the trees will be shorter than the number of inputs that ρ leaves unset

- circuit cannot compute parity
Finding π

- Probabilistic method
 - Show that a randomly chosen small π fails to shorten the decision tree for any single V-gate h in this layer with probability $< 1/S$
 - There are at most S V-gates in this layer, so $\Pr[\exists \text{an V-gate in this layer not shortened by } \pi] < 1$
 - ...so there must exist a small π that does the job
 - choose it
Hastad’s Switching Lemma

- Let $R_{k,n}$ be the set of all restrictions to variables $x_1, ..., x_n$ that leave precisely k variables unset

- **Lemma**: Given a DNF formula F in variables $x_1, ..., x_n$ with terms of size at most t, for π chosen uniformly at random from $R_{k,n}$, if $n > 12tk$ then
 \[\Pr[\text{canonical decision tree for } F|_\pi \text{ has height } \geq t] < 2^{-t}. \]
Final analysis

- Maintain trees of height $t = \log_2 S$
- Number of variables decreases by a factor of $13t = 13\log_2 S$ per layer
- Height will be less than # of variables if $\log_2 S < n / (13\log_2 S)^d$ i.e. $\log_2 S < n^{1/(d+1)}/13$
 - can’t compute parity if this holds
- Can save one power of $\log_2 S$ by being careful
Restriction method in proof complexity

- **Theorem** [Ajtai,PBI,KPW]: \(\text{ontoPHP}^{n+1 \rightarrow n} \) requires exponential size \(\text{AC}^0 - \text{Frege} \) proofs

- **Theorem** [Ajtai,BP] \(\text{Count}^{2n+1 \mid 2} \) requires exponential size \(\text{AC}^0 - \text{Frege} \) proofs even given \(\text{PHP}^{m+1 \rightarrow m} \) as extra axiom schemas

- **Theorem** [BIKPP] \(\text{Count}^{pn+1 \mid p} \) requires exponential size proofs even given \(\text{Count}^{qm+1 \mid q} \) as axiom schemas
Restrictions in Proof Complexity

- In circuit complexity,
 - for each gate g we defined decision trees $T(g)$ that precisely compute each $g|_p$ in the circuit
- Obvious analogue in proof complexity, e.g. in proof of a tautology
 - do the same
- But this can’t work
 - every formula in the proof computes the constant function 1 since it is a tautology!
What we do instead

- Come up with a different notion of decision trees that approximates each formula so that
 - bigger proof needed for a tautology implies worse approximation of it
 - decision trees are well-behaved under restrictions
 - approximation is particularly bad for the goal formula F you want to prove
 - Any short approximating decision tree for
 - F looks like false
 - an axiom looks like true
 - any formula with a short proof looks like true

- Like circuit case define decision trees for each subformula in the proof and tailor decision trees & restrictions to F
Restrictions for $\text{PHP}^{n+1 \to n}$

- Don’t want restrictions to force $\text{PHP}^{n+1 \to n}$ to true so...
- Restrictions π are partial matchings as before

Let $\mathcal{R}^{k,n}$ be the set of all partial matching restrictions that leave exactly k holes unset.
Bipartite matching decision trees

- Queries are either
 - the name of a pigeon, or
 - answer is the mapping edge for that pigeon
 - the name of a hole, or
 - answer is the mapping edge for that hole

- Every path corresponds to a partial matching between pigeons and holes
 - No repetition of a node name that was already used higher in the tree

- Leaves are labelled 0 or 1
A matching decision tree

\[P_{21}P_{32}P_{43} \lor P_{21}P_{42} \lor P_{23}P_{42} \]
A matching decision tree

\[P_{21} P_{32} P_{43} \lor P_{21} P_{42} \lor P_{23} P_{42} \]
A matching decision tree

\[P_{21} P_{32} P_{43} \lor P_{21} P_{42} \lor P_{23} P_{42} \]
A matching decision tree

\[P_{21} P_{32} P_{43} \lor P_{21} P_{42} \lor P_{23} P_{42} \]
Associating matching trees with formulas

- \(T(P_{ij}) \) queries \(i \) & has height 1
- \(T(\neg g) \) is \(T(g) \) with leaf labels toggled
- To get tree for \(h=(g_1 \lor \ldots \lor g_t) \)
 - take DNF formula \(F_h = T(g_1) \lor \ldots \lor T(g_t) \)
 - do canonical conversion of \(F_h \) into a matching decision tree
 - like conversion for ordinary decision trees
 - go term by term left-to-right simplifying future terms based on partial assignments
 - query both endpoints of every variable in each term
Ideas for PHP\(^{n+1\rightarrow n}\) lower bound

- Restrictions are kind to matching decision trees
 - Analog of Hastad switching lemma for canonical conversion of DNF to matching decision trees
 - If proof is small trees can be made short

- Matching decision trees of height \(< n\)
 - for PHP\(^{n+1\rightarrow n}\) has all 0’s on its leaves
 - for an axiom has all 1’s on it leaves
 - preserve this property of all 1’s on the leaves under inference rules
Extensions to extra axioms

- Same sorts of restrictions and decision trees

- Must also prove that extra axioms convert to trees with all 1's on their leaves
 - Surprisingly, this follows in each case from Nullstellensatz degree lower bounds for the extra axioms!
The Frontier

- Extended Frege
- Frege
- \(\text{TC}^{0} \)-Frege
- \(\text{AC}^{0}[p] \)-Frege
- \(\text{AC}^{0} \)-Frege
- Cutting Planes
- Resolution
- Davis-Putnam
- PCR
- Polynomial Calculus
- Nullstellensatz
- Truth Tables