1. Question 2 from Homework 1. (I gave you an extension on this question.)

Solution: Assume that \(N \) the number of elements stored is equal to \(2^n - 1 \). Take an array where the top \(\log n - 1 \) levels have key \(k = 2 \) and then the last \(n^{th} \) level has one 2, followed by all 1’s.

For example: Take \(N = 31 = 2^5 - 1 \) (so \(n = 5 \)). This is what the heap originally looks like:

Consider what happens when we do the first \(2^{n-1} \) DeleteMax moves. In our example, this is the first 16 DeleteMax moves. This will remove all elements with key 2 from the tree and since the tree always stays perfectly balanced, and what we are left with should be a balanced tree of height \(n - 1 \) consisting of only keys with value 1. In our case, a height 4 tree consisting of ALL 1’s.

In particular, at this point in the algorithm, the last level, the \((n - 1)^{st}\) level, is all 1’s. But how did these 1’s get there? These got there by first putting them at the root and then bubbling them all the way down to level \(n - 1 \). So all of these elements at level \(n - 1 \) should each require \((n - 1)\) swaps in order to bubble them down from the root. In our example there are 8 of them and in general there are \(2^{n-2}(n-1) \) of them, and each of them requires \((n-1)\) swaps for a total of \(2^{n-2}(n-1) = \Omega(n2^n) = \Omega(N\log N) \) steps.

2. Suppose 3 values \(A, B, \) and \(C \) are chosen uniformly and independently from the set of integers \(\{1, \ldots, r\} \), where \(r \geq 1 \).

(a) What is the probability that all three values are the same? Briefly justify your answer.

Solution:

\[
\frac{1}{r^3} = \frac{1}{r} \times \frac{1}{r}.
\]

Once the value for \(A \) has been chosen, the probability that \(B \) has the same value is \(1/r \). The same is true for \(C \). Since these are independent random variables, we can simply multiply the probabilities.

Alternatively, there are \(r^3 \) triples of elements, each with the same probability. Of these, \(r \) triples have all three values the same. Thus the probability is \(\frac{r}{r^3} = \frac{1}{r^2} \).

(b) What is the probability that all three values are different? Briefly justify your answer.

Solution:

\[
\frac{(r-1)(r-2)}{r^3}.
\]

Once the value for \(A \) has been chosen, the probability that \(B \) has a different value is \((r-1)/r\). Once different values for \(A \) and \(B \) have been chosen, the probability that \(C \) has a different value is \((r-2)/r\). Then \(\Pr[A, B, C \text{ distinct}] = \Pr[A \neq B] \cdot \Pr[A, B, C \text{ distinct } | A \neq B] = \frac{r-1}{r} \cdot \frac{r-2}{r} \).

Alternatively, of the \(r^3 \) triples of elements, there are \(r \) ways to choose \(A \), \(r-1 \) ways to choose \(B \) different from \(A \) and \(r-2 \) ways to choose \(C \) different from \(A \) and \(B \). Thus the probability is \(\frac{r(r-1)(r-2)}{r^3} = \frac{(r-1)(r-2)}{r^2} \).

(c) What is the expected number of different values? Briefly justify your answer.

Solution:
The probability that there are two different values is \(1 - \frac{1}{r^2} - \frac{(r-1)(r-2)}{r^2} = \frac{3(r-1)}{r^2} \), since this is the only other possibility.

Thus the expected number of different values is

\[
1 \cdot \frac{1}{r^2} + 2 \cdot \frac{3(r-1)}{r^2} + 3 \cdot \frac{(r-1)(r-2)}{r^2} = \frac{1 + 6(r-1) + 3(r-1)(r-2)}{r^2} = \frac{3r^2 - 3r + 1}{r^2}.
\]

3. Consider the following binary search tree \(T \).

![Binary Search Tree](image)

Solid nodes are black, dotted nodes are red.

(a) Draw the red-black tree that results from inserting the key 15 into \(T \).

Solution:

![Red-Black Tree](image)

(b) Draw the red-black tree that results from deleting the key 37 from the original tree \(T \).

Solution:

![Red-Black Tree](image)
4. Consider a binary tree T. Let $|T|$ be the number of nodes in T. Let x be a node in T, let L_x be the left subtree of x and let R_x be the right subtree of x. We say that x has the “approximately balanced property”, $ABP(x)$, if $|R_x| \leq 2|L_x|$ and $|L_x| \leq 2|R_x|$.

(a) What is the maximum height of a binary tree T on n nodes where $ABP(root)$ holds? Justify your answer.

Solution:
The worst case is when L_{root} and R_{root} are just single paths, so that $height(L_{root}) = |L_{root}| - 1$ (and the same for R_{root}). We know $|L_{root}| + |R_{root}| = n - 1$, so it could be that $|L_{root}| = \frac{1}{3}(n - 1)$ and $|R_{root}| = \frac{2}{3}(n - 1)$ (or vice versa). Therefore, $height(R_{root}) = \frac{2}{3}(n - 1) - 1$ and $height(T) = \frac{2}{3}(n - 1)$.

(b) We call T an ABP-tree if $ABP(x)$ holds for every node x in T. Prove that if T is an ABP-tree, then the height of T is $O(\log n)$. More precisely, show that

$$height(T) \leq \log_2 n / \log_2 \frac{3}{2}$$

Solution:
We’ll prove that $|T| \geq \frac{3}{2}^{height(T)}$ (*) by induction on the height of T. If T has height 0 (it is a single node), then (*) certainly holds. Now consider T of height h. Assume, without loss of generality, that $height(L_{root}) \geq height(R_{root})$. Then $height(T) = height(L_{root}) + 1$. We know $|T| = |L_{root}| + |R_{root}| + 1$. By $ABP(x)$, this means that $|T| \geq \frac{3}{2}|L_{root}| + 1$. $L_{root} \geq (\frac{1}{3})^{h-1}$, so we get $|T| \geq \frac{3}{2}(\frac{1}{3})^{h-1} + 1 \geq (\frac{3}{2})^h$. Now that we have proven (*), we just take the log of both sides:

$$height(T) \leq \log_2 n / \log_2 \frac{3}{2}$$

5. Suppose we are given a bit-vector $A = A[1] \ldots A[n]$ of length n (where $A[i]$ is either 0 or 1). We wish to determine if at least half the elements in A are 1’s. Consider the following algorithm:

```plaintext
HalfOnes( A )
numOnes ← 0
```
numZeros ← 0
for i = 1 to n do
 if A[i] = 1 then
 numOnes ++
 if numOnes ≥ n/2 then return true
 else
 numZeros ++
 if numZeros > n/2 then return false

Measure the complexity by counting the number of array comparisons performed.

(a) What is the best case complexity of HalfOnes? Do not use asymptotic notation. Justify your answer.

Solution: The algorithm can only end if numOnes reaches n/2 or numNaughts exceeds n/2, and only one of them is incremented with each iteration of the for loop (and hence with each array comparison).

Since numOnes need only reach n/2, the best case occurs when the first ⌈n/2⌉ bits are all 1’s, giving a running time of ⌈n/2⌉.

(b) What is the worst case complexity of HalfOnes? Do not use asymptotic notation. Justify your answer.

Solution: In the worst case, we need to perform an array comparison for each possible i, giving a running time of n.

(c) What is the average case complexity of HalfOnes, assuming a uniform distribution? Do not use asymptotic notation. Justify your answer. You may express your answer as a sum. Remember to formally define the sample space, the probability distribution function, and any necessary random variables, as described in class. You do not need to mathematically simplify your answer.

Solution: Define the sample space for all inputs of size n as $S_n = \{ A : A \text{ is a 0-1 vector of length } n \}$. If we assume that the probability of each bit being 1 is 1/2, each of the 2^n possible bit-vectors in S_n are equally likely.

Let $t_n(A)$ be a random variable represent the number of array comparisons performed on input A. Then $t_n = \begin{cases} \text{position of } \left\lceil \frac{n}{2} \right\rceil \text{th 1 if } A \text{ has at least half 1's} \\ \text{position of } \left(\left\lfloor \frac{n}{2} \right\rfloor + 1\right) \text{th 0 otherwise} \end{cases}$

The average running time for HalfOnes is

$$E[t_n] = \sum_{A \in S_n} t_n(A) \cdot Pr[A]$$

$$= \sum_{i=\left\lceil \frac{n}{2} \right\rceil}^{n} i \cdot \frac{1}{2^i} \left(\left\lceil \frac{n}{2} \right\rceil - 1 \right) + \sum_{i=\left\lceil \frac{n}{2} \right\rceil + 1}^{n} i \cdot \frac{1}{2^i} \left(i - 1 \right)$$

The first term is the summation for the cases where A contains at least half 1’s. If the $\left\lceil \frac{n}{2} \right\rceil$ th 1 occurs in position i, i array comparisons are made; the probability of this happening is the number of ways we can arrange the first $\left\lceil \frac{n}{2} \right\rceil - 1$ 1’s in the first $i - 1$ positions, $(\left\lceil \frac{n}{2} \right\rceil - 1)$, over all possible bit combinations in the first i positions, 2^i.

Similarly, the second term covers the cases where A does not contain half 1’s. If the $\left\lceil \frac{n}{2} \right\rceil + 1$ th 0 (there must be this many 0’s) occurs in position i, i comparisons are made, and the probability...
of this happening is the number of ways to arrange the first ⌊n/2⌋ 0’s in the first i − 1 positions, \(\binom{i-1}{\frac{n}{2}} \), over all possible bit combinations in the first i positions, 2^i.

6. We want to augment Red-Black Trees to support the following query, \(\text{Average}(x) \), which returns the average key-value in the subtree rooted at node x (including x itself). The query should work in worst-case time \(\Theta(1) \).

(a) What extra information needs to be stored at each node?

\textbf{Solution:}
Each node x should store \(\text{size}(x) \) - the size of the subtree rooted at x - and \(\text{sum}(x) \) - the sum of all the key values in the subtree rooted at x. The query \(\text{Average}(x) \) can be answered in constant time by computing \(\text{sum}(x)/\text{size}(x) \).

(b) Describe how to modify \text{INSERT} to maintain this information, so that its worst-case running time is still \(O(\log n) \). Briefly justify your answer.

\textbf{Solution:}
Maintaining \(\text{size()} \) was covered in lecture. Maintaining \(\text{sum()} \) is exactly the same: when a node x gets inserted, we simply increase \(\text{sum}(y) \) for every ancestor y of x by the amount \(\text{key}(x) \).
Handling rotations for \(\text{sum()} \) is exactly the same as \(\text{size()} \) (just replace each \(\text{size()} \) by \(\text{sum()} \)).
Hence, \text{INSERT} still runs in worst-case time \(\Theta(\log n) \).

(c) Describe how to modify \text{DELETE} to maintain this information, so that its worst-case running time is still \(O(\log n) \). Briefly justify your answer.

\textbf{Solution:}
Again, maintaining \(\text{size()} \) was covered in lecture. For \(\text{sum()} \), assume we want to delete node x. If x itself is the node removed, decrease \(\text{sum}(y) \) for every ancestor y of x by the amount \(\text{key}(x) \).
If \(z = \text{succ}(x) \) was removed instead, consider the path from z to the root of the tree. For every node y in between z and x on this path, decrease \(\text{sum}(y) \) by the amount \(\text{key}(z) \). For every node y on this path between z and the root (including x itself), decrease \(\text{key}(y) \) by the amount \(\text{key}(x) \).
Hence \text{DELETE} still runs in worst-case time \(\Theta(\log n) \).

You may find it helpful to implement Red-Black trees using the code from the text, and then modify your code to produce an augmented tree for this problem.