
Multi-Valued Symbolic Model-Checking

MARSHA CHECHIK, BENET DEVEREUX, STEVE EASTERBROOK AND ARIE
GURFINKEL
University of Toronto

This paper introduces the concept of multi-valued model-checking and describes a multi-valued

symbolic model-checker χChek. Multi-valued model-checking is a generalization of classical model-
checking, useful for analyzing models that contain uncertainty (lack of essential information) or

inconsistency (contradictory information often occurring when information is gathered from mul-

tiple sources). Multi-valued logics support the explicit modeling of uncertainty and disagreement
by providing additional truth values in the logic.

This paper provides a theoretical basis for multi-valued model-checking and discusses some of its

applications. A companion paper [Chechik et al., 2002b] describes implementation issues in detail.
The model-checker works for any member of a large class of multi-valued logics. Our modeling

language is based on a generalization of Kripke structures, where both atomic propositions and

transitions between states may take any of the truth values of a given multi-valued logic. Properties
are expressed in χCTL, our multi-valued extension of the temporal logic CTL.

We define the class of logics, present the theory of multi-valued sets and multi-valued relations
used in our model-checking algorithm, and define the multi-valued extensions of CTL and Kripke

structures. We explore the relationship between χCTL and CTL, and provide a symbolic model-

checking algorithm for χCTL. We also address the use of fairness in multi-valued model-checking.
Finally, we discuss some applications of the multi-valued model-checking approach.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification—Formal
met hods; Model checking; D.2.1 [Software Engineering]: Requirements/Specifications—Tools; F.4.1 [Mathe-
matical Logic and Formal Languages]: Mathematical Logic—Te mporal Logic

General Terms: Documentation; Verification

Additional Key Words and Phrases: CTL, multi-valued logic, model-checking, partiality, incon-
sistency, fairness, χChek.

1. INTRODUCTION

This paper introduces the concept and the general theory of multi-valued model-checking,
and describes our multi-valued symbolic model-checkerχChek. Multi-valued model-
checking can best be explained as a generalization of classical model-checking. A classical
model-checker takes a model,M , of a system (expressed as a finite state machine), and
a temporal correctness property,ϕ, (expressed as a formula in a suitable temporal logic),
and determines whether or not the model satisfies the property [Clarke et al., 1986]. In
other words, it returns the value of the predicateM |= ϕ. Multi-valued model-checking
permits reasoning with additional truth values beyond just TRUE and FALSE. In particular,

Authors’ address: Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada.
Email: {chechik, benet, sme, arie}@cs.toronto.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

To appear inACM Transactions on Software Engineering and Methodology.

2 · Chechik, Devereux, Easterbrook & Gurfinkel

the satisfaction relation,M |= ϕ, can be multi-valued.χChek [Chechik et al., 2002a] is a
generalization of an existing symbolic model-checking algorithm [McMillan, 1993] for a
multi-valued extension of the temporal logic CTL.

Our motivation stems from two observations about the application of model-checking
in software engineering. The first is that to make model-checking practical for verification
of real software systems, abstract models of the software behaviour must be constructed.
When working with abstractions, it is natural to consider three-valued logics, with the third
value, MAYBE, used to indicate elided information in the model [Bruns and Godefroid,
1999], or to indicate the result of checking when a definite answer is not possible using the
chosen abstraction [Sagiv et al., 1999; Chechik and Ding, 2002]. The second observation
is that model-checking has a natural application for model exploration, where the goal
is to arrive at a good model of the desired system through successive approximations.
Each model is likely to be incomplete and/or wrong, but by exploring its properties, the
analyst learns how to improve it. Again, three-valued logics provide a natural way of
indicating missing information [Bruns and Godefroid, 2000]. However, it is also appealing
to consider a more general family of logics with additional truth values, for example, to
distinguish levels of uncertainty, levels of priority, or disagreements between knowledge
sources [Easterbrook and Chechik, 2001].

In this sense, our interest in multi-valued reasoning parallels a similar interest in philoso-
phy and AI, where multi-valued logics have been explored for reasoning with information
with associated degrees of belief, or credibility weightings [Ginsberg, 1988]. We draw
on that work to provide us with a suitable class of multi-valued logics for our model-
checker, in particular, the work of Kleene who originally explored the use of three-valued
logics for reasoning with missing information [Kleene, 1952], and Belnap who extended
Kleene’s strong three-valued logic to a four-valued logic to account for inconsistency [Bel-
nap, 1977]. Belnap observed that the truth values of these logics admit to two intuitive
(partial) orders: a knowledge order, which places MAYBE below both TRUE and FALSE,
and a truth order which places FALSE below MAYBE below TRUE. Finally, Fitting used this
observation to characterize an entire family of multi-valued logics based on Kleene’s logic,
and offers several intuitive constructions for them [Fitting, 1991b]. Fitting also explored
a multi-valued generalization of modal logic, using Kripke’s possible world semantics, in
which not only do formulae take values from a multi-valued space in each possible world,
but the accessibility relationships between worlds can also be multi-valued [Fitting, 1991a;
Fitting, 1992].

Applying these ideas to model-checking, our approach supports all of the following
generalizations:

• Variables in the finite state machine can be multi-valued or boolean.
• Transitions between states in the finite state machine can be multi-valued or boolean.
• The satisfaction relation can be multi-valued or boolean.

We achieve this generalization by defining model-checking algorithms over a large class
of logics, including the family of Kleene-like logics identified by Fitting. In particular,
we pose the following requirements to this class: (a) many of the desired properties of
classical logic operators are preserved, e.g. associativity, commutativity, and idempotance;
(b) the logics can be used for representing a large class of systems; (c) model-checking
using these logics remains tractable. We intentionally leave probabilistic systems outside
the scope of this paper, concentrating instead on logics with a finite set of truth values. To

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 3

meet these requirements, we restrict ourselves to logics whose truth values form a finite dis-
tributive lattice under the truth ordering, with a negation operator that preserves De Morgan
laws and involution (¬¬a = a). The resulting structures are calledquasi-boolean alge-
bras [Rasiowa, 1978]. Classical boolean logic, as well as the logics described by Kleene
and Belnap, are examples of quasi-boolean algebras. Unlike Heyting algebras [Fitting,
1992], quasi-boolean algebras allow us to preserve the duality between the “next-time” op-
erators:EX¬ϕ = ¬AXϕ. Our model-checker operates on any multi-valued logic whose
truth values form a quasi-boolean algebra – the particular logic to be used in each analysis
is selected as a runtime parameter. We define quasi-boolean algebras formally and discuss
their properties in Section 3. Throughout the paper, we use terms “algebras” and “logics”
interchangeably, to indicate a set of truth values closed under logical operations.

Having identified a suitable class of logics, we develop the theory of multi-valued model-
checking as follows. We first apply a theory of multi-valued sets and relations to create
the core structure for our symbolic model-checking algorithm. Multi-valued sets are sets
whose membership functions are multi-valued [Goguen, 1967]. We use multi-valued sets
to represent the partition of the state-space over the set of truth values in the logic, induced
by a given property. We extend the notion of multi-valued set membership to multi-valued
relations, which we use to represent the transition relations in our models. We present the
theory of multi-valued sets and relations in Section 4.

Second, we define a multi-valued semantics for CTL, and demonstrate that this seman-
tics preserves the desired properties. We call the resulting logicχCTL. We provide a
model-based semantics forχCTL by extending the notion of Kripke structures, so that
both atomic propositions and transitions between states range over values of a given quasi-
boolean algebra. We call the resulting modelsχKripke structures. We presentχCTL and
χKripke structures in Section 5. We also show thatχCTL is decidable and analyze fixpoint
properties of its operators.

Third, we give a characterization of multi-valued model-checking with fairness. Fairness
is used in classical model-checking to simplify modeling, by allowing the user to build a
model with more behaviors than is desired, and then to restrict the analysis to just those
behaviors that are fair, i.e., occur under reasonable assumptions about occurrence of events
in the environment. We argue that fairness conditions in multi-valued model-checking
should be boolean-valued and give a formulation of fairness for eachχCTL operator in
Section 6.

Combining these ideas yields a clean extension of the theory of classical model-checking,
applicable to a variety of tasks. We describe the implementation details and some poten-
tial applications of multi-valued model-checking in Section 7. We further note that the
multi-valued model-checking decision procedure can be either implemented directly or
reduced to classical. The tradeoffs between these choices are studied in the companion
paper [Chechik et al., 2002b].

We conclude the paper with a brief discussion of the relationship between our work and
other recent work on multi-valued model-checking, and discuss some planned extensions
of our work (Section 8).

Throughout the paper we use these notational conventions: (1) we refer to an unnamed
function over the domainD asλx ∈D · F-n Body; (2) we usenat to refer to the set of
natural numbers; (3) we use∃! to mean “exists unique”. Proofs of selected theorems can
be found in the appendix.

To appear inACM Transactions on Software Engineering and Methodology.

4 · Chechik, Devereux, Easterbrook & Gurfinkel

2. CTL MODEL-CHECKING

In this section, we give a brief overview of classical CTL model-checking.
CTL model-checking is an automatic technique for verifying properties expressed in a

propositional branching-time temporal logic calledComputation Tree Logic(CTL) [Clarke
et al., 1986]. A model is a Kripke structure, and properties are evaluated on a tree of
infinite computations produced by the model. The standard notationM, s |= ϕ indicates
that a formulaϕ holds in a states of a modelM . If a formula holds in the initial state, it is
considered to hold in the model.

A Kripke structure consists of a set of states,S, a transition relation,R ⊆ S × S, an
initial state,s0 ∈ S, a set of atomic propositions,A, and a labeling function,I : S → 2A.
R must be total, i.e,∀s ∈ S, ∃t ∈ S, such that(s, t) ∈ R. Finite computations are
modeled by adding a self-loop to the final state of the computation. For eachs ∈ S, the
labeling function provides a set of atomic propositions which hold in the stateS.

The syntax of CTL is as follows:

(1) Every atomic propositiona ∈ A is a CTL formula.

(2) If ϕ andψ are CTL formulas, then so are¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, EXϕ, AXϕ, EFϕ,
AFϕ, E[ϕ U ψ],A[ϕ U ψ],AGϕ, EGϕ.

The logic connectives¬, ∧ and∨ have their usual meanings. The existential and universal
quantifiersE andA are used to quantify over paths. The operatorX means “in the next
state”,F represents “sometime in the future”,U is “until”, andG is “globally”. For ex-
ample,EXϕ is TRUE in states if ϕ holds in some immediate successor ofs, whileAXϕ
is TRUE if ϕ holds in every immediate successor ofs. EFϕ is TRUE in s if ϕ holds in
the future along some path froms; E[ϕ U ψ] is TRUE in s if along some path froms,
ϕ continuously holds untilψ becomes TRUE. EGϕ hold in s if ϕ holds in every state
along some path froms. AFϕ, A[ϕ U ψ] andAGϕ are defined similarly, replacing the
quantification over some paths by the one over all paths. Formally,

M, s |= a iff a ∈ I(s)
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ ∧ M, s |= ψ
M, s |= ϕ ∨ ψ iff M, s |= ϕ ∨ M, s |= ψ
M, s |= EXϕ iff ∃t ∈ S, (s, t) ∈ R ∧ M, t |= ϕ
M, si |= EGϕ iff there exists some path si, si+1, ... s.t. ∀j ≥ i ·M, sj |= ϕ

M, si |= E[ϕ U ψ] iff there exists some path si, si+1, ..., s.t.
∃j ≥ i ·M, sj |= ψ ∧ ∀k · i ≤ k < j ⇒M, sk |= ϕ

Note that these definitions give us a “strong until”, that is,E[ϕ U ψ] is TRUE only if ψ
eventually occurs. Further, note that we have usedEG,EX andEU as an adequate set of
temporal operators, following [Huth and Ryan, 2000; Clarke et al., 1999]. The remaining
temporal operators are defined in terms of these:

A[ϕ U ψ] , ¬E[¬ψ U ¬ϕ ∧ ¬ψ] ∧ ¬EG¬ψ def. of AU
AXϕ , ¬EX¬ϕ def. of AX
AFϕ , A[> U ϕ] def. of AF
EFϕ , E[> U ϕ] def. of EF
AGϕ , ¬EF¬ϕ def. of AG

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 5

AGϕ = νZ.(ϕ ∧AXZ) (AG fixpoint)

EGϕ = νZ.(ϕ ∧ EXZ) (EG fixpoint)
AFϕ = µZ.(ϕ ∨AXZ) (AF fixpoint)

EFϕ = µZ.(ϕ ∨ EXZ) (EF fixpoint)

A[ϕ U ψ] = µZ.(ψ ∨ (ϕ ∧AXZ)) (AU fixpoint)
E[ϕ U ψ] = µZ.(ψ ∨ (ϕ ∧ EXZ)) (EU fixpoint)

Fig. 1. Fixpoint formulations of CTL operators. Note:µZ.f(Z) andνZ.f(Z) indicate the least and the greatest
fixpoints off , respectively.

Alternatively, CTL operators can be described using their fixpoint formulations, as shown
in Figure 1. This description is most useful for symbolic model-checking [McMillan,
1993].

3. QUASI-BOOLEAN LOGICS

Our motivation for developing multi-valued model-checking is to enable automated rea-
soning over models where there are uncertainties or disagreements. For different applica-
tions, we expect that different multi-valued logics will be appropriate. We therefore need
to identify a class of multi-valued logics that are natural for describing realistic problems,
but which still enable tractable model-checking. Where possible, we wish to build upon
the existing body of work in constructing efficient model-checkers by reusing existing al-
gorithms and data structures. Hence, we need logics whose operators have most of the
same properties as their classical counterparts.

Following the work of Fitting [Fitting, 1991b], we observe that many of the desired
properties can be obtained if we insist that the truth values of the logic form a complete lat-
tice under the truth order, with conjunction and disjunction defined as the lattice operations
meet and join respectively. Further, to preserve the relationships between the temporal op-
erators described in Section 2, we will require that conjunction and disjunction distribute
over each other, and that De Morgan’s laws hold for negation. Distributive lattices have
the former property, but for the latter, we need additional constraints on the choice of the
negation operator.

One possible choice is to use boolean algebras, which are very well known, and have
all the properties described above, together with the law of non-contradiction (LNC) and
the law of excluded middle (LEM). However, this choice would exclude many interesting
logics, including those of Kleene and Belnap, where LNC and LEM do not hold. Instead,
we use quasi-boolean algebras, which have all the properties of boolean algebras, except
LNC and LEM. Quasi-boolean algebras, also known as De Morgan algebras, are a familiar
concept in logic [Bolc and Borowik, 1992; Dunn, 1999].

The remainder of this section provides a formal treatment of the above discussion. We
start with the lattice theory background in Section 3.1. We then define quasi-boolean alge-
bras in Section 3.2, and describe some examples.

3.1 Lattice Theory

DEFINITION 1. A partial order, v, on a setL is a binary relation onL such that the
following conditions hold:

To appear inACM Transactions on Software Engineering and Methodology.

6 · Chechik, Devereux, Easterbrook & Gurfinkel

5

4 3

2

1

(g) (f)

True

MaybeBoth

False(c)

T

M

FF

T

(a) (e)(d) (b)

TT

TF FT

FF

TM

FF

MT

MM

TT

FT

MF

TF

FM

Fig. 2. Example lattices.

∀a ∈ L : a v a reflexivity
∀a, b ∈ L : a v b ∧ b v a⇒ a = b anti-symmetry

∀a, b, c ∈ L : a v b ∧ b v c⇒ a v c transitivity

A partially ordered set, (L,v), has abottomelement if there exists⊥ ∈ L such that
⊥ v a for all a ∈ L. Dually, (L,v) has atop element if there exists> ∈ L such that
a v > for all a ∈ L.

DEFINITION 2. A partially ordered set, (L,v), is a lattice if a unique greatest lower
bound and least upper bound exist for every finite subset ofL.

Given lattice elementsa andb, their greatest lower bound is referred to asmeetand denoted
a u b, and their least upper bound is referred to asjoin and denoteda t b. It follows from
Definition 2 that every (finite) lattice has a top and a bottom.

Lattices enjoy a number of useful properties, some of which are given below:

a t > = > base
a u ⊥ = ⊥
a u > = a identity
a t ⊥ = a
a t a = a idempotence
a u a = a
a t b = b t a commutativity
a u b = b u a

a t (b t c) = (a t b) t c associativity
a u (b u c) = (a u b) u c
a t (a u b) = a absorption
a u (a t b) = a

a v a′ ∧ b v b′ ⇒ a u b v a′ u b′ monotonicity
a v a′ ∧ b v b′ ⇒ a t b v a′ t b′

a u b v b and a u b v a u elimination
a v b ∧ a v c ⇒ a v b u c u introduction

a v a t b and b v a t b t introduction
a v c ∧ b v c ⇒ a t b v c t elimination

DEFINITION 3. A lattice isdistributiveiff

a t (b u c) = (a t b) u (a t c) distributivity
a u (b t c) = (a u b) t (a u c)

Figure 2 gives some example lattices. The lattice in Figure 2(g) is non-distributive,
whereas all other lattices are distributive.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 7

3.2 Quasi-Boolean Algebras

In this section we define quasi-boolean algebras and study their properties.

DEFINITION 4. [Rasiowa, 1978] A quasi-boolean algebra is a tuple(L,u,t,¬),
where:

• (L,v) is a finite distributive lattice, witha v b iff a u b = a ;

• Conjunction (u) and disjunction (t) are meet and join operators of (L, v), respec-
tively;

• Negation¬ is a functionL → L such that every elementa ∈ L corresponds to a
unique element¬a ∈ L satisfying the following conditions:

¬(a u b) = ¬a t ¬b De Morgan ¬¬a = a ¬ involution
¬(a t b) = ¬a u ¬b a v b ⇔ ¬a w ¬b ¬ antimonotonic

whereb ∈ L. ¬a is calleda quasi-complementof a.

Note that the negation operator satisfying the above properties is alattice dual isomor-
phismwith period 2 [Birkhoff, 1967].

DEFINITION 5. Aproductof two algebras,L1 = (L1,u1,t1,¬1) andL2 = (L2,u2,t2,¬2),
is an algebra,L1 × L2 = (L1 × L2,u,t,¬), where

¬(a, b) = (¬1a,¬2b) ¬ of pairs
(a, b) u (a′, b′) = (a u1 a

′, b u2 b
′) u of pairs

(a, b) t (a′, b′) = (a t1 a
′, b t2 b

′) t of pairs

Thus, the operations on the product algebra are the component-wise extensions of their
individual counterparts. Similar properties hold for>,⊥, and the ordering:

⊥L1×L2 = (⊥L1 ,⊥L2) ⊥ of pairs
>L1×L2 = (>L1 ,>L2) > of pairs

(a, b) v (a′, b′) ⇔ a v1 a
′ ∧ b v2 b

′ v of pairs

THEOREM 1. A product of two quasi-boolean algebras is quasi-boolean, that is,

(1) ¬¬(a, b) = (a, b)
(2) ¬((a1, b1) u (a2, b2)) = (¬a1,¬b1) t (¬a2,¬b2)
(3) ¬((a1, b1) t (a2, b2)) = (¬a1,¬b1) u (¬a2,¬b2)
(4) (a1, b1) v (a2, b2) ⇔ ¬(a1, b1) w ¬(a2, b2)

PROOF: See appendix.

We now give some example quasi-boolean algebras using the lattices in Figure 2.

(1) The lattice in Figure 2(a), with¬T = F and¬F = T, gives us classical logic, which
we refer to as2. Note that in this case,t andu are conventionally written∨ and∧,
respectively. We use these notations interchangeably when the interpretation is clear
from the context.

(2) The three-valued logic3 is defined on the lattice in Figure 2(b), where¬T = F,¬F = T,
¬M = M. This is Kleene’s strong 3-valued logic [Kleene, 1952].

(3) Belnap’s 4-valued logic can be defined over the lattice in Figure 2(c), with¬N = N and
¬B = B. This logic has been used for reasoning about inconsistent databases [Belnap,
1977; Anderson and Belnap, 1975].

To appear inACM Transactions on Software Engineering and Methodology.

8 · Chechik, Devereux, Easterbrook & Gurfinkel

(4) The lattice in Figure 2(d) shows the product algebra2x2, where¬TF = FT and
¬FT = TF. This logic can be used for reasoning about disagreement between two
knowledge sources [Easterbrook and Chechik, 2001]. The underlying lattice is iso-
morphic to the one in Figure 2(c), but the resulting quasi-boolean algebras are not
isomorphic, because of the choice of negations.

(5) The lattice in Figure 2(e) shows a nine-valued logic constructed as the product algebra
3x3. Like 2x2, this logic can be used for reasoning about disagreement between two
sources, but also allows missing information in each source.

Note that we generally label> and⊥ of the lattice with the values TRUE and FALSE of the
logic, respectively.

The lattice in Figure 2(f) cannot be used as a basis for a quasi-boolean algebra because
no suitable quasi-complement can be found for element 2. The lattice in Figure 2(g) cannot
be used either, because it is non-distributive.

The class of quasi-boolean algebras includes (finite) boolean algebras as a special case:

DEFINITION 6. A tuple,L = (L,u,t,¬), is a finite Boolean algebraif L is a quasi-
boolean algebra and additionally, for every element,a ∈ L,

a u ¬a = ⊥ ¬ contradiction or LNC
a t ¬a = > ¬ exhaustiveness or LEM

For example, the algebra2 is boolean, whereas3 is not (Mu¬M 6= ⊥). Also, as the product
of two boolean algebras is a boolean algebra [Birkhoff, 1967], then the product algebra
2x2 shown in Figure 2(d) is boolean. The product algebra3x3, shown in Figure 2(e), is
quasi-boolean but not boolean.

The identification of a suitable negation operator is greatly simplified by the observa-
tion that quasi-boolean algebras have underlying lattices that are symmetric about their
horizontal axes:

DEFINITION 7. A lattice (L,v) is symmetriciff there exists a bijective functionH such
that for every paira, b ∈ L,

a v b ⇔ H(a) w H(b) H antimonotonic
H(H(a)) = a H involution

Notice thatH is a lattice dual automorphism with period 2. Thus, this symmetry is a
sufficient condition for defining a quasi-boolean algebra over a distributive lattice, with
a potential negation defined as¬a = H(a) for each element of the lattice. Lattices in
Figure 2(a)-(e) exhibit this symmetry and thus are quasi-boolean, whereas the lattice in
Figure 2(f) is not. Note that in Belnap’s 4-valued logic, defined on the lattice in Figure 2(c),
the chosen negation,¬N = N, ¬B = B, is not the one offered by symmetry.

Finally, we define implication and equivalence as follows:

a→ b , ¬a t b material implication
a↔ b , (a→ b) u (b→ a) equivalence

Note that from the underlying partial order, we also haveequality:

a = b , (a v b) ∧ (b v a) equality
To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 9

In boolean algebras, equality is the same as equivalence. In quasi-boolean algebras, this
is not necessarily the case. For example, for algebra3, x = M and y = M: x = y is
(MvM) ∧ (MvM), which is>, whereasx↔y is (M→M) u (M→M), which is M.

4. MULTI-VALUED SETS AND RELATIONS

In order to define multi-valued model-checking later in this paper, we begin by creating
a data structure that allows definition and reasoning about operations on sets of states in
which a property holds. Such operations include union, intersection, complement, and
backward image for computing predecessors. Given a quasi-boolean algebra, we can treat
these as operations over multi-valued sets: sets whose membership functions are multi-
valued. We define the concept of multi-valued sets and relations over quasi-boolean alge-
bras in this section. This treatment is similar to the definition ofL-fuzzy sets [Goguen,
1967].

4.1 Multi-Valued Sets

In classical set theory, a set is defined by a boolean predicate, also called amembership
or acharacteristicfunction. Typically, it is written using aset comprehension notation: a
predicateP defines the setS={x | P (x)}. For instance, ifP = λx ∈ nat · 0 ≤ x ≤ 10,
thenS is the set of all integers between 0 and 10 inclusive. If instead of using a boolean
predicate, we allow the membership function to range over elements of a given algebra, we
obtain amulti-valuedset theory in which it is possible to make statements like “elementx
is more in setS than elementy”. We call the resultmv-sets.

DEFINITION 8. Given an algebra,L = (L,u,t,¬), and a classical set,S, an L-
valued setonS, referred to asS, is a total functionS → L.

Where the underlying algebra,L, is clear from context, we refer to anL-valued set just
as an mv-set. For an mv-set,S, and a candidate element,x, we useS(x) to denote the
membership degree ofx in S. In the classical case, this amounts to representing a set by
its characteristic function.

We illustrate mv-sets using a simple state machine shown in Figure 3. This machine uses
the quasi-boolean algebra2x2 where the logical values form the lattice in Figure 2(d),
and exemplifiesχKripke structures – multi-valued generalizations of Kripke structures,
defined formally in Section 5.1. In classical symbolic model-checking, each (boolean-
valued) expression,x, partitions the state space into states wherex is TRUE and states
where it is FALSE. Likewise, we use multi-valued expressions to partition the state space
of the system. For example, the variable,a. partitions the states of theχKripke structure
in Figure 3: for each value,̀, of 2x2, we get the set of states wherea has valuè . In
this case,a has value TT in{s0}, FT in {s2}, FF in {s1} and TF in{}. The resulting
2x2-valued set, referred to as[[a]], can be graphically represented as shown in Figure 4(a),
where the structure corresponds to that of the underlying lattice.

We extend some standard set operations to the multi-valued case by lifting the lattice
meet and join operations as follows1:

1The subscript on mv-set operations∩L,∪L,⊆L, etc. refers to a given algebra,L = (L,u,t,¬).

To appear inACM Transactions on Software Engineering and Methodology.

10 · Chechik, Devereux, Easterbrook & Gurfinkel

a =TT
b = FF

TF

FT

TT

TT
a = FF
b = TF

a = FT
b = FT

s0

s

s

1

2

Fig. 3. Ex1: a simpleχKripke structure.

{s0}{}{s0}

{}{s1} (c) {s0}

{s1} {s1}

(a) (b)

{} {s2} {s2} {s2}

��
�� ����

��
	

��
���

��
��

��
��

Fig. 4. Several mv-sets for the example in Figure 3: (a) corresponding to variablea; (b) corresponding to variable
b; (c) [[b]] – a multi-valued complement of the mv-set in (b).

(S ∩L S′)(x) , (S(x) u S′(x)) multi-valued intersection
(S ∪L S′)(x) , (S(x) t S′(x)) multi-valued union

S ⊆L S′ , ∀x · (S(x) v S′(x)) set inclusion
S = S′ , ∀x · (S(x) = S′(x)) extensional equality

For example, in computing intersection of mv-sets[[a]] and [[b]] given in Figure 4(a) and
(b), respectively, we note that in states1, a is FF andb is TF. Thus,

([[a]] ∩L [[b]])
(
s1

)
= FFu TF = FF

We also extend the notion ofset complementto the multi-valued case, by defining it in
terms of the quasi-complement ofL, and denoting it with a bar:

S(x) , ¬(S(x)) multi-valued complement

Mv-set[[b]] is given in Figure 4(c).
We then obtain the desired properties:

S ∪L S′ = S ∩L S′ De Morgan 1
S ∩L S′ = S ∪L S′ De Morgan 2
S ⊆L S′ = S′ ⊆L S antimonotonicity

Note that we obtain classical set theory in the special case where the algebra is2, and
the multi-valued intersection, union and complement are equivalent to their classical coun-
terparts:

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 11

{s0}

{}

{s2}{s1}

{(s1,s2),(s2,s2)}

{}

{}

{s0,s1,s2}{(s0,s1)} {(s0,s2)}

{(s0,s0),(s1,s0),(s1,s1),
(s2,s0),(s2,s1)}

(a)

{}

(b) (c)

����
�� ��

��
	
 ����

����
����

��
��

��

Fig. 5. (a) The multi-valued relation between pairs of states of Ex1; (b) Forward image of[[a]] over the relation
in (a); (c) Backward image of[[a]] over the relation in (a).

THEOREM 2. For a 2-valued setS on S, the following hold:

(1) The membership functionS(x) is a boolean predicate
(2) (S ∩2 S′) = {x | S(x) ∧ S′(x)} = (S ∩ S′)
(3) (S ∪2 S′) = {x | S(x) ∨ S′(x)} = (S ∪ S′)
(4) S(x) = x ∈ (S − {y | S(y) = >})

4.2 Multi-Valued Relations

Now we extend the concept of degrees of membership in an mv-set to degrees of relat-
edness of two entities. This concept, formalized bymulti-valued relations, allows us to
define multi-valued transitions in state machine models.

DEFINITION 9. For a given algebraL, anL-valued relationR on two setsS andT is
anL-valued set onS × T .

Let S be the set of states of theχKripke structure in Figure 3, referred to as Ex1. The
multi-valued relation overS ×S represents values of transitions between pairs of states of
Ex1 and is shown in Figure 5(a). We will refer to this mv-relation asA. For example, the
value of the transition(s0, s1) is TF, soA((s0, s1)) = TF.

DEFINITION 10. Given an algebra,L, anL-valued relation,R, on setsS andT , and

anL-valued set,S, onS, theforward imageof S underR, denoted
→
R (S), is anL-valued

set on T, defined as:

→
R (S) , λt ∈ T ·

⊔
s∈S

(S(s) u R(s, t))

and for anL-valued set,T, on T, thebackward imageof T underR is

←
R (T) , λs ∈ S ·

⊔
t∈T

(T(t) u R(s, t))

Intuitively, the forward image of an mv-setS under the relationR represents all elements
reachable fromS by R, where multi-valued memberships ofR andS are taken into consid-
eration. Similarly, a backward image of an mv-setT underR represents all elements that
can reachT by R.

We now consider computing the forward and the backward images of[[a]] (see Fig-
ure 4(a)) under the multi-valued relationA between the pairs of states of theχKripke
structure Ex1. These are shown in Figures 5(b) and (c), respectively. For example, when

To appear inACM Transactions on Software Engineering and Methodology.

12 · Chechik, Devereux, Easterbrook & Gurfinkel

we compute backward image ofs0, we get⊔
t∈S

([[a]](t) u A(s0, t)) = (TT u FF) t (FFu TF) t (FTu FT) = FT

which indicates that there exists an FT transition from states0 to another state (actually,
s2), wherea is FT.

THEOREM 3. The forward and backward image of a2-valued set,Q, under a2-valued
relation,R, are as follows:

(1)
→
R (Q) = λt ∈ T ·

∨
{s∈S|R(s,t)} S(s)

(2)
←
R (Q) = λs ∈ S ·

∨
{t∈T |R(s,t)} T(t)

In other words, when the underlying algebra is2, forward and backward images are equiv-
alent to their classical counterparts [Clarke et al., 1999].

5. MULTI-VALUED CTL MODEL-CHECKING

In this section, we extend the notion of boolean model-checking described in Section 2
by defining multi-valued Kripke structures, which we callχKripke structures, and multi-
valued CTL (χCTL).

5.1 Semantics

M is aχKripke structureif M=(S, s0,R, I, A, L), where:

• L = (L,u,t,¬) is a quasi-boolean algebra, used for all mv-sets in the model;

• A is a (finite) set of atomic propositions that evaluate to elements of the algebra,L;

• S is a (finite) set of states;

• s0 ∈ S is the initial state;

• R : S × S → L is the multi-valued transition relation;

• I : S → (A → L) is a (total) labeling function that maps states inS into L-valued
sets onA.

Intuitively, for any atomic proposition,a ∈ A, (I(s))(a) = ` means that the variable
a has valuè in states. Given an atomic proposition,a ∈ A, I ′a : S → L is a (total)
multi-valued characteristic function for an mv-set onS. I ′a is defined as follows:

I ′a , λs ∈ S · (I(s))(a)

Thus, for each proposition,a, I ′a partitions the state-space with respect to it, i.e. for each
state,s, ∃!` · I ′a(s) = `.

Note that aχKripke structure is a completely connected graph. As with classical model-
checking, we ensure that all traces have infinite length by requiring that there is at least one
non-⊥ transition out of each state (if necessary, by adding a non-⊥ self-loop to terminal
states). Formally,

∀s ∈ S · ∃t ∈ S · R(s, t) 6= ⊥

To avoid clutter, when we present finite-state machines graphically, we follow the conven-
tion of not showing⊥ transitions. An exampleχKripke structure, shown in Figure 3, was
introduced in Section 4.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 13

(a)

a = T
b = F

T

T

T
a = F
b = T

a = F
b = F

s0

s

s

1

2

(b)

a = T
b = F

T

T

T
a = F
b = F

a = T
b = T

s0

s

s

1

2

Fig. 6. Two classical Kripke structures: (a) Exl; (b) Exr .

5.2 Multi-Valued CTL

Here we give semantics of CTL operators on aχKripke structureM over a quasi-boolean
algebraL. We refer to this language asmulti-valued CTL, orχCTL.

In extending the CTL operators, we want to ensure that the desired properties ofEX,
EG andEU , which form the adequate set for CTL, are still preserved.

DEFINITION 11. A computationof aχKripke structureM from a (reachable) states
is an infinite sequence of states,s0, s1, ..., s.t.s = s0, andR(si, si+1) 6= ⊥. This sequence
of states is also referred to as apath.

We also note that evaluating a formula,ϕ, in a state,s, is the same as evaluatingϕ on a
tree of all computations emanating froms.

We start definingχCTL by giving the semantics of propositional operators. We use the
double-brace notation, adopted from denotational semantics, and write[[ϕ]] to denote the
mv-set of states representing a degree to whichϕ holds. Note that we have already used
this notation when illustrating mv-sets in Section 4.

The semantics is as follows:

[[a]] , I ′a
[[¬ϕ]] , [[ϕ]]

[[ϕ ∧ ψ]] , [[ϕ]] ∩L [[ψ]]
[[ϕ ∨ ψ]] , [[ϕ]] ∪L [[ψ]]

We proceed by defining theEX operator. Recall from Section 2 that in classical CTL,
this operator is defined using existential quantification over next states. We extend the no-
tion of existential quantification for multi-valued reasoning through the use of disjunction.
This treatment of quantification is standard [Belnap, 1977; Rasiowa, 1978]. The semantics
of EX is:

[[EXϕ]] ,
←
R ([[ϕ]]) def. ofEX

Note that we use our definition of backward image (Definition 9), i.e. for a states,

[[EXϕ]](s) =
⊔
t∈S

([[ϕ]](t) u R(s, t))

When reasoning about a model which was produced by merging two (classical) models,
we can think ofEXϕ as representing a question “does there exist a next state in each
individual model whereϕ is TRUE, even if the two individual models do not agree on
what this state is”. For example, consider the two classical Kripke structures, Exl and Exr,
shown in Figure 6.χKripke structure Ex1, shown in Figure 3, constitutes one possible

To appear inACM Transactions on Software Engineering and Methodology.

14 · Chechik, Devereux, Easterbrook & Gurfinkel

merge of Exl and Exr. In this case, states with the same name are merged. For example,
a variableb has values T and F in states1 of Exl and Exr, respectively; therefore, in Ex1,
this variable has value TF. Similarly, a transition(s0, s1) is present in Exl and absent in
Exr; therefore, it has value TF in Ex1. Consider evaluating a propertyEXb in states0 of
these three models. This property is T in Exl, becauseb is T in s1, and T in Exr, becauseb
is T in s2. In Ex1, this property evaluates to TF on path(s0, s1) and to FT on path(s0, s2).
Their disjunction, and therefore the value ofEXb in states0, is TT.
AX is then defined, following theAX duality in Section 2, as

[[AXϕ]] , [[EX¬ϕ]] def. ofAX

Expanding this definition,[[AXϕ]] =
←
R ([[ϕ]]) = λs · t∈S([[ϕ]](t)t¬R(s, t)), we see that

universal quantification in theAX operator is replaced by conjunction.
Note that our definitions ofEX andAX enjoy some familiar properties of their CTL

counterparts. In particular,

[[EX(ϕ ∨ ψ)]] = [[EXϕ]] ∪L [[EXψ]] EX of disjunction
[[AX(ϕ ∧ ψ)]] = [[AXϕ]] ∩L [[AXψ]] AX of conjunction

We further defineEG andEU using theEG andEU fixpoint properties in Figure 1:

[[EGϕ]] , νZ.[[ϕ]] ∩L [[EXZ]] def. ofEG
[[E[ϕ U ψ]]] , µZ.[[ψ]] ∪L ([[ϕ]] ∩L [[EXZ]]) def. ofEU

ThenA[ϕ U ψ] becomes

[[A[ϕ U ψ]]] , [[E[¬ψ U ¬ϕ ∧ ¬ψ]]] ∩L [[EG¬ψ]] def. ofAU

and the remainingχCTL operators are defined as their classical counterparts (see Sec-
tion 2):

[[AFϕ]] , [[A[> U ϕ]]] def. ofAF
[[EFϕ]] , [[E[> U ϕ]]] def. ofEF
[[AGϕ]] , [[EF¬ϕ]] def. ofAG

Note that our definition ofEU also preserves the familiar property of its CTL counterpart:

[[E[ϕ U ψ]]] = [[E [ϕ U E[ϕ U ψ]]]] EU expansion

5.3 Properties of χCTL

We begin with some sanity checks onχCTL.

THEOREM 4. χCTL reduces to CTL when the algebra is2. That is,

(1) [[EXϕ]] = [[EXBϕ]]
(2) [[EGϕ]] = [[EGBϕ]]
(3) [[E[ϕ U ψ]]] = [[E[ϕ UB ψ]]]

whereEGB , EUB , andEXB are classical CTL operators defined in Section 2.

We now consider monotonicity of “next-time” operators and ensure thatχCTL is well
defined, i.e., each property,ϕ, has exactly one value in each state of the system.

THEOREM 5. χCTL operatorsAX andEX are monotone.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 15

THEOREM 6. The definition ofχCTL ensures that for eachϕ, [[ϕ]] forms a partition.

We now ensure that algorihtms for multi-valued model-checking can be found.

THEOREM 7. Multi-valued model-checking is decidable.

THEOREM 8. Fixpoint properties of (derived)χCTL operators are the same as for CTL
operators. That is,

(1) [[AGϕ]] = νZ.[[ϕ]] ∩L [[AXZ]] AG fixpoint
(2) [[AFϕ]] = µZ.[[ϕ]] ∪L [[AXZ]] AF fixpoint
(3) [[EFϕ]] = µZ.[[ϕ]] ∪L [[EXZ]] EF fixpoint
(4) [[A[ϕ U ψ]]] = µZ.[[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]]) AU fixpoint

Note that our ability to prove the above properties ofχCTL operators was dependent on
the fact that our model-checking is defined over quasi-boolean algebras. For a treatment
of properties ofχCTL when the model-checking is defined over a more general class of
algebras, please see [Devereux, 2002; Chechik and MacCaull, 2003].

5.4 Running Time

To determine the running time of our algorithm, we note that this time is dominated by
the fixpoint computations ofEG andEU . In what follows, we first show that the fixpoint
computation converges inO(|S|) iterations, whereS is the state space of the model under
analysis, and then analyze the complexity of each iteration.

5.4.1 Number of iterations.We start with the property[[EFϕ]](s) = [[E[> U ϕ]]](s),
whereϕ is a propositional formula, ands is an arbitrary state of the model. Intuitively,
thenth iteration of the fixpoint algorithm computes the least upper bound (join) over the
values ofϕ on states reachable froms by a path of length at mostn, weighted by “the

value of the path”. Formally, the value of a path,s0, s1, ..., sn, is
n−1

i=0 R(si, si+1). In any
model with a finite state space,S, a state that is reachable by a path,π, of length greater
or equal to|S|+ 1, is also reachable by a sub-path ofπ of length at most|S|. That is, any
path longer than|S| necessarily contains a cycle, and therefore has a corresponding acyclic
sub-path. Combining this with the fact that a value of a sub-path is always above a value
of the full path, we conclude that the fixpoint computation converges after at most|S|+ 1
iterations.

THEOREM 9. [Gurfinkel, 2002] Model-checking aχCTL propertyEFϕ on aχKripke
structure with a state spaceS takes at most|S|+ 1 iterations.

We now extend this result to theEU operator. The result of model-checking aχCTL
propertyE[ϕ U ψ] on aχKripke structure,M , with the transition relation,R, is equivalent
to model-checkingEFψ of a χKripke structure,M ′, obtained fromM by replacing its
transition relation withR′(s, t) = R(s, t) ∧ [[ϕ]](s).

THEOREM 10. [Gurfinkel, 2002] Model-checking aχCTL formulaE[ϕ U ψ] on a
χKripke structure with a state spaceS takes at most|S|+ 1 iterations.

For theEG operator, we start with its simplest form,[[EG>]](s). Thenth iteration of
the fixpoint computation of[[EG>]](s) computes the least upper bound of the values of
all paths of lengthn emanating froms. Since the state spaceS is finite, for any pathπ
of length greater than|S| + 1, there exists a pathπ′ of length at most|S| + 1, whose

To appear inACM Transactions on Software Engineering and Methodology.

16 · Chechik, Devereux, Easterbrook & Gurfinkel

value is above the value ofπ. Thus, the fixpoint computation converges after at most
|S| + 2 iterations. The result is extended to the general case by the fact that computing
EGϕ on aχKripke structure,M , with transition relation,R, is equivalent to computing
EG> on aχKripke structure,M ′, obtained fromM by replacing its transition relation
with R′(s, t) = R(s, t) ∧ [[ϕ]](s).

THEOREM 11. [Gurfinkel, 2002] Model-checking aχCTL formulaEGϕ on aχKripke
structure with a state spaceS takes at most|S|+ 2 iterations.

5.4.2 Running time of each iteration.To understand the running time of each iteration,
we need to analyze the running time of individual operations: mv-set union, intersection,
complement, and backward image. The first three operations can be done in the time linear
in the size of the representation of the corresponding mv-sets (O(|S|)). Backward image
includes a disjunction (O(|S|)) of conjunctions between the formula and the transition
relation (each takingO(|S|), for the total time ofO(|S|2)).

5.4.3 Putting it all together.We established that there areO(|S|) iterations before a
fixpoint is reached, and each iteration takesO(|S|2). Thus, each fixpoint requiresO(|S| ×
|S|2) = O(|S|3). Since a givenχCTL formula,ϕ, contains at most|ϕ| different subfor-
mulas, the running time of our model-checking algorithm isO(|S|3 × |ϕ|). If instead of
|S|, we usen to represent the size of the model, which equals|S| + |R|, then the overall
running time isO(n2×|ϕ|), which is the expected result for CTL model-checking [Clarke
et al., 1999]. Finally,|S| ≤ |L||A|, so the running time of our model-checker is bounded
above byO(|L|3×|A| × |ϕ|).

Note that our estimate of|S| is too pessimistic. In multi-valued model-checking, we can
often compactly encode the state-space using the richer algebra. For example, consider the
following case: we have a classical model withn states and wish to differentiate betweenm
of those states (m << n) by introducing an extra variable,a. In classical model-checking,
this uncertainty can only be handled by duplicating each ofn − m states (one for each
value ofa). In fact, most of these states are likely to be reachable; thus, the size of the
state space nearly doubles. In the multi-valued case, the reachable state-space increases at
most bym states. This computation did not take into account the presence of uncertainty
in transitions; these could also be encoded into the binary representation, but would lead
to a further state-space increase. Thus, we conjecture that|S| << |L||A| because of the
compact encoding of models using multiple values of the algebra, and because many vari-
able/value combinations are unreachable. For an illustration, see the 3-valued abstraction
of theButton module of the Elevator example in Section 7.2. Further, encoding mv-set
operations using MDDs (multi-valued decision diagrams [Srinivasan et al., 1990]), allows
us to achieve more practical running times, as discussed in the companion paper [Chechik
et al., 2002b].

6. FAIRNESS

In this section, we address the problem of multi-valued model-checking with fairness. We
discuss fairness in classical and multi-valued model-checking in Sections 6.1 and 6.2. We
proceed by giving a formulation of fair counterparts for allχCTL operators, starting with
EG (Section 6.3) and then using it to define other fairχCTL operators (Section 6.4).
Finally, we analyze the running time of model-checking with fairness in Section 6.5.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 17

6.1 Intuition

In classical model-checking, it is often easier to specify all behaviors of the system being
modeled, plus some additional “unwanted” behaviors, and then restrict the analysis to just
the “wanted” behaviors of the system. This approach is often taken in practice, because
it allows complicated systems to be specified more compactly. Since computations con-
sidered in classical model-checking are infinite, a natural way to partition behaviors into
“wanted” and “unwanted” is by specifying progress that should be made on a fair compu-
tation (path). Thus, we define a computation as fair if and only if a certain progress state,
or a sequence of states, occurs in it infinitely often [Clarke et al., 1986]. Formally,

DEFINITION 12. A path is fair w.r.t. a set of fairness conditions,C = {c1, c2, ..., cn},
iff every predicate,ci, is TRUE on it infinitely often.

THEOREM 12. The following statements are equivalent for a path,π, and fairness con-
ditions,C = {c1, ..., ck}:

(1) Each fairness condition,ci, occurs infinitely often inπ;
(2) A sequencec1, c2, ..., ck occurs infinitely often inπ.

6.2 Fairness in Multi-Valued Model-Checking

In the multi-valued case, we want to preserve the ability to specify a larger set of compu-
tations than necessary and then restrict our attention to the “wanted”, or fair ones. Multi-
valued models already have a notion of “possible” computation: it is a computation where
the conjunction of values of transitions between states is non-⊥, and “impossible” other-
wise. Thus, if the goal of fairness in the multi-valued model-checking is to enable spec-
ification of a system in a concise form, fairness must be able to effectively turn some
“possible” computations into “impossible” ones. Therefore, a “wanted” path in the fair
system is a “possible” path conjoined with the appropriate fairness condition. Further, fair
paths should preserve the “possibility” values of their underlying models, whereas unfair
paths should have value⊥. One easy way to guarantee that is by ensuring that the fair-
ness condition is 2-valued, because> and⊥ give us the desired base and identity laws
(x u > = x andx u ⊥ = ⊥). Thus, we assume that fairness constraints are given by a set
of χCTL formulas,C = {c1, c2, ..., cn}, such that each formula always evaluates to either
> or⊥. Intuitively, such expressions consist of boolean predicates (v,w, =, 6=) onχCTL
formulas. For example, for an arbitraryϕ, AXϕ may evaluate to M when the logic is3,
and thus cannot be used to specify a fairness condition. On the other hand,ψ v AXϕ
(for some arbitraryϕ andψ) always evaluates to> or⊥, and thus can be used to specify
fairness. Fairness conditions partition the sets of states into mv-sets. For notational conve-
nience we assume that these mv-sets are over the same algebra,L = (L,u,t,¬), as the
model, even though for each fairness condition,ci, ∀s ∈ S · [[ci]](s) ∈ {>,⊥}.

We begin defining multi-valued fairness by introducing the concept ofmv-trace. In
classical model-checking, atrace from s is a single computation, emanating froms, of
the corresponding Kripke structure. On the other hand, a trace in multi-valued model-
checking may correspond to several computations, i.e., a witness to anEX operator is
not necessarily a single path [Gurfinkel and Chechik, 2003a]. For example, consider the
χKripke structures Exl, Exr and Ex1, shown in Figures 6 and 3, respectively. As indicated
earlier, Ex1 is the merge of the other two models. Next-state computations froms0 in
models Exl and Exr are s0, s1 and s0, s2, respectively. Yet, as shown in Section 5.2,

To appear inACM Transactions on Software Engineering and Methodology.

18 · Chechik, Devereux, Easterbrook & Gurfinkel

both are necessary to evaluateEXb. So, even existentialχCTL operators, and their fair
counterparts, are defined and evaluated onsets of computations, which we refer to asmv-
traces.

DEFINITION 13. An mv-trace in aχKripke structure,M , is fair w.r.t. a set of fairness
conditions,C = {c1, c2, ..., cn}, iff each computation comprising it is fair w.r.t.C.

Following Huth and Ryan [Huth and Ryan, 2000], we writeAC andEC for the operators
A andE restricted to fair paths. For example,[[ACGϕ]](s) = > means thatϕ is TRUE in
every fair mv-trace.

6.3 Fair EG

As in CTL, χCTL operatorsECG, EC [ϕ U ψ] andECX form an adequate set. Given a
formulation forECG, we can define other fairχCTL operators, as shown in Section 6.4.

Note that[[ECGϕ]](s) = ` means that there exists an mv-trace beginning with states
on whichEGϕ holds with valuè , and each formula inC is> infinitely often along each
path. Alternatively, ifC = {c1, c2}, it is the repetition of the following sequence:ϕ holds
until c1, and from that point on,ϕ holds untilc2. Formally, we can define this using the
following fixpoint formulation:

[[ECGϕ]] , νZ.[[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧ EXE[ϕ U ϕ ∧ c2 ∧ Z]]]]
def. ofECG

WhenC = {c1, c2, ..., ck}, the above definition can be extended appropriately. The
problem with this definition, however, is that it is dependent on the size ofC. We thus seek
an alternative definition, calling the new operatorECG

′.

[[ECG
′ϕ]] , νZ.[[ϕ]] ∩L

⋂
L

n

k=1
[[EXE[ϕ U ϕ ∧ Z ∧ ck]]] def. ofECG

′

We are now ready to study properties ofECG andECG
′. We begin by showing that

ECG
′ becomesEG when there are no fairness conditions present, and then proceed to

show that the operatorsECG andECG
′ are equivalent.

THEOREM 13. WhenC = {>} (no fairness),ECG
′ becomes

[[ECG
′ϕ]] = νZ.[[ϕ]] ∩L [[EXE[ϕ U ϕ ∧ Z]]] = νZ.[[ϕ]] ∩L [[EXZ]] = [[EGϕ]]

THEOREM 14. OperatorsECG andECG
′ are equivalent.

6.4 Fairness in Other χCTL Operators

ComputingECXϕ in states amounts to finding successors ofs which are at the start of
some fair computation path, and computingEXϕ using only these successors. In such
statesECG> has a value other than⊥. Thus, the formulation forECXϕ is

[[ECXϕ]] , [[EX(ϕ ∧ (ECG> A ⊥))]]

For a similar reason, the formulation forEC [ϕ U ψ] is

[[EC [ϕ U ψ]]] = [[E[ϕ U (ψ ∧ (ECG> A ⊥))]]]

Note that both formulations are similar to those of classical CTL.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 19

6.5 Running Time

Running time of the model-checker under fairness conditions,C, is dominated by the com-
putation ofECG which includes a nested fixpoint. The inner fixpoint is used to compute
E[ϕ U (Z ∧ ck)] and takes, using a regular model-checking algorithm,O(|S|3). The
outer fixpoint converges after at most|S| iterations, and each iteration involves computing
|C| inner fixpoints. Thus,ECGϕ can be computed inO(|C| × |S|4) time. Since a given
formula,ϕ, contains at most|ϕ| different subformulas, running time of the model-checker
under fairness conditions,C, is inO(|ϕ| × |C| × |S|4). Note that running time forχCTL
with fairness reduces to that of the classical CTL model-checker when the underlying logic
is classical.

7. IMPLEMENTATION AND APPLICATIONS

In this section, we briefly discuss implementation choices forχChek and describe some
potential applications for it.

7.1 Implementation

As a proof of concept, we have developed a prototype implementation (in Java) of a multi-
valued model-checker calledχChek [Chechik et al., 2002a]. The checking engine takes as
input a list ofχCTL formulas to verify, a model of the system represented as aχKripke
structure, and a specification of the underlying quasi-boolean algebra. For eachχCTL
formula,χChek calculates its value in the initial state, returning a counter-example or a
witness, if appropriate. The counter-example generator forχCTL is discussed in detail
elsewhere [Gurfinkel and Chechik, 2003a].

Practical symbolic model-checking in a given domain (probabilistic, multi-valued, timed,
etc.) depends on efficient algorithms for storing and manipulating sets of states in which
a property holds. In our case, we need efficient implementations of operations (union,
intersection, complement and backward image) on the mv-set datatype.χChek uses a
general mv-set interface, and we are experimenting with alternative implementations of
mv-sets. As in classical symbolic model-checking, we represent mv-sets using decision
diagrams. Several varieties of decision diagrams are suitable. For example, if the mv-set
membership function is kept multi-valued, then mv-sets can be easily implemented using
Multi-Valued Decision Diagrams (MDDs) [Srinivasan et al., 1990; Chechik et al., 2001a].
Alternatively, each mv-set can be thought of as a collection of classical sets. Symboli-
cally, this approach can be implemented using Multi-Valued Binary-Terminal Decision Di-
agrams (MBTDDs) [Sasao and Butler, 1996]. Of course, the multi-valued model-checking
problem also reduces to several queries to the classical model-checker, run on top of Bi-
nary Decision Diagrams (BDDs) [Konikowska and Penczek, 2003; Gurfinkel and Chechik,
2003b]. The tradeoffs between these encodings depend on a number of factors, including
the types of questions asked, the size and the shape of the elements of the underlying
lattice, and the variable ordering. We describe the implementation and evaluate the perfor-
mance characteristics of different implementations of the mv-set datatype in a companion
paper [Chechik et al., 2002b].

7.2 Applications

Multi-valued model-checking has a number of potential applications in software engineer-
ing, for analyzing models that contain uncertainty, disagreement, or relative priority, and
for general model exploration. For example:

To appear inACM Transactions on Software Engineering and Methodology.

20 · Chechik, Devereux, Easterbrook & Gurfinkel

• The intermediate values of the logic can be used to represent incomplete information
(or uncertainty). Such applications typically use a 3-valued logic, with the values>,
⊥ and MAYBE . A 3-valued model can be interpreted as a compact representation for
a set ofcompletions[Bruns and Godefroid, 2000], where a completion is generated
by replacing each MAYBE value in the model by either> or ⊥. If a property is>
(respectively,⊥) in a partial model, then it is> (⊥) in all completions. If a property is
MAYBE in a partial model, then it takes different values in different completions: the
missing information affects the property. Thus, we can use a 3-valued model-checker
to determine if particular properties hold, even though the model is incomplete. We
can also use this approach to reduce the size of classical model-checking problems by
creating (partial) abstractions of models that have large state-spaces. We describe one
such case study below. It is possible to generalize this approach to logics with more
than three values, to distinguish levels of uncertainty for the incomplete information,
but we have not yet explored such applications.

• The intermediate values of the logic can be used to represent disagreement. Such ap-
plications typically use quasi-boolean algebras defined over product lattices. A model
based on a product lattice can be interpreted as a compact representation for a set of
models (orviews), where the views may disagree on the values of some transitions or
propositions. For example, a model based on a logic2x2 can be formed by merg-
ing information from two separate 2-valued views. One such 4-valued model and its
corresponding classical models were shown in Figures 3 and 6, respectively. If a prop-
erty is> (respectively,⊥) in each individual view, then it is> (⊥) in the merged
model. If a property is FT or TF in the merged model, then the disagreement affects
the property. Multi-valued model checking over such merged models is particularly
useful if the views are partial, representing, for example, different modules, features or
slices of a larger system. In this case, a multi-valued model-checker can check proper-
ties that cannot be expressed in the individual views, because the properties combine
vocabulary of several views or refer to interactions between different views. We are
exploring this approach for the feature interaction problem in telephony [Easterbrook
and Chechik, 2001], and as a tool to support stakeholder negotiations in requirements
engineering by tracing from specific disagreements to the properties they affect.

• The intermediate values of the logic can be used to represent relative desirability (or
criticality). Such applications typically use chain lattices, also known as total orders.
A model based on a chain lattice can be interpreted as a compact representation for
a set of partiallayers, where each successive layer specifies values for transitions left
unspecified by previous layers. For example, a model based on a 4-valued chain lattice
can be used to represent a system with two levels of criticality. Transitions labeled>
(respectively,⊥) represent core functionality – transitions that must (must not) occur.
Transitions labeled with the remaining values represent optional functionality. If a
property is> (respectively,⊥) in this model, then it is true (false) in just the core
layer, irrespective of behaviors at the optional layer. We are exploring this approach
for reasoning about requirements prioritization and for analyzing survivable systems.
In each of these applications, the multi-valued model checker allows us to check which
properties are supported by which layer, but avoids having to maintain separate models
of the individual layers.

• Elements of our quasi-boolean algebras need not be interpreted as logical values. Con-

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 21

sider thequery-checkingproblem [Chan, 2000] for which the inputs are a (classical)
model and a temporal logic query (TLQ). A TLQ is a temporal logic formula with
placeholders for some subformulas, e.g.,AG?. A query-checker finds the strongest
set of assignments of propositional formulas for each placeholder, such that replac-
ing each placeholder with any assignment chosen from its set results in a temporal
logic formula that holds in the model. Thus, query-checking is a form of model explo-
ration – it can be used to discover invariants, guards, and postconditions of (sets of)
transitions in the model. The query checking problem can be formulated as a multi-
valued model checking problem onupsetlattices2, where the elements of the lattices
are sets of propositional formulas ordered by set inclusion. The reduction of the query-
checking problem to multi-valued model-checking problem is described in [Gurfinkel
et al., 2003].

We now demonstrate the use ofχChek for reasoning about state-space abstraction. Note
that this is ademonstrationrather than a case study aimed at showing the scalability of
our approach or the quality of the engineering. Larger case studies as well as experiments
aimed at studying the impact of the use of various decision diagrams and other engineering
decisions are given in the companion paper [Chechik et al., 2002b].

The use of abstraction has long been proposed as a way to overcome the state-space ex-
plosion problem in classical model-checking. Abstraction collapses sets of concrete states
into a single abstract state, thus indicating that any differences between the concrete states
within a single abstract state are ignored [Cousot and Cousot, 1977; Dams et al., 1997;
Dams, 1996]. One way to ensure property preservation during abstraction is to guarantee
that a set of states in the concrete model is composed into a single abstract state only if
these states have an equivalent transition relation (one can refer to them assymmetric).
This is a very strong condition, but sufficient for the purposes of our presentation. For
example, statess1 ands2 can become part of the same abstract state if

∀t · (R(s1, t) ⇔ R(s2, t)) ∧ (R(t, s1) ⇔ R(t, s2))

If s1 ands2 disagree on a value of a variable, we cannot assign either TRUE (T, >) or
FALSE (F, ⊥) to this variable in the abstract state. Instead, we can model disagreement
using the value MAYBE (M), resulting in a 3-valued logic. This abstraction guarantees
state-wise preservation[Dams et al., 1997]: if a formula evaluates to> (⊥) in an abstract
state, it evaluates to> (⊥) in all corresponding concrete states.

For the case study, we have used the SMV elevator model of Plath & Ryan [Plath and
Ryan, 1999]3. This model consists of a single elevator which accepts requests made by
users pressing buttons at the floor landings or inside the elevator. The elevator moves
up and down between floors and opens and closes its doors in response to these requests,
according to the Single Button Collective Control (SBCC) strategy [Berney and dos Santos,
1985].

The model is implemented by several SMV modules. TheMain module declares several
instances of the moduleButton (one per floor, calledlandingButi), parameterized by
the condition under which the request is considered fulfilled (reset), and one instance of
the moduleLift, calledlift. TheLift module declares the variablesfloor, door and

2Given the ordered set(L,v) and a subsetB ⊆ L, then↑B is the set{` ∈ L | ∃b ∈ B · b v `}. A subsetB of
L is anupsetif ↑B = B.
3SMV uses 0 and 1 to represent logic values⊥ and>.

To appear inACM Transactions on Software Engineering and Methodology.

22 · Chechik, Devereux, Easterbrook & Gurfinkel

(a)

MODULE Button (reset)
VAR
pressed : boolean;

ASSIGN
init (pressed) := 0;
next (pressed) :=

case
reset : 0;
pressed : 1;
1 : {0, 1};

esac

(b)

MODULE Button (reset)
VAR
pressed : boolean;
button : boolean;

ASSIGN
init (button) := 0;
next (button) := {0, 1};

init (pressed) := 0;
next (pressed) :=

case
button : 1;
reset : 0;
1 : pressed;

esac

(c)

MODULE Button (reset)
VAR
pressed : boolean;
button : {T, M, F};

ASSIGN
button :=

case
reset | pressed : M
1 : {T, F}

esac
init (pressed) := 0;
next (pressed) :=

case
button = T : 1;
reset : 0;
1 : pressed;

esac

Fig. 7. Three models of the elevator button: (a) the original moduleButton of Plath & Ryan (in SMV); (b) a
modified moduleButton; (c) an abstracted moduleButton.

s1

pressed = F
button = F

reset = F

s1

pressed = F
button = F

reset = F s3,4 s5,6 s7,8

(a)

s2

pressed = F
reset = F

ss4 6 s8
reset = F

s s3 5 s7
reset = F

pressed = F

pressed = F
button = F

button = T

button = T
pressed = T

button = F
pressed = T

button = T
pressed = T
reset = T

button = F
pressed = T
reset = T

button = T

reset = T

reset = T

s2
reset = F

pressed = Fpressed = F
reset = F reset = T

button = M

reset = T
pressed = T
button = Mbutton = M

pressed = T
button = T

(b)

Fig. 8. State machines: (a) of the modified moduleButton; (b) of the abstracted moduleButton..

direction as well as further instances ofButton to indicate requests from within the
elevator (also one per floor, calledliftButi).

The SMV moduleButton is shown in Figure 7(a). Once a button is pressed, it latches
and remains pressed until the elevator fulfills the request. We modified this module by
modeling the latching explicitly: each variablepressed in the moduleButton is decom-
posed into two variables, withbutton representing the actual button that users can press,
andpressed representing the latching. The modified button is shown in Figure 7(b), and
its state machine in Figure 8(a). The model has eight possible states, corresponding to the
evaluation of the tuple (button, pressed, reset). To simplify the presentation, in the
state-machine description we assume that a button cannot be reset until it has been latched,

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 23

1. “If the door closes, it will eventually open”:
AG(lift.door = closed→ AF lift.door = open)

2. “Pressing a landing button guarantees that the lift will arrive at that landing and open its doors”:
AG(landingBut2.button→ AF (lift.floor = 2 ∧ lift.door = open))

3. “If a button inside the lift is pressed, the lift will eventually arrive at the corresponding floor”:
AG(lift.liftBut2.button→ AF (lift.floor = 2 ∧ lift.door = open))

4. “The lift may stop at floor 2 for landing calls when traveling downwards”:
¬AG((¬lift.floor = 2 ∧ ¬lift.liftBut2.button ∧ lift.direction = down)

→ lift.door = closed)

5. “Whenever a button indicator is on, a button is being pressed”
AG(lift.liftBut2.pressed→ lift.liftBut2.button)

Fig. 9. Properties of the elevator system.

i.e.,reset cannot become> if pressed is⊥.
Each of the pairs of states,{s3, s4}, {s5, s6} and{s7, s8}, (indicated by dashed lines

in Figure 8(a)) has a symmetric transition relation and thus can be abstracted. This cor-
responds to the value ofbutton being irrelevant whenpressed or reset are>. Thus,
we can modelbutton by a 3-valued variable, as shown in Figure 7(c). The state machine
model of the abstract system is shown in Figure 8(b). When this module is composed with
the rest of the elevator model, we get a 3-valued model which cannot be directly verified
using a classical model-checker. We proceed with the verification using two techniques:
(a) the reduction to classical model-checking proposed by Bruns & Godefroid, and (b)
directly, usingχChek.

The first technique involves two queries to a classical model-checker and is applicable
to formulas where negation is applied only to atomic propositions. The first step is the
computation of thecomplement closure[Bruns and Godefroid, 2000] of the model by
adding an extra variablēa for each variablea, such that in each state of the model,ā is
equal to¬a. The second step is building two versions of the model: thepessimisticversion
replaces each M value with⊥, while theoptimisticversion replaces each M with>. The
property to be checked must also be converted into the positive normal form, by pushing
all negations to the level of atomic propositions and replacing each negated variablea
with the corresponding variablēa. The model-checker is called on the pessimistic and
the optimistic models, and the results are combined as follows: if the pessimistic model
yields>, return>; else if the optimistic model yields⊥, return⊥; otherwise, return M.
Alternatively, the order of checks can be reversed: if the optimistic model yields⊥, return
⊥; else if the pessimistic model yields>, return>; otherwise, return M. Both versions of
this technique have the same worst-case complexity asχChek, i.e., linear in the size of the
model and the size of the formula. Yet, given a model of interest, it is not clear whether the
B&G technique orχChek performs better.

The properties of the elevator system that we verified are given in Figure 9. Properties
1-4 are taken directly from [Plath and Ryan, 1999], with the variablepressed replaced
by button in all terms involving landing or elevator buttons because of our change to the
moduleButton. Property 5 is our own addition. Similar properties can be formulated for
all other floors and all other landing and elevator buttons. In a correct elevator system,
we expect property 1 to evaluate to⊥, properties 2-4 to evaluate to>, and property 5 to
evaluate to⊥.

Given classical logic as input,χChek acts as a classical model-checker. Thus, we can
compare the two approaches using the same model-checking engine, and hence factor out

To appear inACM Transactions on Software Engineering and Methodology.

24 · Chechik, Devereux, Easterbrook & Gurfinkel

Model CTL Property Result Bruns & Godefroid χChek
Number Pessimistic Optimistic Total Best

3-floor 1. ⊥ 0.756 s 0.774 s 1.53 s 0.774 s 0.306 s
2. > 0.273 s 0.182 s 0.455 s 0.273 s 0.114 s
3. > 0.249 s 0.173 s 0.422 s 0.249 s 0.119 s
4. > 0.608 s 0.634 s 1.242 s 0.608 s 0.299 s
5. M 0.087 s 0.155 s 0.242 s 0.242 s 0.105 s

Size of trans. relation 2130 2153 954

4-floor 1. ⊥ 4.638 s 4.594 s 9.232 s 4.594 s 2.29 s
2. > 0.936 s 0.942 s 1.878 s 0.936 s 0.463 s
3. > 0.869 s 1.044 s 1.913 s 0.869 s 0.494 s
4. > 3.767 s 3.698 s 7.465 s 3.767 s 2.122 s
5. M 0.047 s 0.502 s 0.549 s 0.549 s 0.298 s

Size of trans. relation 5249 5307 2367

Table I. Elevator abstraction: comparison between (up to) two runs of the classical model-checker and a run of
χChek..

implementation issues in the experiments. We parameterized the model by the number of
floors, and ran our experiments using models with 3 and 4 floors. For both approaches, we
ranχChek with mv-sets implemented using MDDs on a Pentium III with 850 MHz pro-
cessor and 256 MB RAM, running Sun JDK 1.3 under Linux 2.2.19. Table I summarizes
the results. Since it is cannot be determineda priori which version of the B&G technique
yields the best performance, we give running times on pessimistic and optimistic models
separately and then list their total (if the choice is made incorrectly and both checks need
to be run) and the best time (if the choice is made correctly, and, where possible, only
one check is needed). For example, verification of property 1 on the 4-floor elevator can
be done in4.638 + 4.594 = 9.232 seconds using two queries to “classical”χChek if we
started with the pessimistic model, and in 4.594 seconds if we started with the optimistic
model. The same property can be verified in2.29 seconds whenχChek uses 3-valued logic
directly. Note that property 5 evaluates to M in both models, as opposed to the expected
⊥. This was caused by the abstraction we made to the moduleButton: it is possible that
pressed is> while button is M.

The size of the transition relation, as encoded into decision diagrams, does not change
from property to property, so in Table I we show it only once for each elevator model.
The process of constructing the complement closure in the Bruns & Godefroid approach
roughly doubles the size of the models and slows down the analysis, as confirmed by the
experiments. Replacing MDDs by other decision diagram implementations preserves the
same relationship between sizes of the encoding [Chechik et al., 2002a].

Also, note that in our comparisons we did not optimize either method. Potentially, by
determining which atomic propositions are negated in the formulas to be verified and only
including these in the complement closure, the size of the transition relation and the run-
ning time in the Bruns & Godefroid method can be improved. However, in the case of
the elevator model, most of the atomic propositions can appear on the left-hand side of the
implication, and thus need to be negated. Multi-valued model-checking can also be im-
proved: currently we represent all variables as if they can range over all values of the logic,
e.g.,pressed andreset are 3-valued, even though they do not need to be. Representing
boolean variables explicitly can lead to faster verification times.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 25

Finally, other experiments (see [Chechik et al., 2002b]) seem to indicate that the above
relationship between the performance of the two approaches holds in general, but further
investigation is necessary to confirm this hypothesis.

8. CONCLUSION

In this section, we summarize the paper, compare the work presented here with that of
other researchers, and outline directions for future work.

8.1 Summary

Multi-valued algebras can be useful in a variety of verification tasks. For example, they can
help reason about partial systems, solve feature interaction problems, and support general
model exploration.

In this paper, we introduced an extension of classical CTL model-checking to reasoning
with quasi-boolean algebras. We gave semantics to and categorized properties of a multi-
valued extension of CTL, calledχCTL. We also described a notion of multi-valued Kripke
structures, and showed how model-checking can be extended to dealing with systems con-
taining fairness. Finally, we presented a multi-valued symbolic model-checkerχChek and
illustrated its behaviour and performance.

8.2 Related Work

Multi-valued algebras, also often called ”logics”, have been explored for a variety of ap-
plications in databases [Gaines, 1979], knowledge representation [Ginsberg, 1987], ma-
chine learning [Michalski, 1977], and circuit design [Hazelhurst, 1996]. A number of
specific propositional multi-valued logics have been proposed and studied. For example,
Łukasiewicz [Łukasiewicz, 1970] first introduced a 3-valued logic to allow for propositions
whose truth values are ‘unknown’, and Kleene [Kleene, 1952] studied several alternative
3-valued logics. Belnap [Belnap, 1977] proposed a 4-valued logic that introduced the value
“both” (i.e. both TRUE andFALSE), to handle inconsistent assertions in database systems.
Each of these logics can be generalized to allow for additional levels of uncertainty or
disagreement. The class of quasi-boolean algebras defined in this paper includes many
existing multi-valued propositional logics, including those of Kleene and Belnap. Work
has also been done on deciding a more general class of logics. In particular, the work of
Hähnle and others [Ḧahnle, 1994; Sofronie-Stokkermans, 2001] has led to the development
of several theorem-provers for first-order multi-valued logics.

Multi-valued extensions of modal logics have been explored by Fitting [Fitting, 1991a;
Fitting, 1992] who introduced a notion of multi-valued models and extended propositional
modal logic (i.e. a fragment of CTL where the modal operators are limited toAX and
EX) to reasoning over such models. In his work, values of propositions and transitions
of the model come from a Heyting instead of a quasi-boolean algebra. Since Boolean
algebras (Definition 6) lie in the intersection of quasi-boolean and Heyting algebras, our
work can be seen as (1) extending Fitting’s multi-valued modal logic with additional modal
operators, and (2) extending multi-valued modal models to quasi-boolean algebras.

A number of recent papers [Bruns and Godefroid, 2000; Bruns and Godefroid, 1999;
Godefroid et al., 2001; Huth et al., 2001; Huth et al., 2003] addressed the problem of
model-checking over the algebra3 on a variety of 3-valued finite-state transition systems.
Bruns and Godefroid [Bruns and Godefroid, 1999; Bruns and Godefroid, 2000] inves-
tigated 3-valued model-checking on Partial Kripke structures, where propositions are 3-

To appear inACM Transactions on Software Engineering and Methodology.

26 · Chechik, Devereux, Easterbrook & Gurfinkel

valued but the transition relation is boolean. They extended branching-time temporal logic
to this case, proposing a 3-valued modal logic for expressing properties of partial mod-
els. Model-checking of positive properties (properties that do not contain negation) in this
logic reduces to two questions to a classical model-checker. This approach can be also
applied to fullµ-calculus by computingcomplement closure[Bruns and Godefroid, 2000]
of the model at the expense of increasing the size of the model and verification time. To
make the analysis more precise, the authors describe athorough semanticsof 3-valued
model-checking under which a property evaluates to MAYBE if and only if there are two
refinements of the partial model that disagree on the value of this property.

Godefroid et al. [Godefroid et al., 2001] provided an extension of the original 3-valued
model-checking algorithm to Modal Transition Systems (MTS) – a generalization of La-
beled Transition Systems of Larsen and Thompsen [Larsen and Thomsen, 1988], in which
the transition relation is allowed to become 3-valued. Such systems have “must”, “may”
and “must not” type transitions. The authors define a 3-valued extension of the modal
µ-calculus for MTS and describe an algorithm for model-checking in a fragment of this
language using classical model-checking. The idea is further extended by Huth et al. [Huth
et al., 2001; Huth et al., 2003] to Kripke Modal Transition Systems which are equivalent
to ourχKripke structures when the algebra is3. All of these modeling formalisms have
been shown to be equivalent [Godefroid and Jagadeesan, 2003].

When 3-valued algebras are applied to reasoning about inconsistencies, all inconsis-
tencies are represented using the value M. When model-checking returns> or ⊥, this
indicates that inconsistencies do not matter. However, when model-checking returns M,
there is insufficient support for discovering sources of inconsistencies or for negotiation.
If model-checking on a larger class of algebras is possible, such as withχChek, we can
refine the algebra when model-checking returns M, e.g., keeping track of exact sources of
all disagreements, and thus allow the users to determine which inconsistencies matter and
help focus potential negotiations.

Huth and Pradhan [Huth and Pradhan, 2003] study multi-valued model-checking where
the underlying algebra is defined on AC-lattices rather than De Morgan lattices. AC lattices
are a pair of lattices, with negation mapping between them. In particular, the authors
study the problem of discovering sources of inconsistency between multiple viewpoints.
Each of theC stakeholders, arranged in a partial order of dominance, submits a partial
model, consisting of valid (“must”) and consistent (“may”) statements about states and
transitions. The methodology assumes that each viewpoint has a possibly incomplete but
consistent description over the same global vocabulary. The systems are on different levels
of abstraction. Given a first-order property, the model-checking problem is to determine
sets of stakeholders for which the property is valid or consistent, respectively. The model-
checking problem is reduced to reasoning aboutC single-view partial models. Verification
of each model is performed by switching between “valid” and “consistent” interpretations
of satisfiability of properties. Our work is complementary to the above: Huth and Pradhan
propose to handle inconsistencies between refinements of the same system, whereas multi-
valued models encode inconsistencies between the different descriptions on the same level
of abstraction.

Symbolic probabilistic model-checking has been implemented as part of the tool PROB-
VERUS [Baier et al., 1997]. The models used in this work are Kripke structures where
edges are labeled with probabilities assigned to the corresponding transitions, and state
variables are classically-valued. Thus, the data structures used by PROBVERUSareMulti-

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 27

Terminal Binary Decision Diagrams(MTBDDs) [Baier and Clarke, 1998], which are
equivalent to theAlgebraic Decision Diagrams(ADDs) of Somenzi et al. [Bahar et al.,
1993]. Each non-terminal node of MTBDDs has two children, and the number of terminal
nodes depends on the range of the function being represented.

8.3 Future Work

We plan to extend the work presented in this paper in a number of directions. First of
all, success of multi-valued model-checking depends in part on our ability to engineer the
model-checker to handle non-trivial problems. To this effect, we are currently working on
optimizations of symbolic representations of mv-sets [Chechik et al., 2002b] and empiri-
cally characterizing the tradeoffs between different symbolic representations.

Preliminary work on multi-valued LTL (χLTL) model-checking has been reported in
[Chechik et al., 2001b]. We are now interested in extendingχChek to handlingχLTL
properties symbolically. We are also interested in conducting a number of case studies that
use the multi-valued model-checking approach described in this paper.

Acknowledgments

We would like Wendy MacCaull, Albert Lai, Christopher Thompson-Walsh and Victor
Petrovykh for many interesting discussions and for their help implementing the model-
checker. We are also indebted to Albert Lai for his help with several aspects of lattice
theory presented in this paper. Finally, we are grateful to members of the University of
Toronto formal methods reading group and the anonymous referees for helping us refine
the ideas presented in this paper and improve the clarity of the presentation. This work was
financially supported by NSERC and CITO.

REFERENCES

Anderson, A. and Belnap, N. (1975).Entailment. Vol. 1. Princeton University Press.

Back, R.-J. and von Wright, J. (1998).Refinement Calculus: A Systematic Approach. Springer-Verlag.

Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., and Somenzi, F. (1993). “Algebraic Deci-
sion Diagrams and Their Applications”. InIEEE /ACM International Conference on Computer-Aided Disign
(ICCAD’93), pages 188–191, Santa Clara, California. IEEE Computer Society Press.

Baier, C. and Clarke, E. M. (1998). “The Algebraic Mu-Calculus and MTBDDs”. InProceedings of 5th Workshop
on Logic, Language, Information and Computation, (WoLLIC’98), pages 27–38.

Baier, C., Clarke, E. M., Hartonas-Garmhausen, V., Kwiatkowska, M. Z., and Ryan, M. (1997). “Symbolic Model
Checking for Probabilistic Processes”. In Degano, P., Gorrieri, R., and Marchetti-Spaccamela, A., editors,
Automata, Languages and Programming, 24th International Colloquium, volume 1256 ofLecture Notes in
Computer Science, pages 430–440, Bologna, Italy. Springer.

Belnap, N. (1977). “A Useful Four-Valued Logic”. In Dunn and Epstein, editors,Modern Uses of Multiple-Valued
Logic, pages 30–56. Reidel.

Berney, G. and dos Santos, S. (1985).Elevator Analysis, Design and Control. IEE Control Engineering Series 2.
Peter Peregrinus Ltd.

Birkhoff, G. (1967).Lattice Theory. Americal Mathematical Society, Providence, RI, 3 edition.

Bolc, L. and Borowik, P. (1992).Many-Valued Logics. Springer-Verlag.

Bruns, G. and Godefroid, P. (1999). “Model Checking Partial State Spaces with 3-Valued Temporal Logics”.
In Proceedings of Proceedings of 11th International Conference on Computer-Aided Verification (CAV’99),
volume 1633 ofLecture Notes in Computer Science, pages 274–287, Trento, Italy. Springer.

Bruns, G. and Godefroid, P. (2000). “Generalized Model Checking: Reasoning about Partial State Spaces”. In
Palamidessi, C., editor,Proceedings of 11th International Conference on Concurrency Theory (CONCUR’00),
volume 1877 ofLecture Notes in Computer Science, pages 168–182, University Park, PA, USA. Springer.

To appear inACM Transactions on Software Engineering and Methodology.

28 · Chechik, Devereux, Easterbrook & Gurfinkel

Chan, W. (2000). “Temporal-Logic Queries”. In Emerson, E. and Sistla, A., editors,Proceedings of 12th Con-
ference on Computer Aided Verification (CAV’00), volume 1855 ofLecture Notes in Computer Science, pages
450–463, Chicago, IL, USA. Springer.

Chechik, M., Devereux, B., and Easterbrook, S. (2001a). “Implementing a Multi-Valued Symbolic Model-
Checker”. InProceedings of 7th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), volume 2031 ofLecture Notes in Computer Science, pages 404–419.
Springer.

Chechik, M., Devereux, B., and Gurfinkel, A. (2001b). “Model-Checking Infinite State-Space Systems with
Fine-Grained Abstractions Using SPIN”. InProceedings of 8th SPIN Workshop on Model Checking Software,
volume 2057 ofLecture Notes in Computer Science, pages 16–36, Toronto, Canada. Springer.

Chechik, M., Devereux, B., and Gurfinkel, A. (2002a). “χChek: A Multi-Valued Model-Checker”. InProceed-
ings of 14th International Conference on Computer-Aided Verification (CAV’02), Lecture Notes in Computer
Science, pages 505–509, Copenhagen, Denmark. Springer.

Chechik, M. and Ding, W. (2002). “Lightweight Reasoning about Program Correctness”.Information Systems
Frontiers, 4(4):363–377.

Chechik, M., Gurfinkel, A., Devereux, B., Lai, A., and Easterbrook, S. (2002b). “Symbolic Data Structures for
Multi-Valued Model-Checking”. CSRG Tech Report 446, University of Toronto. Submitted for publication.

Chechik, M. and MacCaull, W. (2003). “CTL Model-Checking over Logics with Non-Classical Negation”. In
Proceedings of 33rd IEEE International Symposium on Multi-Valued Logics (ISMVL’03), pages 293–300,
Tokyo, Japan.

Clarke, E., Emerson, E., and Sistla, A. (1986). “Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications”.ACM Transactions on Programming Languages and Systems, 8(2):244–263.

Clarke, E., Grumberg, O., and Peled, D. (1999).Model Checking. MIT Press.

Cousot, P. and Cousot, R. (1977). “Static Determination of Dynamic Properties of Generalized Type Unions”.
SIGPLAN Notices, 12(3).

Dams, D. (1996).Abstract Interpretation and Partition Refinement for Model Checking. PhD thesis, Eindhoven
University of Technology, The Netherlands.

Dams, D., Gerth, R., and Grumberg, O. (1997). “Abstract Interpretation of Reactive Systems”.ACM Transactions
on Programming Languages and Systems, 2(19):253–291.

Devereux, B. (2002). “Strong Next-time Operators for Multiple-Valuedµ-calculus”. InProceedings of FLOC’02
Workshop on Fixpoints in Computer Science (FICS), pages 40–43, Copenhagen, Denmark.

Dunn, J. (1999). “A Comparative Study of Various Model-Theoretic Treatments of Negation: A History of Formal
Negation”. In Gabbay, D. and Wansing, H., editors,What is Negation. Kluwer Academic Publishers.

Easterbrook, S. and Chechik, M. (2001). “A Framework for Multi-Valued Reasoning over Inconsistent View-
points”. In Proceedings of International Conference on Software Engineering (ICSE’01), pages 411–420,
Toronto, Canada. IEEE Computer Society Press.

Fitting, M. (1991a). “Many-Valued Modal Logics”.Fundamenta Informaticae, 15(3-4):335–350.

Fitting, M. (1992). “Many-Valued Modal Logics II”.Fundamenta Informaticae, 17:55–73.

Fitting, M. C. (1991b). “Kleene’s Logic, Generalized”.Journal of Logic and Computation, 1(6):797–810.

Gaines, B. R. (1979). “Logical Foundations for Database Systems”.International Journal of Man-Machine
Studies, 11(4):481–500.

Ginsberg, M. (1987). “Multi-valued logic”. In Ginsberg, M., editor,Readings in Nonmonotonic Reasoning, pages
251–255. Morgan-Kaufmann Pub.

Ginsberg, M. L. (1988). “Multivalued Logics: A Uniform Approach to Reasoning in Artificial Intelligence”.
Computational Intelligence, 4(3):265–316.

Godefroid, P., Huth, M., and Jagadeesan, R. (2001). “Abstraction-based Model Checking using Modal Transition
Systems”. In Larsen, K. and Nielsen, M., editors,Proceedings of 12th International Conference on Concur-
rency Theory (CONCUR’01), volume 2154 ofLecture Notes in Computer Science, pages 426–440, Aalborg,
Denmark. Springer.

Godefroid, P. and Jagadeesan, R. (2003). “On the Expressiveness of 3-Valued Models”. InProceedings of 4th
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’03), volume
2575 ofLecture Notes in Computer Science, pages 206–222, New York, USA. Springer.

Goguen, J. (1967). L-fuzzy sets.Journal of Mathematical Analysis and Applications, 18(1):145–174.

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 29

Gurfinkel, A. (2002). “Multi-Valued Symbolic Model-Checking: Fairness, Counter-Examples, Running Time”.
Master’s thesis, University of Toronto, Department of Computer Science.

Gurfinkel, A. and Chechik, M. (2003a). “Generating Counterexamples for Multi-Valued Model-Checking”. In
Proceedings of Formal Methods Europe (FME’03), Pisa, Italy.

Gurfinkel, A. and Chechik, M. (2003b). “Multi-Valued Model-Checking via Classical Model-Checking”. In
Proceedings of 14th International Conference on Concurrency Theory (CONCUR’03), Marseille, France.

Gurfinkel, A., Chechik, M., and Devereux, B. (2003). “Temporal Logic Query Checking: A Tool for Model
Exploration”. IEEE Transactions on Software Engineering. To appear.

Hähnle, R. (1994).Automated Deduction in Multiple-Valued Logics, volume 10 ofInternational Series of Mono-
graphs on Computer Science. Oxford University Press.

Hazelhurst, S. (1996).Compositional Model Checking of Partially Ordered State Spaces. PhD thesis, Department
of Computer Science, University of British Columbia.

Hehner, E. (1993).A Practical Theory of Programming. Texts and Monographs in Computer Science. Springer-
Verlag, New York.

Huth, M., Jagadeesan, R., and Schmidt, D. (2003). “A Domain Equation for Refinement of Partial Systems”.
Mathematical Structures in Computer Science. (Accepted for publication).

Huth, M., Jagadeesan, R., and Schmidt, D. A. (2001). “Modal Transition Systems: A Foundation for Three-Valued
Program Analysis”. InProceedings of 10th European Symposium on Programming (ESOP’01), volume 2028
of Lecture Notes in Computer Science, pages 155–169. Springer.

Huth, M. and Pradhan, S. (2003). “An Ontology for Consistent Partial Model Checking”.Electronic Notes in
Theoretical Computer Science, 23.

Huth, M. and Ryan, M. (2000).Logic in Computer Science: Modeling and Reasoning About Systems. Cambridge
University Press.

Kleene, S. C. (1952).Introduction to Metamathematics. New York: Van Nostrand.

Konikowska, B. and Penczek, W. (2003). “Model Checking for Multi-Valued Computation Tree Logics”. In
Fitting, M. and Orlowska, E., editors,Beyond Two: Theory and Applications of Multiple Valued Logic, pages
193–210. Physica-Verlag.

Kozen, D. (1983). “Results on the Propositionalµ-calculus”.Theoretical Computer Science, 27:334–354.

Larsen, K. and Thomsen, B. (1988). “A Modal Process Logic”. InProceedings of 3rd Annual Symposium on
Logic in Computer Science (LICS’88), pages 203–210. IEEE Computer Society Press.

Łukasiewicz, J. (1970).Selected Works. North-Holland, Amsterdam, Holland.

McMillan, K. (1993). Symbolic Model Checking. Kluwer Academic.

Michalski, R. S. (1977). “Variable-Valued Logic and its Applications to Pattern Recognition and Machine Learn-
ing”. In Rine, D. C., editor,Computer Science and Multiple-Valued Logic: Theory and Applications, pages
506–534. North-Holland, Amsterdam.

Plath, M. and Ryan, M. (1999). “SFI: A Feature Integration Tool”. In Berghammer, R. and Lakhnech, Y., editors,
Tool Support for System Specification, Development and Verification, Advances in Computer Science, pages
201–216. Springer.

Rasiowa, H. (1978).An Algebraic Approach to Non-Classical Logics. Studies in Logic and the Foundations of
Mathematics. Amsterdam: North-Holland.

Sagiv, M., Reps, T., and Wilhelm, R. (1999). “Parametric Shape Analysis via 3-Valued Logic”. InProceedings
of 26th Annual ACM Symposium on Principles of Programming Languages, pages 105–118, New York, NY.
ACM.

Sasao, T. and Butler, J. (1996). “A Method to Represent Multiple-Output Switching Functions Using Multi-
Valued Decision Diagrams”. InProceedings of IEEE International Symposium on Multiple-Valued Logic
(ISMVL’96), pages 248–254, Santiago de Compostela, Spain.

Sofronie-Stokkermans, V. (2001). Automated theorem proving by resolution for finitely-valued logics based on
distributive lattices with operators.An International Journal of Multiple-Valued Logic, 6(3-4):289–344.

Srinivasan, A., Kam, T., Malik, S., and Brayton, R. (1990). “Algorithms for Discrete Function Manipulation”.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD’90), pages 92–95, Santa Clara,
CA, USA. IEEE Computer Society.

To appear inACM Transactions on Software Engineering and Methodology.

30 · Chechik, Devereux, Easterbrook & Gurfinkel

A. PROOFS

We give proofs of selected theorems here. Our proofs follow thecalculational style[Hehner,
1993; Back and von Wright, 1998].

THEOREM 1. A product of two quasi-boolean algebras is quasi-boolean, that is,

(1) ¬¬(a, b) = (a, b)
(2) ¬((a1, b1) u (a2, b2)) = (¬a1,¬b1) t (¬a2,¬b2)
(3) ¬((a1, b1) t (a2, b2)) = (¬a1,¬b1) u (¬a2,¬b2)
(4) (a1, b1) v (a2, b2) ⇔ ¬(a1, b1) w ¬(a2, b2)

Proof:

(1) ¬¬(a, b) ¬ of pairs
⇔ ¬(¬a,¬b) ¬ of pairs
⇔ (¬¬a,¬¬b) ¬ involution
⇔ (a, b)

(2) ¬((a1, b1) u (a2, b2) u of pairs
⇔ ¬((a1 u a2), (b1 u b2)) ¬ of pairs
⇔ (¬(a1 u a2),¬(b1 u b2)) De Morgan
⇔ (¬a1 t ¬a2,¬b1 t ¬b2) t of pairs
⇔ (¬a1,¬b1) t (¬a2,¬b2)

(4) (a1, b1) v (a2, b2) v of pairs
⇔ a1 v a2 ∧ b1 v b2 ¬ antimonotonic
⇔ ¬a1 w ¬a2 ∧ ¬b1 w ¬b2 w of pairs
⇔ (¬a1,¬b1) w (¬a2,¬b2) ¬ of pairs
⇔ ¬(a1, b1) w ¬(a2, b2)

The proof of (3) is similar to that of (2).

THEOREM 2. For a 2-valued setS on S, the following holds:

(1) The membership functionS(x) is a boolean predicate
(2) (S ∩2 S′) = {x | S(x) ∧ S′(x)} = (S ∩ S′)
(3) (S ∪2 S′) = {x | S(x) ∨ S′(x)} = (S ∪ S′)
(4) S(x) = x ∈ (S − {y | S(y) = >})

Proof:
The proof follows from the the fact that the set membership functionS(x) is boolean. Then, each
mv-set is boolean and thus union, intersection and complement reduce to classical.

THEOREM 3. The forward and backward image of a2-valued set,Q, under a2-valued
relation,R, are as follows:

(1)
→
R (Q) = λt ∈ T ·

∨
{s∈S|R(s,t)} S(s)

(2)
←
R (Q) = λs ∈ S ·

∨
{t∈T |R(s,t)} T(t)

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 31

Proof:

→
R (Q) def. of

→
R

= λt ·
⊔

s∈S(Q(s) u R(s, t)) R is a boolean relation
= λt ·

⊔
{s∈S|R(s,t)} Q(s) Theorem 2

= λt ·
∨
{s∈S|R(s,t)} Q(s)

The proof of (2) is similar.

THEOREM 4. χCTL reduces to CTL when the algebra is2. That is,

(1) [[EXϕ]] = [[EXBϕ]]
(2) [[EGϕ]] = [[EGBϕ]]
(3) [[E[ϕ U ψ]]] = [[E[ϕ UB ψ]]]

whereEGB , EUB , andEXB are classical CTL operators defined in Section 2.

Proof:
(1) holds by Theorem 3. The proof for (2) is based on the fact that[[EGϕ]] can be represented by
νZ.F (Z), whereF (Z) = [[ϕ]] ∩L [[EXZ]]. SinceF (Z) reduces to its boolean version syntactically,
[[EGϕ]] reduces to[[EGBϕ]]. The proof for (3) is similar to that of (2).

THEOREM 5. χCTL operatorsAX andEX are monotone.

Proof:
We begin by reciting some properties of monotone functions and fixpoints. Assume thatF andG

are monotone functions. Then,F (Z) ∪G(Z), F (Z) ∩G(Z), andF (Z) are monotone.
We want to show thatEX is monotone:

Z ⊆L Y def. of ⊆L

⇒ ∀t ∈ S · Z(t) v Y(t) u is monotone
⇒ ∀s ∈ S · ∀t ∈ S · R(s, t) u Z(t) v R(s, t) u Y(t)

⊔
is monotone

⇒ ∀s ∈ S ·
⊔

t∈S R(s, t) u Z(t) v
⊔

t∈S R(s, t) u Y(t) def. ofEX
⇒ ∀s ∈ S · [[EXZ]](s) v [[EXY]](s) def. of ⊆L

⇒ [[EXZ]] ⊆L [[EXY]]

AX is monotone because[[AX]] = [[EX¬Z]] andEX is monotone.

THEOREM 6. The definition ofχCTL ensures that for eachϕ, [[ϕ]] forms a partition.

Proof:
To prove this theorem, it suffices to prove that the computation ofEXϕ forms a partition. All other
operators are computed using fixpoints and applications of∪L, ∩L, and¬ operators which, given
mv-sets where the characteristic function is total, produce mv-sets with a total characteristic function,
thereby forming a partition. We now turn to showing that the computation ofEXϕ forms a partition.

∀s ∈ S ∃!` · [[EXϕ]](s) = `
= by def. ofEX

∀s ∈ S ∃!` ·
⊔

t∈S([[ϕ]](t) u R(s, t)) = `
⇐ since [[ϕ]] is a partition,R(s, t) is an mv-relation s.t.∀(s, t) ∃!`′ ∈ L · R(s, t) = `′, and

by Definition 2
∀s ∈ S ∃!` ∃!`t ·

⊔
t∈S `t = `

⇐ because
⊔

preserves partition property
>

To appear inACM Transactions on Software Engineering and Methodology.

32 · Chechik, Devereux, Easterbrook & Gurfinkel

THEOREM 7. Multi-valued model-checking is decidable.

Proof:
From Theorem 5 and monotonicity of∩L and∪L, we conclude that allχCTL operators involve com-
putation of fixpoints over monotone functions, thus resulting in natural algorithms. The termination
of these algorithms is guaranteed by the usual application of the Knaster-Tarski theorem.

THEOREM 8. Fixpoint properties of (derived)χCTL operators are the same as for CTL
operators. That is,

(1) [[AGϕ]] = νZ.[[ϕ]] ∩L [[AXZ]] AG fixpoint
(2) [[AFϕ]] = µZ.[[ϕ]] ∪L [[AXZ]] AF fixpoint
(3) [[EFϕ]] = µZ.[[ϕ]] ∪L [[EXZ]] EF fixpoint
(4) [[A[ϕ U ψ]]] = µZ.[[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]]) AU fixpoint

Proof:
We structure the proof by showing that definitions for the temporal operatorsAG,AF ,EF andAU
are the same as their fixpoints. First we recall the property relating least and greatest fixpoints [Kozen,
1983]

µZ.F (Z) = νZ.F (Z) negation fixpoint

(1) [[AGϕ]] def. ofAG
= [[EF¬ϕ]] EF fixpoint
= µZ.[[¬ϕ]] ∪L [[EXZ]] negation fixpoint
= νZ.[[¬ϕ]] ∪L [[EX¬Z]] De Morgan
= νZ.[[ϕ]] ∩L [[EX¬Z]] def. ofAX
= νZ.[[ϕ]] ∩L [[AXZ]]

(2) [[AFϕ]] def. ofAF
= [[A[> U ϕ]]] AU fixpoint
= µZ.[[ϕ]] ∪L ([[>]] ∩L [[AXZ]]) identity of>
= µZ.[[ϕ]] ∪L [[AXZ]]

(3) [[EFϕ]] def. ofEF
= [[E[> U ϕ]]] EU fixpoint
= µZ.[[ϕ]] ∪L ([[>]] ∩L [[EXZ]]) identity of>
= µZ.[[ϕ]] ∪L [[EXZ]]

We now show (4). We start by reformulating the definition ofAU :

[[A[ϕ U ψ]]]
= by def. ofAU

[[E[¬ψ U ¬ϕ ∧ ¬ψ]]] ∩L [[EG¬ψ]]
= expandingEU andEG using their definitions

µZ.[[¬ϕ ∧ ¬ψ]] ∪L ([[¬ψ]] ∩L [[EXZ]]) ∩L νZ.[[¬ψ]] ∩L [[EXZ]]
= using negation fixpoint, def. ofAX

(νZ.[[ϕ ∨ ψ]] ∩L ([[ψ]] ∪L [[AXZ]])) ∩L (µZ.[[ψ]] ∪L [[AXZ]])
= by distributivity and absorption

(νZ.[[ψ]] ∪L (([[ϕ]] ∪L [[ψ]]) ∩L [[AXZ]])) ∩L (µZ.[[ψ]] ∪L [[AXZ]])
= by distributivity and absorption

(νZ.[[ψ]] ∪L ([[ϕ]] ∩L [[AXZ]])) ∩L (µZ.[[ψ]] ∪L [[AXZ]])

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 33

Now, letF (Z) = [[ψ]]∪L([[ϕ]]∩L[[AXZ]]) andG(Z) = [[ψ]]∪L[[AXZ]]. Then[[E[¬ψ U ¬ϕ ∧ ¬ψ]]] =
K = νZ.F (Z), [[EG¬ψ]] = Y = µZ.G(Z), and[[A[ϕ U ψ]]] = W = µZ.F (Z). We need to show
thatW = K ∩L Y.

Recall that if a functionF is monotone and continuous, then there existsn ∈ nat s.t.µZ.F (Z) =
Fn([[⊥]])4 andνZ.F (Z) = Fn([[>]]). We also nameith iterations ofF andG: Ki = F i([[>]]),
Wi = F i([[⊥]]) andYi = Gi([[⊥]]).

We first show that∀i ∈ nat ·Ki ∩L Yi = Wi. The proof is by induction.

Base Case:K0 ∩L Y0

= by def. ofK0, Y0

[[>]] ∩L [[⊥]]
= expanding mv-sets

[[⊥]]
= by def. ofW0

W0

IH: AssumeKi ∩L Yi = Wi for i = k
Inductive Case: Proof fori = k + 1

Kk+1 ∩L Yk+1

= expanding each function once
([[ψ]] ∪L ([[ϕ]] ∩L [[AXKk]])) ∩L ([[ψ]] ∪L [[AXYk]])

= by distributivity and absorption
[[ψ]] ∪L ([[ψ]] ∩L [[AXKk]] ∩L [[AXYk]])

= byAX of conjunction
[[ψ]] ∪L ([[ψ]] ∩L [[AX(Kk ∩L Yk)]])

= by inductive hypothesis
[[ψ]] ∪L ([[ψ]] ∩L [[AX(Wk)]])

= by def. ofWk+1

Wk+1

Therefore,∀i ∈ nat ·Wi = Ki ∩L Yi which implies thatW = K ∩L Y and thus the definition and
the fixpoint formulation ofAU are identical.

THEOREM 9. The following statements are equivalent for a path,π, and fairness con-
ditions,C = {c1, ..., ck}:

(1) Each fairness condition,ci, occurs infinitely often inπ;
(2) A sequencec1, c2, ..., ck occurs infinitely often inπ.

Proof:
(1) ⇒ (2): Starting at the beginning ofπ, find the first occurrence ofc1 (this can always be done
becausec1 occurs infinitely often inπ). After that point, find the first occurrence ofc2, etc. This
process can be repeated forever, and thus a sequencec1, c2, ..., ck occurs infinitely often inπ.
(2) ⇒ (1): if a sequencec1, c2, ..., ck occurs infinitely often inπ, then each element of it occurs
infinitely often inπ, soπ is fair.

THEOREM 10. WhenC = {>} (no fairness),ECG
′ becomes

[[ECG
′ϕ]] = νZ.[[ϕ]] ∩L [[EXE[ϕ U ϕ ∧ Z]]] = νZ.[[ϕ]] ∩L [[EXZ]] = [[EGϕ]]

Proof:
LetF (Z) = [[ϕ]]∩L [[EXE[ϕ U ϕ∧Z]]] andG(Z) = [[ϕ]]∩L [[EXZ]]. By definition,[[ECG

′ϕ]] =

4Fn stands for applyingF n times.

To appear inACM Transactions on Software Engineering and Methodology.

34 · Chechik, Devereux, Easterbrook & Gurfinkel

W = νZ.F (Z) and[[EGϕ]] = Y = νZ.G(Z). We start by proving an intermediate result indicating
that[[E[ϕ U ϕ ∧W]]] is the same asW:

[[E[ϕ U ϕ ∧W]]] EU fixpoint
= ([[ϕ]] ∩L W) ∪L ([[ϕ]] ∩L [[EXE[ϕ U ϕ ∧W]]]) absorption, def. ofF
= W ∪L F (W) W is a fixpoint ofF
= W

To show that[[ECGϕ]] = [[EGϕ]], we need to show thatY = W. The proof consists of two parts:
(1) showing thatW is a fixpoint ofG and thusW ⊆L Y (becauseY is the greatest fixpoint ofG);
and (2) showing thatW ⊇L Y.

(1) G(W) def. ofG
= [[ϕ]] ∩L [[EXW]] W = [[E[ϕ U ϕ ∧W]]]
= [[ϕ]] ∩L [[EXE[ϕ U ϕ ∧W]]] def. ofF
= F (W) W is the fixpoint ofF
= W

To prove (2), we start by definingWi = F i([[>]]) and Yi = Gi([[>]]). SinceF andG are
monotone and continuous, there existsn ∈ nat s.t. W = Wn ∧ Y = Yn. We now show that
∀i ∈ nat ·Wi ⊇L Yi.

Base Case:W0 = [[>]] = Y0

IH: Assume Wi ⊇L Yi for i = k
Ind. Case: Proof fori = k + 1

Note thatWk+1 = [[ϕ]] ∩L [[EXE[ϕ U ϕ ∧Wk]]] = G([[E[ϕ U ϕ ∧Wk]]])
andYk+1 = [[ϕ]] ∩L [[EXYk]] = G(Yk)

G([[E[ϕ U ϕ ∧Wk]]]) ⊇L G(Yk) G is monotone
⇐ [[E[ϕ U ϕ ∧Wk]]] ⊇L Yk EU fixpoint
⇐ (Wk ∪L ([[ϕ]] ∩L [[EXE[ϕ U ϕ ∧Wk]]])) ⊇L Yk monotonicity of∪L, absorption
⇐ Wk ⊇L Yk inductive hypothesis
⇐ >

Thus, by induction,∀n ∈ nat ·Wn ⊇L Yn, soW ⊇L Y. Combining this with results of part (1),
we get thatW = Y, so, by definition,[[ECG

′ϕ]] = [[EGϕ]].
Now we set out to show thatECG andECG

′ are equivalent. We assume thatC =
{c1, c2} for brevity. The reasoning can be expanded for an arbitraryC = {c1, ..., ck}. Let
F (Z) = [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧ EXE[ϕ U ϕ ∧ c2 ∧ Z]]]]. Then, by definition,

ECGϕ = νZ.F (Z). Also, letG(Z) = [[ϕ]] ∩L

⋂
L

k={1,2}

[[EXE[ϕ U ϕ ∧ ck ∩L Z]]]. Then,

by definition,ECG
′ϕ = νZ.G(Z).

We are interested in representing paths on which the sequencec1, c2 (respectively,c2, c1)
holdsi times. We do so by encoding the states from which these paths emanate, using mv-
setsKi andMi, respectively. These are defined recursively as follows:

K0 = [[>]] M0 = [[>]]
Kn = [[ϕ]] ∩L [[EXE[ϕ U ϕ ∧ c1 ∧Mn−1]]]
Mn = [[ϕ]] ∩L [[EXE[ϕ U ϕ ∧ c2 ∧Kn−1]]]

We also define thenth iteration ofνZ.G(Z) explicitly:

G0([[>]]) = [[>]]
Gn+1([[>]]) = G1(Gn([[>]])) ∩L G2(Gn([[>]]))

To appear inACM Transactions on Software Engineering and Methodology.

Multi-Valued Symbolic Model-Checking · 35

Note thatK2n = Fn([[>]]). We are therefore interested in the degree to whichKn andMn

approximateGn([[>]]). We characterize this formally in the following lemma:

LEMMA 1. ∀n ∈ nat,
(1) Kn ⊇L G

n([[>]]) (2) Mn ⊇L G
n([[>]])

(3) K2n ⊆L G
n([[>]]) (4) M2n ⊆L G

n([[>]])

Proof:
In the proof we use the following results, proofs of which are omitted for brevity:

Kn ⊇L Kn+1 andMn ⊇L Mn+1 monotonicity ofKn, Mn

[[ϕ]] ∩L [[EXE[ϕ U c2 ∧ ϕ ∧Kn]]] ⊆L Mn relation betweenKn andMn

The above holds becauseMn = [[ϕ]] ∩L [[EXE[ϕ U ϕ ∧ c2 ∧Kn−1]]]
[[E[ϕ U ψ]]] ⊇L [[E[ϕ U ϕ ∧ EXE[ϕ U ψ]]]] monotonicity 1 ofEU

The above holds because ofEU expansion
[[ϕ]] ⊇L [[ψ]] ⇒ [[E[p U ϕ]]] ⊇L [[E[p U ψ]]] monotonicity 2 ofEU

We are now ready to prove (1)-(4), which we do by induction onn.

Base Case:G0([[>]]) = > def. ofG0([[>]])
IH: Assume (1)-(4) hold forn = k

Ind. Case: Proof forn = k + 1
(1) Enough to showKn+1 ⊇L G1(G

n([[>]]))
> IH

⇒ Mn ⊇L G
n([[>]]) monotonicity 2 ofEU

⇒ [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧Mn]]]
⊇L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧Gn([[>]])]]] def. ofKn+1,G1,Gn+1

⇒ Kn+1 ⊇L G1(G
n([[>]])) ⊇L G

n+1([[>]])
(2) Proof is similar to that of (1).
(3) Need to showK2n+2 ⊆L G

n+1([[>]])
We show (3a) K2n+2 ⊆L G1(G

n([[>]]))
(3b) K2n+2 ⊆L G2(G

n([[>]]))
Then by∩L elimination, we have the desired property.
(3a) K2n+2 def. ofK2n+2

= [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧ EXE [ϕ U ϕ ∧ c2 ∧K2n]]]] relation betweenKn andMn

⊆L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧M2n]]] IH and monotonicity
⊆L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧Gn([[>]])]]] def. ofG1

= G1(G
n([[>]]))

(3b) K2n+2 def. ofK2n+2

= [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c1 ∧ EXE [ϕ U ϕ ∧ c2 ∧K2n]]]] monotonicity
⊆L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ EXE [ϕ U ϕ ∧ c2 ∧K2n]]]] monotonicity 1 ofEU
⊆L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c2 ∧K2n]]] IH and monotonicity
⊆L [[ϕ]] ∩L [[EXE [ϕ U ϕ ∧ c2 ∧Gn([[>]])]]] def. ofG2

= G2(G
n([[>]]))

(4) Proof is similar to that of (3).

THEOREM 11. OperatorsECG andECG
′ are equivalent.

Proof:
Recall thatK2n = Fn([[>]]). SinceFn converges,∃N1 ∈ nat · ∀n ≥ N1 · νZ.F (Z) = K2n. Since
Gn converges,∃N2 ∈ nat · ∀n ≥ N2 · νZ.G(Z) = Gn([[>]]). Further, by Lemma 1,∀n ≥ N2

K2n ⊆L Gn([[>]]) = νZ.G(Z)
K2n ⊇L G2n([[>]]) = νZ.G(Z)

To appear inACM Transactions on Software Engineering and Methodology.

36 · Chechik, Devereux, Easterbrook & Gurfinkel

So,∀n ≥ N2 ·K2n = νZ.G(Z).
Let m = max{N1, N2}. Then,νZ.F (Z) = K2m = νZ.G(Z). So, operatorsECG andECG

′

are equivalent.

To appear inACM Transactions on Software Engineering and Methodology.

