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Abstract—Super WiFi is expected to enable the Internet
access everywhere in a country. Considering the infrastructure
deployment issues, energy harvesting technology is a promising
solution for power supply. Most of existing works focused on the
energy scheduling from the network operator’s point of view. In
this paper, we study the access point selection strategy from users’
perspectives and consider Super WiFi networks powered by solar
energy harvesting. Although the network selection problem has
been studied, the energy harvesting scenario has not been well
investigated and the influence of battery condition has not been
taken into account. In our work, we consider the utility of the
access users is affected not only by the total number of accessed
users, but also the battery condition. In order to formulate the
battery states and user states, we incorporate the physical char-
acteristics of solar cell, as well as the dynamic access behaviors of
users through Markov Decision Process (MDP)model. By using
the value iteration method, the set of optimal network selection
strategies is obtained. Simulation results validate that our method
has a remarkable performance improvement of utility over the
myopic and random access strategies.

I. INTRODUCTION

In recent years, Super WiFi using IEEE 802.11af standard,

was announced by the Federal Communications Commission

(FCC), aiming to expand the coverage of wireless network

access. Since the access points (AP) of Super WiFi will be

deployed everywhere, the associated infrastructure including

backhaul and energy supply system have to be simplified as

much as possible to decrease the deployment cost. Wireless

backhual has been proved to be able to substitute traditional

wired backhaul [1]. While for the power supply problem,

constant battery replacement comes with high labor cost and

additional administrative fee. The recent energy harvesting

(EH) technology provide an ideal solution for the power supply

problem in Super WiFi. Wireless network service supplied

by EH is equipped with devices that could harvest ambient

energy including piezoelectric, thermal, solar energy etc. Some

preliminary studies have been done on the applications of EH

wireless network service, addressing the modification that is

required to the current WLAN standard for better support [2].

In Super WiFi networks, when confronted with many APs,

how a user makes the AP selection is a critical issue. Es-

pecially, when it comes to AP supplied by solar energy, the

energy condition of each AP should be taken into account,

besides quality of service (QoS). In order to solve the selection

problem, many researches have been done in the literature.

Markov Decision Process (MDP) has been used in AP selec-

tion game, e.g., some strategies, challenges and solutions were

summarized in [3]. As AP selection is a typical game problem

[4], game theory has also been used as an effective approach.

In [5], the selection problem was formulated from a pricing

game perspective. Meanwhile, the characteristic of negative

externality was considered in [6] and [7], where a maximum

number of access users for each AP was set and the utility is

closely related with the number of access users. When it comes

to AP selection algorithm, a no regret algorithm was designed

in [8] to help users to select among distributed APs. For

the EH wireless network service, it has been widely studied

as in [9]–[11]. In [9], the authors characterized the indoor

light energy availability and studied the energy allocation. In

[10], the routing algorithms were explored from a network

topology aspect. An opportunistic routing protocol was studied

in [11], and the authors compared the proposed protocols with

non-opportunistic protocols in wireless sensor networks using

ambient energy harvesters (WSN-HEAP).

However, all the existing works on network service selection

have not considered the situation of APs supplied by ambient

power. Apparently, for Super WiFi, EH is the most feasible

way that could solve the energy supply problem. In addition,

the previous works have separated the APs and users, i.e.,

either focusing on the transmitting strategies of the APs, or

the users’ access strategies, by assuming the other part is

stable or invariant. However, in practical EH based networks,

users are changing in number and distribution, as well as the

APs’ energy status and channel conditions. Therefore, APs

and users are affecting each other, and should be considered

simultaneously. Considering these problems, we focus on the

problem of AP selection game in a wireless network service

powered by ambient solar energy, which has a promising

industry future as a key component in Super WiFi. Specifi-

cally, we formulate the user model and AP’s battery model,

considering their interaction effect and the battery physical

features through MDP formulation. The optimal AP selection

strategy is obtained by a designed value iteration algorithm.

The rest of this paper is organized as follow. We describe

the system model in Section II. The optimal selection based on

MDP model is presented in Section III, including the battery

model, user access model and the AP selection algorithm.

In Section IV, we evaluate the performance of our proposed

approach. Finally, Section V draws the conclusion.



II. SYSTEM MODEL

In this section, we describe the overall picture of the EH

based Super WiFi system and how we model the problem.

As shown in Fig. 1, a Super WiFi system consists of N APs

that are supplied by solar energy harvesting is considered. The

APs of the system are connected to the server through wireless

backhaul. In each time slot, new arriving users can access one

of the available APs and stay connected until he/she leaves

the associated AP. In the system, we assume that each AP

has a maximum number of accessed users UM , i.e., if a user

intends to access a AP whose accessed user number Ui = UM ,

the access will be denied. For the AP’s battery condition, it

is quantized into several discrete levels, where the maximum

number of levels is denoted as BM .

Since the number of the users accessing one AP and the

battery quantity of that AP are different from those of other

APs, the QoS one AP provides is also quite different from

others’. If we denote the quantized battery level of the ith AP

as Bi, then the utility of the users defined as the individual

throughput, can be written by

Ri = Wi log

(
1 +

PT (Ui, Bi)/N0

(Ui − 1)PI/N0 + 1

)
, (1)

where Bi ∈ {j | j = 0, 1, ..., BM − 1} and

Ui ∈ {i | i = 0, 1, ..., UM}. In the expression, the Wi

is the bandwidth, N0 is the noise power, which we assume

to be the same between every AP and users and remain

constant all the time. The signal-to-noise power ratio is

PT (Ui, Bi)/N0 and the interference-to-noise power ratio is

PI/N0. The PT (Ui, Bi) is the function of the power used

to transmit the pockets to users of the AP. The transmitting

power of the APs usually increases with the battery level

and the user number. The exact expression is beyond the

discussion of this work, which is stipulated by the using

WLAN standards [12] and studied in [13].

III. AP SELECTION STRATEGY BASED ON MDP

In this section, we analyze users’ AP selection strategy in

EH based Super WiFi networks. Usually, after a user access

one specific AP, he/she would stay connected for a period

of time, and thus the long-term utility that can be obtained

within this period should be considered. Therefore, we use

MDP model to formulate this AP selection problem. Here,

the system state is defined as both the user number staying in

one AP and the remaining battery quantity. In the following,

we will first discuss how we formulate the user states and the

battery states, and then propose a value iteration algorithm to

derive the optimal strategy.

A. Battery Model

Battery status is an important reference when making the AP

selection. Considering practical scenarios, the battery energy

is usually represent using discrete characterization, e.g, empty,

adequate, or full. Quantization of the battery quantity to an

appropriate number of levels is necessary. There is a trade
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Fig. 1. A schematic map of Super WiFi system, and a common system model
of a solar cell.

off between the accuracy of the algorithm and the amount of

the states. In our evaluation, four levels of battery conditions

are considered, i.e., near empty, barely enough, adequate and

full, which can return a result that is accurate enough and

not having a high complexity. When the duration T of one

time slot is small enough, a battery level could only switch

from a level to its adjacent levels at the end of each time

slot, i.e., either increasing one level or decreasing one. Such

a level transition is simultaneously determined by the energy

the AP harvests and the energy it consumes when transmitting

pockets. Given the system state, the transmitting power can

be determined, i.e., the consumed energy can be confirmed.

The following part of this subsection analyzes the relationship

between the battery level and the harvesting power.

The harvesting power is determined by the illumination and

the battery level. In this paper, a classic physical model of the

photoelectric battery was used, shown in Fig. 1. The harvesting

power first increases with the voltage and then decreases to

zero when the maximum voltage is reached, as shown in Fig.

2. Considering the ideal model of the solar cell, the relation

between the current and the voltage are given in [14] as

J(V ) = JSC − Jo

(
e

qV
kBTκ − 1

)
, (2)

where the k and Tκ is the boltzmann’s constant and tem-

perature. In the equation, J(V ) is the current density. When

illuminated area and the number of cells connected in one

harvesting device is constant, the scale factor ρ from J to

harvesting power is only linearly affected by illumination level

ζ. In a specific period of the day, ζ could be regarded as

Gaussian distributed with an average illumination intensity.

When time slot T is small enough, the illumination could

be regarded as invariable in each time slot. If we denote the

distribution center of ρ with the average illumination level ζ̄
as ρ̄ζ , the probability density function of ρ is given as

fρ(x) =
1√
2πσ

e−
(x−ρ̄ζ)2

2σ2 , (3)
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Fig. 2. The current density versus voltage curves and the harvesting power
of a cell versus the voltage. The key parameters, JSC = 13.364mA cm−2

and VOC = 0.7631V is obtained from the work in [15].

where σ is the standard deviation. The battery quantity of

the ith battery level Bi is approximated as Bi and from

the electrical formula between voltage and energy quantity

in a capacitor, we have V =

√
2Bi

C . Thus the function of

harvesting power with the voltage is given as

PH(Bi) = ρ

(
JSC − Jo

(
e

qV/C
kBT − 1

))
· V, (4)

Thus the relation between the battery level and the harvesting

power is formulated.

For denotation convenience, the kth AP in the Super Wifi

system is refer to as AP k, where k ∈ {1, 2, 3, ..., N}.

As the transmitting power and harvesting power are known,

spontaneously, we could give the transition probability of the

battery level of AP k from level i to level j after each time

slot, where 0 ≤ j ≤ BM − 1, and 0 ≤ i ≤ BM − 1.

βk(j | i, Uk) = (5)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pr{PH(k)− PT (Uk, i) > ΔBi,j/T}, if j = i+ 1,

Pr{PT (Uk, i)− PH(k) > ΔBj,i/T}, if j = i− 1 ,

0, if |j − i| > 1,

1−∑m=BM−1
m=0,m�=i βk(m | i), if j = i,

where the ΔBi,j is the average battery quantity difference

between the battery level i and j.

B. User Model

In the Super WiFi system, two kinds of users are considered.

One is self-directed users (SDU) such as the mobile phone

users that have several APs in its reach. They could decide

which AP to access, and they arrive at a rate of λ0. And

the other kind is passive users (PU), for example, the fixed

temperature sensors in hospitals. They could only access one

specific AP unless the AP is full. For the AP k, its PUs arrive

with Poisson arrival distributed rate λk. And the departure

rate of all the users in APs is exponential distributed with

parameter μ. To make the formulation clear and concise, we

construct a fiducial transition probability from user state i to

user state j not considering other SDUs and conflicts as follow,

ψk(j | i) =

⎧⎪⎨
⎪⎩
λk(1− iμ), if j = i+ 1,

iμ(1− λk), if j = i− 1,

0, if |j − i| > 1.

(6)

The total system state including all the APs inside is denoted as

a vector S = (B1, U1, B2, U2, ...BN , UN ). Given the system

states, the SDUs choose their optimal strategy denoted as

π(S). When the conflict of PUs happens, a re-access is carried

out. When a PD failed to access an AP because it is full,

he/she is immediately sent to a available new AP chosen by

the Super Wifi system. A greedy re-access protocol is used by

the system. The stand-by AP is given by

ξ(S) = arg max
i<BM

Wi log

(
1 +

PT (Ui + 1, Bi)/N0

UiPI/N0 + 1

)
. (7)

The probability of conflict of a full AP k in the next time slot

is (1−UMμ)λk. Thus, the fiducial transition probability could

renew into the real transition probability as below:

ψξ(S)(i+ 1 | i) =ψξ(S)(i+ 1 | i)+
N∑

m=1,Um=UM

(1− UMμ)λm,
(8)

ψπ(S)(i+ 1 | i) = ψπ(S)(i+ 1 | i) + λ0, (9)

and the probability that the system would remain the same is

calculated as,

ψπ(S)(i | i) = 1−
∑m=BM−1

m=0,m�=i
ψk(m | i). (10)

The final system transition probability is defined as follow:

P (S′ | S) =
N∏

k=1

ψk(U
′
k | S)βk(B

′
k | S). (11)

C. Expected Utility

A MDP over infinite horizon is considered to obtain the

utility of the users. As the PUs are heteronomous, we consider

the selection of AP for SDUs. A SDU can not change his AP

after accessing, and we use γ to denote the accessed AP. The

utility until he leaves is denoted as Vγ(S0). Then his expected

utility could be given as,

Vγ(S0) = E

( ∞∑
t=0

(1− τ)tRγ(St)

∣∣∣∣∣S0

)
. (12)

Here 1− τ is the discount factor. For iteration algorithm, the

equation above could also be written in a recursive way [16],

Vγ(S0) = Rγ(S0) + (1− τ)
∑
S′

Pγ(S
′|S0)Vγ(S

′). (13)

Given that the SDU accesses and stays in γ, the fiducial

transition probability ψk(j | i) is not the same as the equation



Algorithm 1 Value iteration algorithm

/********Initialization*********/

Initialize the V
(0)
k (s) ← 0 for all s ∈ S , k ∈ AP

Initialize the π(0)(s) ← 1 for all s ∈ S , k ∈ AP
/***********Iteration**********/

while max
s

| V (t)
k (s)− V

(t+1)
k (s) |> ε do

for all s ∈ S , k ∈ AP
V t+1
k (s) ← Rk(s) +

(1− τ)
∑
s′

Pk(s
′|s, πt)V t

k (s
′).

π(t+1)(s) ← argmax
γ≤N

Vγ(s̃),

where s′ is the system state different

from s only in that U ′
k = Uk + 1

end while
/***********Output***********/

π∗(s) ← πt+1(s).
V ∗(s) ← max

γ≤N
Vγ(s̃).

(5), but

ψk(j | i, γ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λk(1− (i− 1)μ), if j = i+ 1, k = γ,

λk(1− iμ), if j = i+ 1, k �= γ,

(1− λk)(i− 1)μ, if j = i− 1, k = γ,

(1− λk)iμ, if j = i− 1, k �= γ,

0, if |j − i| > 1.
(14)

To solve the real transition probability, the strategy of new-

come SDUs is needed. In system s, the strategy of newcome

SDUs is given as,

πs = argmax
k≤N

Vk(s
′), (15)

where s′ is the system state different to s only in that

U ′
k = Uk + 1, as the access of the AP k will lead the

system state from s to s′. With the optimal strategy obtained,

the transition probability could be calculated by applying

equations (8) to (10). In order to solve the MDP iteration,

we use the algorithm showed in the table above, which is a

revised form of value iteration, first used in [6].

As no SDUs could gain a higher expected utility by not

choosing the optimal strategy in the profile, the optimal

strategy meets a Nash equilibrium.

IV. SIMULATION RESULTS

In this section, the convergence and effectiveness of the

proposed algorithm are illustrated. In the effectiveness sim-

ulation, myopic strategy and random strategy are used as

comparative methods. The myopic strategy is the strategy that

SDU users will access the AP that could provide the maximum

immediate reward, namely, πmyopic
s = argmax

k≤N
Rk(s). The

random strategy is that the SDUs will access random AP that is

in the Super WiFi system, i.e. Pr{πrand
s = i} = 1

N . According

to model and analysis in the Section II, III, we ascertain

several important coefficients. Firstly, same battery quantity

1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

−10

10
−5

10
0

10
5

(a) The number of iteration

T
he

 s
um

 o
f |

V
(t

)  −
 V

(t
+

1)
|2

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

0

10
1

10
2

10
3

10
4

(b) The number of iteration

T
he

 n
um

be
r 

of
 d

iff
er

en
t p

ai
rs

 

 

The sum of |V(t) − V(t+1)|2

The sum of |π(t) != π(t+1)|

Fig. 3. The convergence of the MDP value iteration.

differences between the adjacent battery levels is used, i.e.

dividing the battery quantity into isometric discrete battery

levels. The parameters of the solar cell in [15] is used. As the

maximum voltage and storage vary with the number of cells,

in this simulation, four power coefficients are of the same

order. The charging power max PH , the energy gap between

adjacent battery levels divided by the time ΔB/(T ·N0), and

the power PT , PI are of the same order. We have PT /N0 = 10,

PI/N0 = 10, ΔB/(T ×N0) = 6 and maxPH/N0 = 6, ..., 10
when ζ̄ = 6ζUnit, ..., 10ζUnit. The simulation was operated

10000 times to avoid random error.

In Fig. 3, the convergence of the MDP value iteration was

illustrated. The Fig. 3(a) is a picture illustrating the sum of

| V t+1
k (s) − V t

k (s) |2, for all s ∈ S , k ∈ AP . And Fig.

5(b) illustrates the number of different AP selections between

adjacent iterations. From the 15th iteration, the selection

strategy remains the same after every iteration and the result

is not drawn in the Fig. 3(b). The figure shows that our MDP

converges in an exponential way.

In Fig. 4, the performance versus arrival rate of the SDUs

λ0 and the leaving rate μ is evaluated. The coefficients are

λ1 = λ2 = λ3 = 0.1, N = 3 APs, with Ui = 0, 1, ..., 4 and

BM = 4, ζ = 10ζUnit. In Fig. 4(a) μ = 0.1, and in Fig. 4(b)

λ0 = 0.1. It is showed in the figure that the proposed strategy

has an evident advantage over the myopic one, and random

strategy performs the worst. In Fig. 4(a), the myopic utility is

set to 1 and normalized the other two accordingly. In Fig. 4(b),

the utility decreases with departure rate, as users stay shorter

in the system. When μ gets bigger, the proposed strategy has
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Fig. 4. The performance of the proposed strategy, myopic strategy and the
random strategy is evaluated versus the arrival rate of the SDUs and the
departure rate of the users in the APs.

less advantage over the myopic. Because a shorter stay time

results in more importance of immediate reward.

Fig. 5 shows the performance of different strategies under

different illumination level. The parameters are λ0 = λ1 =
λ2 = λ3 = 0.1, μ = 0.1, N = 3 APs, and Ui = 0, 1, ..., 4,

BM = 4. All the strategies have a trend of expecting a higher

utility as there is more solar energy. And the proposed strategy

has a stable advantage over the other two.

V. CONCLUSION

In this paper, we have studied the selection problem of AP in

Super WiFi powered by solar energy with negative externality.

We in this work formulate the user number and the battery

level of each AP as Markov states. We successfully construct

the transition probability and use value iteration algorithm

to solve the optimal selection strategy in MDP. The result

of our proposed algorithm shows that our formulation and

algorithm are correct and reliable, with the proposed strategy

having a stable and evident outperformance. Our work could

be instructive for the development of Super WiFi, providing

an effective selection strategy.
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