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Abstract. The management of large databases of hierarchical (e.g.,
multi-scale or multilevel) image features is a common problem in ob-
ject recognition. Such structures are often represented as trees or directed
acyclic graphs (DAGs), where nodes represent image feature abstractions
and arcs represent spatial relations, mappings across resolution levels,
component parts, etc. Object recognition consists of two processes: in-
dexing and verification. In the indexing process, a collection of one or
more extracted image features belonging to an object is used to select,
from a large database of object models, a small set of candidates likely
to contain the object. Given this relatively small set of candidates, a
verification, or matching procedure is used to select the most promising
candidate. Such matching problems can be formulated as largest isomor-
phic subgraph or largest isomorphic subtree problems, for which a wealth
of literature exists in the graph algorithms community. However, the na-
ture of the vision instantiation of this problem often precludes the direct
application of these methods. Due to occlusion and noise, no significant
isomorphisms may exists between two graphs or trees. In this paper, we
review our application of spectral encoding of a graph for indexing to
large database of image features represented as DAGs. We will also re-
view a more general class of matching methods, called bipartite matching,
to two problems in object recognition.

1 Introduction

The management of large databases of hierarchical (e.g., multi-scale or multi-
level) image features is a common problem in object recognition. Such structures
are often represented as trees or DAGs, where nodes represent image feature ab-
stractions and arcs represent spatial relations, mappings across resolution levels,
component parts, etc. Object recognition consists of two processes: indexing and
verification. In the indexing process, a collection of one or more extracted im-
age features belonging to an object is used to select, from a large database of
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object models, a small set of candidates likely to contain the object. Given this
relatively small set of candidates, a verification, or matching procedure is used
to select the most promising candidate. The requirements of matching include
computing a correspondence between nodes in an image structure and nodes in
a model structure, as well as computing an overall measure of distance (or, al-
ternatively, similarity) between the two structures. Such matching problems can
be formulated as largest isomorphic subgraph or largest isomorphic subtree prob-
lems, for which a wealth of literature exists in the graph algorithms community.
However, the nature of the vision instantiation of this problem often precludes
the direct application of these methods. Due to occlusion and noise, no signif-
icant isomorphisms may exists between two graphs or trees. Yet, at some level
of abstraction, the two structures (or two of their substructures) may be quite
similar.

In this paper, we review our application of spectral encoding of a graph for
indexing to large database of image features represented as DAG. Our indexing
mechanism maps the topological structure of a DAG into a low-dimensional vec-
tor space, based on eigenvalue characterization of its adjacency matrix. Invariant
to any re-ordering of the DAG’s branches, the vector provides an invariant signa-
ture of the shape’s coarse topological structure. Furthermore, we can efficiently
index into a database of topological signatures to retrieve model objects having
similar topology. In a set of experiments, we show that the indexing mechanism
is very effective in selecting a small set of model candidates that contain the
correct object.
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Fig. 1. Bipartite Matching
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We will also review our application of a more general class of matching meth-
ods, called bipartite matching, to problems in object recognition [25,26,28,30,31].
As shown in Fig. 1, given two graphs (or trees) G1 and G2, H(G1, G2, E) is a
weighted bipartite graph with weight matrix W = [wu,v] of size |G1| × |G2|, for
all edges of the form (u, v) ∈ E, u ∈ G1, v ∈ G2, and (u, v) has an associated
weight = wu,v. Solving the maximum cardinality minimum weight matching in
H solves an optimization problem which tries to minimize total edge weight on
one hand while trying to maximize the total number of edges in the solution
set on the other hand. The time complexity for finding such a matching in a
weighted bipartite graph with n vertices is O(n2√n log log n) time, using the
scaling algorithm of Gabow, Gomans and Williamson [11].

We will apply this framework for solving two object recognition problems,
one involving DAGs and one involving rooted trees. Each algorithm will, as an
integral step, compute the maximum cardinality, minimum weight matching in a
bipartite graph. Furthermore, each algorithm, in turn, takes a different approach
to preserving hierarchical order in the solution. We describe each algorithm in
detail and evaluate its performance on sets of real images.

2 Two Object Recognition Domains

2.1 The Saliency Map Graph

Our first image representation is a multi-scale view-based description of 3-D ob-
jects that, on one hand, avoids the need for complex feature extraction, such as
lines, curves, or regions, while on the other hand, provides the locality of repre-
sentation necessary to support occluded object recognition as well as invariance
to minor changes in both illumination and shape. In computing a representation
for a 2-D image, a multi-scale wavelet transform is applied to the image, result-
ing in a hierarchical map that captures salient regions at their appropriate scales
of resolution. Each such region maps to a node in a DAG, in which an arc is
directed from a coarser scale region to a finer scale region if the center of the finer
scale’s region falls within the interior of the coarser scale’s region. The result-
ing hierarchical graph structure, called the saliency map graph (SMG), encodes
both the topological and geometrical information found in the saliency map.
An example of an image and its corresponding saliency map graph are shown
in Fig.s 2(a) and (b), respectively. Details of the representation, including its
computation and invariance properties, can be found in [25,26,28].

2.2 Shock Trees

Our second image representation describes the generic shape of a 2-D object, and
is based on a coloring of the shocks (singularities) of a curve evolution process
acting on simple closed curves in the plane [15]. Intuitively, the taxonomy of
shocks consists of four distinct types: the radius function along the medial axis
varies monotonically at a 1, achieves a strict local minimum at a 2, is constant at
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Fig. 2. Two Object Recognition Domains: (a) example image; (b) saliency map graph
corresponding to image in (a); (c) example silhouette with computed shocks; (d) shock
tree corresponding to silhouette in (c).

a 3 and achieves a strict local maximum at a 4. We have recently abstracted this
system of shocks into a shock graph where vertices are labelled by their shock
types, and the shock formation times direct the edges. The space of such shock
graphs is completely characterized by a small number of rules, which in turn
permits the reduction of each graph to a unique rooted tree [30,31]. Figure 2(c)
and (d) show the the 2-D silhouette of a hammer and its corresponding shock
tree, respectively.

3 Indexing Mechanism for Directed Acyclic Graphs

3.1 An Eigenvalue Characterization of a DAG

To describe the topology of a DAG, we turn to the domain of eigenspaces of
graphs, first noting that any graph can be represented as a {−1, 0, 1} adjacency
matrix, with 1’s (and -1’s) indicating directed edges in the graph (and 0’s on
the diagonal). The eigenvalues of a graph’s (or DAG’s) adjacency matrix encode
important structural properties of the graph (or DAG). Furthermore, the eigen-
values of a symmetric matrix A are invariant to any orthonormal transformation
of the form P tAP . Since a permutation matrix is orthonormal, the eigenvalues
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of a DAG are invariant to any consistent re-ordering of the DAG’s branches.
However, before we can exploit a DAG’s eigenvalues for matching purposes, we
must establish their stability under minor topological perturbation, due to noise,
occlusion, or deformation.

We begin with the case in which the image DAG is formed by either adding
a new root to the model DAG, adding one or more subgraphs at leaf nodes of
the model DAG, or deleting one or more entire model subgraphs. In this case,
the model DAG is a subgraph of the query DAG, or vice versa. The following
theorem relates the eigenvalues of two such DAGs:

Theorem 1 (see Cvetković et al. [6]). Let A be a symmetric1 matrix with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and let B be one of its principal2 sub-matrices.
If the eigenvalues of B are ν1 ≥ ν2 ≥ . . . ≥ νm, then λn−m+i ≤ νi ≤ λi(i =
1, . . . ,m).

This important theorem, called the Interlacing Theorem, implies that as A and
B become less similar (in the sense that one is a smaller subgraph of the other),
their eigenvalues become proportionately less similar (in the sense that the in-
tervals that contain them increase in size, allowing corresponding eigenvalues to
drift apart).

The other case we need to consider consists of a query DAG formed by adding
to or removing from the model DAG, a small subset of internal (i.e., non-leaf)
nodes. The upper bounds on the two largest eigenvalues (λ1(T ) and λ2(T )) of
any DAG, T , with n nodes and maximum degree ∆(T ) are λ1(T ) ≤ √

n − 1 and
λ2(T ) ≤ √

(n − 3)/2, respectively (Neumaier, 1982 [18]). The lower bounds on
these two eigenvalues are λ1(T ) ≥ √

∆(T ) (Nosal, 1970 [19]) and λ1(T )λ2(T ) ≥
2n−2
n−2 (Cvetković, 1971 [5]). Therefore, the addition or removal of a small subset
of internal nodes will result in a small change in the upper and lower bounds on
these two eigenvalues. As we shall next, our topological description exploits the
largest eigenvalues of a DAG’s adjacency matrix. Since these largest eigenvalues
are stable under minor perturbation of the DAG’s internal node structure, so
too is our topological description.

We now seek a compact representation of the DAG’s topology based on the
eigenvalues of its adjacency matrix. We could, for example, define a vector to be
the sorted eigenvalues of a DAG. The resulting index could be used to retrieve
nearest neighbors in a model DAG database having similar topology. There is a
problem with this approach. For large DAGs, the dimensionality of the signature
would be prohibitively large. To solve this problem, this description will be based
on eigenvalue sums rather than on the eigenvalues themselves.

Specifically, let T be a DAG whose maximum branching factor is ∆(T ), and
let the subgraphs of its root be T1, T2, . . . , TS . For each subgraph, Ti, whose root
degree is δ(Ti), compute the eigenvalues of Ti’s sub-matrix, sort the eigenvalues
1 The original theorem is stated for Hermitian matrices, of which symmetric matrices
are a subclass.

2 A principal sub-matrix of a graph’s adjacency matrix is formed by selecting the rows
and columns that correspond to a subset of the graph’s nodes.
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in decreasing order by absolute value, and let Si be the sum of the δ(Ti)−1 largest
absolute values. As shown in Fig. 3, the sorted Si’s become the components of
a ∆(T )-dimensional vector assigned to the DAG’s root. If the number of Si’s is
less than ∆(T ), then the vector is padded with zeroes. We can recursively repeat
this procedure, assigning a vector to the root of each subgraph in the DAG for
reasons that will become clear in the next section.

V = [S1,S2,S3,...,Sdmax]
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dmax = max degree of any scene or model node

k = degree of a given subtree’s root 

Fig. 3. Computing a Topological Signature of a DAG

Although the eigenvalue sums are invariant to any consistent re-ordering of
the DAG’s branches, we have given up some uniqueness (due to the summing
operation) in order to reduce dimensionality. We could have elevated only the
largest eigenvalue from each subgraph (non-unique but less ambiguous), but
this would be less representative of the subgraph’s structure. We choose the
δ(Ti)− 1-largest eigenvalues for two reasons: 1) the largest eigenvalues are more
informative of subgraph structure, 2) by summing δ(Ti) − 1 elements, we ef-
fectively normalize the sum according to the local complexity of the subgraph
root.

To efficiently compute the sub-matrix eigenvalue sums, we turn to the do-
main of semidefinite programming. A symmetric n×n matrix A with real entries
is said to be positive semidefinite, denoted as A 
 0, if for all vectors x ∈ Rn,
xtAx ≥ 0, or equivalently, all its eigenvalues are non-negative. We say that
U 
 V if the matrix U − V is positive semidefinite. For any two matrices U
and V having the same dimensions, we define U • V as their inner product, i.e.,
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U •V =
∑

i

∑
j

Ui,jVi,j . For any square matrix U , we define trace(U) =
∑

i Ui,i.

Let I denote the identity matrix having suitable dimensions. The following re-
sult, due to Overton and Womersley [20], characterizes the sum of the first k
largest eigenvalues of a symmetric matrix in the form of a semidefinite convex
programming problem:

Theorem 2 (Overton and Womersley [20]). For the sum of the first k
eigenvalues of a symmetric matrix A, the following semidefinite programming
characterization holds:

λ1(A) + . . .+ λk(A) = max A • U
s.t. trace(U) = k

0 � U � I,
(1)

The elegance of Theorem (2) lies in the fact that the equivalent semidefinite pro-
gramming problem can be solved, for any desired accuracy ε, in time polynomial
in O(n

√
nL) and log 1

ε , where L is an upper bound on the size of the optimal
solution, using a variant of the Interior Point method proposed by Alizadeh [1].
In effect, the complexity of directly computing the eigenvalue sums is a sig-
nificant improvement over the O(n3) time required to compute the individual
eigenvalues, sort them, and sum them.

3.2 A Database for Model DAGs

Our eigenvalue characterization of a DAG’s topology suggests that a model
DAG’s topological structure can be represented as a vector in δ-dimensional
space, where δ is an upper bound on the degree of any vertex of any image
or model DAG. If we could assume that an image DAG represents a properly
segmented, unoccluded object, then the vector of eigenvalue sums, call it the
topological signature vector (or TSV), computed at the image DAG’s root could
be compared with those topological signature vectors representing the roots of
the model DAGs. The vector distance between the image DAG’s root TSV and a
model DAG’s root TSV would be inversely proportional to the topological sim-
ilarity of their respective DAGs: recall that finding two subgraphs with “close”
eigenvalue sums represents an approximation to finding the largest isomorphic
subgraph.

Unfortunately, this simple framework cannot support either cluttered scenes
or segmentation errors, both of which result in the addition or removal of DAG
structure. In either case, altering the structure of the DAG will affect the TSV’s
computed at its nodes. The signatures corresponding to those subgraphs that
survive the occlusion will not change. However, the signature of a node hav-
ing one or more subgraphs which have undergone any perturbation will change
which, in turn, will affect the signatures of any of its ancestor nodes, including
the root. We therefore cannot rely on indexing solely with the root’s signature.
Instead, we will take advantage of the local subgraphs that survive the occlusion.



Graph-Theoretical Methods in Computer Vision 155

We can accommodate such perturbations through a local indexing frame-
work analogous to that used in a number of geometric hashing methods, e.g.,
[17,10]. Rather than storing a model DAG’s root signature, we will store the
signatures of each node in the model DAG, along with a pointer to the object
model containing that node as well as a pointer to the corresponding node in
the model DAG (allowing access to node label information). Since a given model
subgraph can be shared by other model DAGs, a given signature (or location in
δ-dimensional space) will point to a list of (model object, model node) ordered
pairs. At runtime, the signature at each node in the image DAG becomes a sepa-
rate index, with each nearby candidate in the database “voting” for one or more
(model object, model node) pairs. To quickly retrieve these nearby candidates,
we will pre-compute the sorted pairwise distances between every signature in
the database and every other signature in the database.

3.3 An Efficient Indexing Mechanism

We achieve efficient indexing through a δ-dimensional Voronoi decomposition
P (B) of the model space V (B). For a given image TSV, the Voronoi decom-
position will allow us to find the nearest model TSV in expected O(logδ(kn))
time for fixed δ [22]. From the ranked list of neighbors L computed for each
model TSV, either the  nearest neighbors or all neighbors within a radius
r can be computed in constant time (assuming fixed  or r). To construct
the Voronoi database, we partition Rδ into regions, so that for each vector
v ∈ V (B), the region P (v) will denote the set of points in Rδ which are closer to
v than any other vector in V (B) with respect to a metric norm, such as d(., .).
Such a partition is well-defined. The complexity of the Voronoi decomposition
is O((kn)�(δ+1)/2�+1) + O((kn)�(δ+1)/2� log(kn)) ([22]), although this is a cost
incurred at preprocessing time.

The process of selecting candidates at runtime is shown in Fig. 4. LetH be an
image DAG, and let FH and V (FH) be defined as before, and let d(u, v) = ||v −
u||2. For each TSV h ∈ V (FH), we will find the region P (v) (and corresponding
vector v) in P (B), in which h resides. Using the list L(v), we will find the set
of model TSV’s {u1, .., u�} such that d(h, v) + d(v, ui) ≤ r. Clearly, since the
metric norm d(., .) satisfies the triangle inequality, the set {v} ∪ {u1, .., u�} is
a subset of the TSV’s whose distance from h is less than r. Each node in the
image DAG therefore leads to a number of (model object, model node) candidate
votes. In the next section, we discuss the weighting of these votes, along with
the combination of the evidence over all nodes in the image DAG.

4 Matching Two Saliency Map Graphs

Given the SMG computed for an input image to be recognized and a SMG
computed for a given model object image (view), we propose two methods for
computing their similarity. In the first method, we compare only the topological
or structural similarity of the graphs, a weaker distance measure designed to
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Fig. 4. Selecting the Candidate Model Objects

support limited object deformation invariance. In the second method, we take
advantage of the geometrical information encoded in an SMG and strengthen the
similarity measure to ensure geometric consistency, a stronger distance measure
designed to support subclass or instance matching. Each method is based on
formulating the problem as a maximum cardinality minimum weight matching
in a bipartite graph.

4.1 Problem Formulation

Two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic if there
exists a bijective mapping f : V → V ′ satisfying, for all x, y ∈ V (x, y) ∈
E ⇔ (f(x), f(y)) ∈ E′. To compute the similarity of two SMG’s, we consider a
generalization of the graph isomorphism problem, which we will call the SMG
similarity problem: Given two SMG’s G1 = (V1, E1) and G2 = (V2, E2) and
a partial mapping from f : V1 → V2, let E be a real-valued error function
defined on the set of all partial mappings. Our error function, E , incorporates
two components with respect to any partial mapping: 1) we would like to reward
corresponding nodes which are similar in terms of their topology, geometry, and
salience; and 2) we would like to penalize a set of correspondences the more they
exclude nodes from the model. Specifically,

E(f) = ε
∑

u∈V1,v∈V2

Mu,v ω(u, v) |s(u)− s(v)|+ (1− ε)
∑

u∈V1,f(u)=∅
s(u) (2)

where ε = |1tM(f)1|/(|V1|+ |V2|) represents the fraction of matched vertices (1
denotes the identity vector), f(.) = ∅ for unmatched vertices, and s(.) represents
region saliency. For the SMG topological similarity, Sect. 4.2, ω(., .) is always
one, while for the SMG geometrical similarity, Sect. 4.3, it denotes the Euclidean
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distance between the regions.3 A more detailed discussion of the error function is
provided in [28]. We say that a partial mapping f is feasible if f(x) = y implies
that there are parents px of x and py of y, such that f(px) = py. Our goal is
therefore to find a feasible mapping f which minimizes E(f).

4.2 A Matching Algorithm Based on Topological Similarity

In this section, we describe an algorithm which finds an approximate solution to
the SMG similarity problem. The focus of the algorithm is to find a minimum
weight matching between vertices of G1 and G2 which lie in the same level. Our
algorithm starts with the vertices at level 1. Let A1 and B1 be the set of vertices
at level 1 in G1 and G2, respectively. We construct a complete weighted bipartite
graph G(A1, B1, E) with a weight function defined for edge (u, v) (u ∈ A1 and
v ∈ B1) as w(u, v) = |s(v) − s(u)|.4 Next, we find a maximum cardinality,
minimum weight matching M1 in G using [8]. All the matched vertices are
mapped to each other; that is, we define f(x) = y if (x, y) is a matching edge in
M1.

The remainder of the algorithm proceeds in phases as follows, as shown in
Fig. 5. In phase i, the algorithm considers the vertices of level i. Let Ai and Bi

be the set of vertices of level i in G1 and G2, respectively. Construct a weighted
bipartite graph G(Ai, Bi, E) as follows: (v, u) is an edge of G if either of the
following is true: (1) Both u and v do not have any parent in G1 and G2,
respectively, or (2) They have at least one matched parent of depth less than i;
that is, there is a parent pu of u and pv of v such that (pu, pv) ∈ Mj for some
j < i. We define the weight of the edge (u, v) to be |s(u)− s(v)|. The algorithm
finds a maximum cardinality, minimum weight matching in G and proceeds to
the next phase.

The above algorithm terminates after  phases, where  is the minimum
number of scales in the saliency maps (or SMG’s) of two graphs. The partial
mapping M of SMG’s can be simply computed as the union of all Mi values for
i = 1, . . . ,  . Finally, using the error measure defined in [28], we compute the error
of the partial mappingM . Each phase of the algorithm requires simple operations
with the time to complete each phase being dominated by the time to compute
a minimum weight matching in a bipartite graph. As mentioned in Sect. 1,
the time complexity for finding such a matching in a weighted bipartite graph
with n vertices is O(n2√n log log n) time, using the scaling algorithm of Gabow,
Gomans and Williamson [11]. The entire procedure, as currently formulated,
requires O( n2√n log log n) steps.

3 For perfect similarity E(f) = 0, while E(f) will be ∑
u∈V1

s(u) if there is no match.
4 G(A, B, E) is a weighted bipartite graph with weight matrix W = [wij ] of size
|A| × |B| if, for all edges of the form (i, j) ∈ E, i ∈ A, j ∈ B, and (i, j) has an
associated weight = wi,j .
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Fig. 5. Illustration of the SMGBM Algorithm (see text for explanation).

4.3 A Matching Algorithm Based on Geometric Similarity

The SMGBM similarity measure captured the structural similarity between two
SMG’s in terms of branching factor and node saliency similarity; no geometric
information encoded in the SMG was exploited. In this section, we describe a
second similarity measure, called SMG Similarity using an Affine Transformation
(SMGAT), that includes the geometric properties (e.g., relative position and
orientation) of the saliency regions.

Given G1 = (V1, E1) and G2 = (V2, E2), we first assume, without loss of
generality, that |V1| ≤ |V2|. First, as shown in Fig. 6, the algorithm will hypoth-
esize a correspondence between three regions of G1, say (r1, r2, r3), and three
regions (r′

1, r
′
2, r

′
3) of G2. The mapping {(r1 → r′

1), (r2 → r′
2), (r3 → r′

3)} will be
considered as a basis for alignment if the following conditions are satisfied:

– ri and r′
i have the same level in the SMG’s, for all i ∈ {1, . . . ,  }.

– (ri, rj) ∈ E1 if and only if (r′
i, r

′
j) ∈ E2, for all i, j ∈ {1, . . . ,  }, which

implies that selected regions should have the same adjacency structure in
their respective SMG’s.

Once regions (r1, r2, r3) and (r′
1, r

′
2, r

′
3) have been selected, we solve for the

affine transformation (A, b), that aligns the corresponding region triples by solv-
ing the following system of linear equalities:
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Fig. 6. Illustration of the SMGAT Algorithm (see text for explanation)
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The affine transformation (A, b) will be applied to all regions in G1 to form a
new graph G′. Next, a procedure similar to the minimum weight matching, used
in the SMGBM is applied to the regions in graphsG′ andG2. Instead of matching
regions which have maximum similarity in terms of saliency, we match regions
which have minimum Euclidean distance from each other. Given two regions u
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and v, the distance between them can be defined as the L2 norm of the distance
between their centers, denoted by d(u, v) =

√
(xu − xv)2 + (yu − yv)2. In a series

of steps, SMGAT constructs weighted bipartite graphs Gi = (Ri, R
′
i, Ei) for each

level i of the two SMG’s, where Ri and R′
i represent the set of vertices of G

′ and
G2 at the i-th level, respectively. The constraints for having an edge in Ei are
the same as SMGBM: (u, v) is an edge in Gi if either of the followings holds:

– Both u and v do not have any parents in G′ and G2, respectively.
– They have at least one matched parent of depth less than i.

The corresponding edge will have weight equal to w(u, v) = d(u, v). A maxi-
mum cardinality, minimum weight bipartite matching Mi will be found for each
level Gi, and the partial mapping f(A,b) for the affine transformation (A, b) will
be formed as the union of all Mi’s. Finally, the error of this partial mapping
E(f(A,b)) will be computed as the sum over each Ei of the Euclidean distance
separating Ei’s nodes weighted by the nodes’ difference in saliency. Once the
total error is computed, the algorithm proceeds to the next valid pair of region
triples. Among all valid affine transformations, SMGAT chooses that one which
minimizes the error of the partial mapping.

In terms of algorithmic complexity, solving for the affine transformation (3)
takes only constant time, while applying the affine transformation to G1 to
form G′ is O(max(|V1|, |E1|)). The execution time for each hypothesized pair
of region triples is dominated by the complexity of establishing the bipartite
matching between G2 and G′, which is O( n2√n log log n), for SMG’s with n
vertices and  scales. In the worst case, i.e., when both saliency map graphs have
only one level, there are O(n6) pairs of triples. However, in practice, the vertices
of an SMG are more uniformly distributed among the levels of the graph, greatly
reducing the number of possible correspondences of base triples. For a discussion
of how the complexity of the bipartite matching step can be reduced, see [27].

5 Matching Two Shock Trees

5.1 Problem Formulation

Given two shock graphs, one representing an object in the scene (V2) and one
representing a database object (V1), we seek a method for computing their simi-
larity. Unfortunately, due to occlusion and clutter, the shock graph representing
the scene object may, in fact, be embedded in a larger shock graph representing
the entire scene. Thus we have a largest subgraph isomorphism problem, stated
as follows: Given two graphs G = (V1, E1) and H = (V2, E2), find the maxi-
mum integer k, such that there exists two subsets of cardinality k, E′

1 ⊆ E1 and
E′

2 ⊆ E2, and the induced subgraphs (not necessarily connected) G′ = (V1, E
′
1)

and H ′ = (V2, E
′
2) are isomorphic [12]. Further, since our shock graphs are

labeled graphs, consistency between node labels must be enforced in the isomor-
phism.

The largest subgraph isomorphism problem, can be formulated as a {0, 1}
integer optimization problem. The optimal solution is a {0, 1} bijective mapping
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matrix M , which defines the correspondence between the vertices of the two
graphsG andH, and which minimizes an appropriately defined distance measure
between corresponding edge and/or node labels in the two graphs.

We seek the matrix M , the global optimizer of the following [16,7]:

min −1
2

∑
u∈V1

∑
v∈V2

M(u, v)||u, v||

s.t.
∑

u′∈V2

M(u, u′) ≤ 1, ∀u ∈ V1

∑
v∈V1

M(v, v′) ≤ 1, ∀v′ ∈ V2

M(x, y) ∈ {0, 1},∀x ∈ V1, y ∈ V2

(4)

where ||.|| is a measure of the similarity between the labels of corresponding
nodes in the two shock graphs (see Sect. 5.2).

The above minimization problem is known to be NP-hard for general graphs
[12], however, polynomial time algorithms exist for the special case of finite
rooted trees with no vertex labels. Matula and Edmonds [9] describe one such
technique, involving the solution of 2n1n2 network flow problems, where n1 and
n2 represent the number of vertices in the two graphs. The complexity was
further reduced by Reyner [24] to O(n1.5

1 n2) (assuming n1 ≥ n2), through a
reduction to the bipartite matching algorithm of Hopcraft and Karp [14]. Since
we can transform any shock graph into a unique rooted shock tree [30,31], we
can pursue a polynomial time solution to our problem. However, as mentioned
in Sect. 1, the introduction of noise (spurious addition/deletion of nodes) and/or
occlusion may prevent the existence of large isomorphic subtrees. We therefore
need a matching algorithm that can find isomorphic subtrees under these con-
ditions. To accomplish this, we have developed a topological representation for
trees that is invariant to minor perturbations in structure.

5.2 The Distance between Two Vertices

The eigenvalue characterization introduced in the previous section applies to
the problem of determining the topological similarity between two shock trees.
This, roughly speaking, defines an equivalence class of objects having the same
structure but whose parts may have different qualitative or quantitative shape.
For example, a broad range of 4-legged animals will have topologically similar
shock trees.

This geometry is encoded by information contained in each vertex of the
shock tree. Recall from Sect. 2.2 that 1̃’s and 3̃’s represent curve segments of
shocks. We choose not to explicitly assign label types 2 and 4, because each may
be viewed as a limit case when the number of shocks in a 3̃, in the appropriate
context, approaches 1 (see Sect. 2.2). Each shock in a segment is further labeled
by its position, its time of formation (radius of the skeleton), and its direction
of flow (or orientation in the case of 3̃’s), all obtained from the shock detec-
tion algorithm [29]. In order to measure the similarity between two vertices u
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and v, we interpolate a low dimensional curve through their respective shock
trajectories, and assign a cost C(u, v) to an affine transformation that aligns
one interpolated curve with the other. Intuitively, a low cost is assigned if the
underlying structures are scaled or rotated versions of one another (details can
be found in [30,31]).

5.3 Algorithm for Matching Two Shock Trees

As stated in Sect. 1, large isomorphic subtrees may not exist between an image
shock tree and a model shock tree, due to noise and/or occlusion. A weaker for-
mulation of the problem would be to find the maximum cardinality, minimum
weight matching in a bipartite graph spanning the nodes between two shock
trees, with edge weights some function of topological distance and geometrical
distance. Although the resulting optimization formulation is more general, allow-
ing nodes in one tree to match any nodes in another tree (thereby allowing nodes
to match over “noise” nodes), the formulation is weaker since is doesn’t enforce
hierarchical ordering among nodes. Preserving such ordering is essential, for it
makes little sense for a node ordering in one tree to match a reverse ordering in
another tree. Unfortunately, we are not aware of a polynomial-time algorithm for
solving the bipartite matching problem subject to hierarchical constraints. To
achieve a polynomial time approximation, we will embed a bipartite matching
procedure into a recursive greedy algorithm that will look for maximally similar
subtrees.

Our recursive algorithm for matching the rooted subtrees G and H cor-
responding to two shock graphs is inspired by the algorithm proposed by
Reyner [24]. The algorithm recursively finds matches between vertices, start-
ing at the root of the shock tree, and proceeds down through the subtrees in a
depth-first fashion. The notion of a match between vertices incorporates two key
terms: the first is a measure of the topological similarity of the subtrees rooted
at the vertices (see Sect. 3.1), while the second is a measure of the similarity
between the shock geometry encoded at each node (see Sect. 5.2). Unlike a tra-
ditional depth-first search which backtracks to the next statically-determined
branch, our algorithm effectively recomputes the branches at each node, always
choosing the next branch to descend in a best-first manner. One very powerful
feature of the algorithm is its ability to match two trees in the presence of noise
(random insertions and deletions of nodes in the subtrees).

Before stating our algorithm, some definitions are in order. Let G = (V1, E1)
and H = (V2, E2) be the two shock graphs to be matched, with |V1| = n1 and
|V2| = n2. Define d to be the maximum degree of any vertex in G and H, i.e.,
d = max(δ(G), δ(H)). For each vertex v, we define χ(v) ∈ Rd−1 as the unique
eigen-decomposition vector introduced in Sect. 3.1.5 Furthermore, for any pair
5 Note that if the maximum degree of a node is d, then excluding the edge from the
node’s parent, the maximum number of children is d− 1. Also note that if δ(v) < d,
then then the last d − δ(v) entries of χ are set to zero to ensure that all χ vectors
have the same dimension.
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of vertices u and v, let C(u, v) denote the shock distance between u and v, as
defined in Sect. 5.2. Finally, let Φ(G,H) (initially empty) be the set of final node
correspondences between G and H representing the solution to our matching
problem.

The algorithm begins by forming a n1 × n2 matrix Π(G,H) whose (u, v)-th
entry has the value C(u, v)||χ(u)−χ(v)||2, assuming that u and v are compatible
in terms of their shock order, and has the value ∞ otherwise.6 Next, we form a
bipartite edge weighted graph G(V1, V2, EG) with edge weights from the matrix
Π(G,H).7 Using the scaling algorithm of Goemans, Gabow, and Williamson
[11], we then find the maximum cardinality, minimum weight matching in G.
This results in a list of node correspondences between G and H, called M1, that
can be ranked in decreasing order of similarity.

FromM1, we choose (u1, v1) as the pair that has the minimum weight among
all the pairs inM1, i.e., the first pair inM1. (u1, v1) is removed from the list and
added to the solution set Φ(G,H), and the remainder of the list is discarded. For
the subtrees Gu1 and Hv1 of G and H, rooted at nodes u1 and v1, respectively,
we form the matrix Π(Gu1 , Hv1) using the same procedure described above.
Once the matrix is formed, we find the matching M2 in the bipartite graph
defined by weight matrix Π(Gu1 , Hv1), yielding another ordered list of node
correspondences. The procedure is recursively applied to (u2, v2), the edge with
minimum weight in M2, with the remainder of the list discarded.

This recursive process eventually reaches the leaves of the subtrees, forming a
list of ordered correspondence lists (or matchings) {M1, . . . ,Mk}. In backtrack-
ing step i, we remove any subtrees from the graphs Gi andHi whose roots partic-
ipate in a matching pair in Φ(G,H) (we enforce a one-to-one correspondence of
nodes in the solution set). Then, in a depth-first manner, we first recompute Mi

on the subtrees rooted at ui and vi (with solution set nodes removed). As before,
we choose the minimum weight matching pair, and recursively descend. Unlike
in a traditional depth-first search, we dynamically recompute the branches at
each node in the search tree. Processing at a particular node will terminate when
either subtree loses all of its nodes to the solution set. We can now state the
algorithm more precisely:

procedure isomorphism(G,H)
Φ(G, H)← ∅
d← max(δ(G), δ(H))
for u ∈ VG compute χ(u) ∈ Rd−1 (Section 3.1)
for v ∈ VH compute χ(v) ∈ Rd−1 (Section 3.1)
call match(root(G),root(H))
return(cost(Φ(G, H))

end

6 If either C(u, v) or ||χ(u)− χ(v)||2 is zero, the (u, v)-th entry is the other term.
7 G(A, B, E) is a weighted bipartite graph with weight matrix W = [wij ] of size
|A| × |B| if, for all edges of the form (i, j) ∈ E, i ∈ A, j ∈ B, and (i, j) has an
associated weight = wi,j .
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procedure match(u,v)
do
{
let Gu ← rooted subtree of G at u
let Hv ← rooted subtree of H at v
compute |VGu | × |VHv |
weight matrix Π(Gu, Hv)
M← max cardinality, minimum weight

bipartite matching in G(VGu , VHv )
with weights from Π(Gu, Hv) (see [11])

(u′, v′)← minimum weight pair inM
Φ(G, H)← Φ(G, H) ∪ {(u′, v′)}
call match(u′,v′)
Gu ← Gu − {x|x ∈ VGu and (x, w) ∈ Φ(G, H)}
Hv ← Hv − {y|y ∈ VHv and (w, y) ∈ Φ(G, H)}
}

while (Gu = ∅ and Hv = ∅)

In terms of algorithmic complexity, observe that during the depth-first con-
struction of the matching chains, each vertex in G or H will be matched at most
once in the forward procedure. Once a vertex is mapped, it will never participate
in another mapping again. The total time complexity of constructing the match-
ing chains is therefore bounded by O(n2√n log log n), for n = max(n1, n2) [11].
Moreover, the construction of the χ(v) vectors will take O(n

√
nL) time, imply-

ing that the overall complexity of the algorithm is max(O(n2√n log log n), O(n2√
nL).
The approximation has to do with the use of a scaling parameter to find the

maximum cardinality, minimum weight matching [11]; this parameter determines
a tradeoff between accuracy and the number of iterations untill convergence. The
matching matrix M in (4) can be constructed using the mapping set Φ(G,H).
The algorithm is particularly well-suited to the task of matching two shock trees
since it can find the best correspondence in the presence of occlusion and/or
noise in the tree.

6 Experiments

6.1 Indexing Experiments

We test our indexing algorithm on a database of 60 object silhouettes, some
representative examples of which are shown in Fig. 7. In the first experiment,
we select 20 shapes from the database, compute their shock trees, compute the
topological signature vectors for each of their nodes, and populate the resulting
vectors in a model database. Each element, in turn, will be removed from the
database and used as a query tree for the remaining database of 19 model trees.
For each of the 20 trials, the 19 object candidates will be ranked in decreasing
order of accumulator contents. To evaluate the quality of the indexing results,
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we will compute the distance between the query tree and each of the candidates,
using the matcher developed in [31], and note which model tree is the closest
match. If indexing is to be effective, the closest matching model should be among
the best (highest-weight) candidates returned by the indexing strategy.

In the second and third experiments, we apply the same procedure to
databases of size 40 and 60 model trees, respectively, in order to evaluate the
scaling properties of our indexing algorithm. Thus, in the second experiment, we
have 40 indexing trials, while in the third experiment, we have 60 indexing tri-
als. Finding the position of the closest model shape among the sorted candidates
for any given query shape requires that we first compute the 60 × 60 distance
matrix.

Fig. 7. Samples from a Database of 60 Object Silhouettes

The results of the first experiment are shown in Fig. 8(a), where the horizontal
axis indicates the rank of the target object (or closest matching object) in the
sorted candidates, and the vertical axis represents the number of times that rank
is achieved. For this experiment, the average rank is 1.6, which implies that on
average, 8.4% of the sorted candidates need to be verified before the closest
matching model is found. The results of the second and third experiments are
shown in Fig. 8(b) and (c), respectively. The results are very encouraging and
show that as database size increases, the indexing algorithm continues to prune
over 90% of the database (avg. rank of 7.9% in expt. 2, 8.8% in expt. 3).

In a final experiment, we generate some occluded scenes from shapes in our
database. In Table 1, we show three examples of occluded query images (left
column) and the top ten (sorted left to right) model candidates from a database
of 40 model shapes. Twice, the rank of the target is 4th, while once it is 3rd,
indicating that for these three examples, at most 10% of the model indexing can-
didates need to be verified. We are currently conducting a more comprehensive
set of occlusion experiments.

It should be noted that the indexing mechanism reflects primarily the topo-
logical structure of the query. Thus, in row 1 of Table 1, for example, the topolog-
ical structure of the query (brush occluding the hammer) is more similar to the
pliers-like objects (two of the top three candidates) than to the hammer itself.
Topological similarity of shock trees is a necessary but not sufficient condition
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Fig. 8. Indexing Results for a Database of 60 Images. In each case, the horizontal
axis indicates the rank of the target object (or closest matching object) in the sorted
candidates, and the vertical axis represents the number of times that rank is achieved.
(See text for discussion.)

for shape similarity, as it ignores the geometries of the object’s parts (nodes in
its shock tree). Therefore, the fact that objects with different shape can rank
high in the candidate list is not surprising.

6.2 Matching of Saliency Maps

To evaluate our representation and matching framework, we apply it to a
database of model object views generated by Murase and Nayar at Columbia
University. Views of each of the 20 objects are taken from a fixed elevation every
5 degrees (72 views per object) for a total of 1440 model views. The top row of
images in Fig. 9 shows three adjacent model views for one of the objects (piggy
bank) plus one model view for each of two other objects (bulb socket and cup).
The second row shows the computed saliency maps for each of the five images,
while the third row shows the corresponding saliency map graphs. The time to
compute the saliency map averaged 156 seconds/image for the five images on
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Table 1. Indexing using an occluded query shape. For each row, the query is shown to
the left, while the top ten candidate models (from a database of 40 models) are shown
on the right, in decreasing order of weight.

(a) (b) (c) (d) (e)

Fig. 9. A sample of views from the database: top row represents original images, second
row represents saliency maps, while third row represents saliency map graphs.

a Sun Sparc 20, but can be reduced to real-time on a system with hardware
support for convolution, e.g., a Datacube MV200. The average time to compute
the distance between two SMG’s is 50 ms using SMGBM, and 1.1 second using
SMGAT (an average of 15 nodes per SMG).

To illustrate the matching of an unoccluded image to the database, we com-
pare the middle piggy bank image (Fig. 9(b)) to the remaining images in the
database. Table 2 shows the distance of the test image to the other images in
Fig. 9; the two other piggy bank images (Fig.s 9 (a) and (c)) were the closest
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matching views in the entire database. Table 2 also illustrates the difference be-
tween the two matching algorithms. SMGBM is a weaker matching algorithm,
searching for a topological match between two SMG’s. SMGAT, on the other
hand, is more restrictive, searching for a geometrical match between the two
SMG’s. For similar views, the two algorithms are comparable; however, as two
views diverge in appearance, their similarity as computed by SMGAT diverges
more rapidly than their SMGBM similarity. In a third experiment, we compare

Table 2. Distance of Fig. 9(b) to other images in Fig. 9

Algorithm 9(a) 9(c) 9(d) 9(e)
SMGBM 9.57 10.06 14.58 23.25
SMGAT 8.91 12.27 46.30 43.83

every image to every other image in the database, resulting in over 1 million tri-
als. There are three possible outcomes: 1) the image removed from the database
is closest to one of its neighboring views of the correct object; 2) the image re-
moved from the database is closest to a view belonging to the correct object but
not a neighboring view; and 3) the image removed from the database is closest
to a view belonging to a different object. The results are shown in Table 3. As
we would expect, the SMGAT algorithm, due to its stronger matching criterion,
outperforms the SMGBM algorithm. If we include as a correct match any image
belonging to the same object, both algorithms (SMGBM and SMGAT) perform
extremely well, yielding success rates of 97.4% and 99.5%, respectively. To illus-

Table 3. An exhaustive test of the two matching algorithms. For each image in the
database, the image is removed from the database and compared, using both algo-
rithms, to every remaining image in the database. The closest matching image can be
either one of its two neighboring views, a different view belonging to the correct object,
or a view belonging to a different object.

Algorithm % Hit % Miss % Miss
right object wrong object

SMGBM 89.0 8.4 2.6
SMGAT 96.6 2.9 0.5

trate the matching of an occluded image to the database, we compare an image
containing the piggy bank occluded by the bulb socket, as shown in Fig. 10.
Table 4 shows the distance of the test image to the other images in Fig. 9. The
closest matching view is the middle view of the piggy back which is, in fact, the
view embedded in the occluded scene. In a labeling task, the subgraph matching
the closest model view would be removed from the graph and the procedure
applied to the remaining subgraph. After removing the matching subgraph, we
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Fig. 10. Occluded Object Matching: (a) original image; (b) saliency map; and (c)
saliency map graph

match the remaining scene subgraph to the entire database, as shown in Table 5.
In this case, the closest view is the correct view (Figure 9(d)) of the socket.

Table 4. Distance of Fig. 10(a) to other images in Fig. 9. The correct piggy bank view
(Fig. 9(b)) is the closest matching view.

Algorithm 9(a) 9(b) 9(c) 9(d) 9(e)
SMGBM 9.56 3.47 8.39 12.26 14.72
SMGAT 24.77 9.29 21.19 30.17 33.61

Table 5. Distance of Fig. 10(a) (after removing from its SMG the subgraph corre-
sponding to the matched piggy back image) to other images in Fig. 9.

Algorithm 9(a) 9(b) 9(c) 9(d) 9(e)
SMGBM 12.42 14.71 14.24 4.53 9.83
SMGAT 18.91 20.85 17.08 7.19 15.44

6.3 Matching of Shock Trees

To evaluate our matcher’s ability to compare objects based on their prototypical
or coarse shape, we begin with a database of 24 objects belonging to 9 classes.
To select a given class prototype, we select that object whose total distance to
the other members of its class is minimum.8 We then compute the similarity
between each remaining object in the database and each of the class prototypes,
with the results shown in Table 6. For each row in the table, a box has been
placed around the most similar shape. We note that for the 15 test shapes drawn
8 For each of the three classes having only two members, the class prototype was
chosen at random.
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Table 6. Similarity between database shapes and class prototypes. In each row, a box
is drawn around the most similar shape (see the text for a discussion).

Instance Distance to Class Prototype

0.02 2.17 4.48 3.55 2.96 0.21 4.58 14.33 10.01

2.39 0.10 5.97 15.90 3.98 0.14 26.12 17.28 28.94

10.89 4.72 2.08 12.24 3.12 2.15 19.73 10.11 12.64

7.15 6.42 1.19 1.35 5.10 3.38 10.58 11.11 11.11

4.08 7.72 2.98 1.49 4.26 4.14 26.60 13.54 14.21

14.77 6.72 5.69 0.36 2.30 5.90 10.58 16.25 19.10

7.86 8.90 5.94 0.74 1.59 1.10 10.81 10.39 16.08

2.66 4.23 3.23 6.47 0.62 1.48 11.73 15.38 15.15

3.18 5.31 1.25 4.64 0.60 1.30 14.18 17.22 9.08

4.55 0.76 1.32 2.86 1.49 0.11 21.38 15.35 13.04

6.77 19.46 22.11 13.27 8.21 29.50 0.15 5.12 5.03

8.73 23.14 31.45 24.41 10.16 31.08 0.18 8.45 7.05

12.46 19.0 27.40 14.58 24.26 17.10 8.85 7.49 16.93

13.86 23.07 12.81 11.24 17.48 23.23 6.02 6.92 3.06

15.73 21.28 14.10 12.46 19.56 19.21 9.53 7.12 5.06

from 9 classes, all but one are most similar to their class prototype, with the
class prototype coming in a close second in that case.

Three very powerful features of our system are worth highlighting. First,
the method is truly generic: the matching scores impose a partial ordering in
each row, which reflects the qualitative similarity between structurally similar
shapes. An increase in structural complexity is reflected in a higher cost for the
best match, e.g., in the bottom two rows of Fig. 6. Second, the procedure is
designed to handle noise or occlusion, manifest as missing or additional vertices
in the shock graph. Third, the depth-first search through subtrees is extremely
efficient.

7 Selected Related Work

Multi-scale image descriptions have been used by other researchers to locate a
particular target object in the image. For example, Rao et al. use correlation
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to compare a multi-scale saliency map of the target object with a multi-scale
saliency map of the image in order to fixate on the object [23]. Although these
approaches are effective in finding a target in the image, they, like any template-
based approach, do not scale to large object databases. Their bottom-up de-
scriptions of the image are not only global, offering little means for segmenting
an image into objects or parts, but offer little invariance to occlusion, object
deformation, and other transformations.

Wiskott et al. [33] use Gabor wavelet jets to extract salient image features.
Wavelet jets represent an image patch (containing a feature of interest) with a set
of wavelets across the frequency spectrum. Each collection of wavelet responses
represents a node in a grid-like planar graph covering overlapping regions of the
image. Image matching reduces to a form of elastic graph matching, in which the
similarity between the corresponding Gabor jets of nodes is maximized. Corre-
spondence is proximity-based, with nodes in one graph searching for (spatially)
nearby nodes in another graph. Effective matching therefore requires that the
graphs be coarsely aligned in scale and image rotation.

Another related approach is due to Crowley et al. [3,2,4]. From a Laplacian
pyramid computed on an image, peaks and ridges at each scale are detected as
local maxima. The peaks are then linked together to form a tree structure, from
which a set of peaks paths are extracted, corresponding to the branches of the
tree. During matching, correspondence between low-resolution peak paths in the
model and the image are used to solve for the pose of the model with respect to
the image. Given this initial pose, a greedy matching algorithm descends down
the tree, pairing higher-resolution peak paths from the image and the model.
Using a log likelihood similarity measure on peak paths, the best corresponding
paths through the two trees is found. The similarity of the image and model
trees is based on a very weak approximation of the trees’ topology and geometry,
restricted, in fact, to a single path through the tree.

Graph matching is a very popular topic in the computer vision commu-
nity. Although space prohibits us from providing a comprehensive review, we
will mention some particularly relevant related work. A graduated assignment
algorithm has been proposed for subgraph isomorphism, weighted graph match-
ing, and attributed relational graph matching [13]. The method was applied to
matching non-hierarchical point features and performs well in the presence of
noise and occlusion. Cross and Hancock propose a two step matching algorithm
for locating point correspondences and estimating geometric transformation pa-
rameters between 2-D images. Point correspondence is achieved via maximum
a posteriori graph-matching, while expectation maximization (EM) is used to
recover the maximum likelihood transformation parameters. The novel idea of
using graph-based models to provide structural constraints on parameter esti-
mation is an important contribution their work. This, combined with the EM
algorithm, allows their system to impose an explicit deformational model on the
feature points.

The matching of shock trees has been addressed by a number of other groups.
In recent work, Pelillo et al. [21] introduced a matching algorithm which extends
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the detection of maximum cliques in association graphs to hierarchically orga-
nized tree structures. They use the concept of connectivity to derive an asso-
ciation graph, and prove that attributed tree matching is equivalent to finding
a maximum clique in the association graph. They applied their algorithm to
articulated and deformed shapes represented as shock trees. In a related pa-
per, Tirthapura et al. [32] present an alternative use of shock graphs for shape
matching. Their approach relies on graph transformations based on the edit dis-
tance between two graphs, defined as the “least action” path consisting of a
sequence of elementary edit transformations taking one graph to another. The
first approach can handle occlusion, but does not accommodate spurious noise
in the graphs; the second approach handles spurious noise, but cannot effectively
deal with occlusion. Both approaches focus solely on graph (tree) structure, and
would have to be modified to include the concept of node similarity.

8 Conclusions

In this paper, we have reviewed three different algorithms for object recognition,
each based on solving a bipartite matching formulation of a particular problem.
The formulation is both very general and very powerful. We have shown edge
weights that encode difference in region saliency, Euclidean distance in the image,
and a function of topological and geometric distance. We have also seen different
ways in which hierarchical ordering of nodes in a graph/tree can be enforced. In
the case of saliency map graph matching, parent/child relationships are used to
bias edge weights at lower levels of the matching, while in the case of shock tree
matching, a depth-first procedure is used to ensure hierarchical consistency. It
should be noted that the method by which we enforce hierarchical ordering in
the matching of saliency map graphs is not applicable to the matching of shock
graphs (DAGs or trees), since the method assumes that corresponding nodes
in the hierarchy are at comparable scales. In a shock graph, a leaf child of the
root may be as small in scale as a leaf further down the tree. However, we are
exploring the application of our shock tree matching and indexing methods to
multi-scale DAG representations.

Finally, we have shown how matching complexity can be managed in a coarse-
to-fine framework. In the case of saliency map graph matching, solutions to the
bipartite matching problem at a coarser level are used to constrain solutions at a
finer level, while in the case of shock tree matching, large corresponding subtree
roots (found through a solution to the bipartite matching problem) are used to
establish correspondence between their descendents. Furthermore, in the case of
shock tree matching, our eigen-characterization of a tree’s topological structure
allows us to efficiently compare subtree structures in the presence of noise and
occlusion.
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