Planning

• This material is covered in R&N 2nd edition chapters 10.3, 11.1, 11.2, 11.4
• This material is covered in R&N 3rd edition chapter 10
plan n.

1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: a plan of attack.
2. A proposed or tentative project or course of action: had no plans for the evening.
3. A systematic arrangement of elements or important parts; a configuration or outline: a seating plan; the plan of a story.

4. A drawing or diagram made to scale showing the structure or arrangement of something.
5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.
6. A program or policy stipulating a service or benefit: a pension plan.

Synonyms: blueprint, design, project, scheme, strategy
plan n.

1. A scheme, program, or method worked out beforehand for the accomplishment of an objective: a plan of attack.

2. A proposed or tentative project or course of action: had no plans for the evening.

3. A systematic arrangement of elements or important parts; a configuration or outline: a seating plan; the plan of a story.

4. A drawing or diagram made to scale showing the structure or arrangement of something.

5. In perspective rendering, one of several imaginary planes perpendicular to the line of vision between the viewer and the object being depicted.

6. A program or policy stipulating a service or benefit: a pension plan.

Synonyms: blueprint, design, project, scheme, strategy
[a representation] of future behavior … usually a set of actions, with temporal and other constraints on them, for execution by some agent or agents.

- Austin Tate

[MIT Encyclopedia of the Cognitive Sciences, 1999]

<table>
<thead>
<tr>
<th>Code</th>
<th>Machine</th>
<th>Start Time</th>
<th>Duration</th>
<th>Action Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>004 T</td>
<td>VMC1</td>
<td>2.50</td>
<td>4.87</td>
<td>Total time on VMC1</td>
</tr>
<tr>
<td>005 A</td>
<td>EC1</td>
<td>0.00</td>
<td>32.29</td>
<td>Pre-clean board (scrub and wash)</td>
</tr>
<tr>
<td>005 B</td>
<td>EC1</td>
<td>30.00</td>
<td>0.48</td>
<td>Setup</td>
</tr>
<tr>
<td>005 C</td>
<td>EC1</td>
<td>30.00</td>
<td>2.00</td>
<td>Setup</td>
</tr>
<tr>
<td>005 D</td>
<td>EC1</td>
<td>30.00</td>
<td>20.00</td>
<td>Setup</td>
</tr>
<tr>
<td>005 T</td>
<td>EC1</td>
<td>90.00</td>
<td>54.77</td>
<td>Total time on EC1</td>
</tr>
<tr>
<td>006 A</td>
<td>MC1</td>
<td>30.00</td>
<td>4.57</td>
<td>Setup</td>
</tr>
<tr>
<td>006 B</td>
<td>MC1</td>
<td>30.00</td>
<td>7.50</td>
<td>Setup</td>
</tr>
<tr>
<td>006 C</td>
<td>MC1</td>
<td>30.00</td>
<td>7.50</td>
<td>Setup</td>
</tr>
</tbody>
</table>

A portion of a manufacturing process plan
Modes of Planning

• Mixed Initiative Planning

• Automated Plan Generation
Why Planning

• Intelligent agents must operate in the world. They are not simply passive reasoners (Knowledge Representation, reasoning under uncertainty) or problem solvers (Search), they must also act on the world.

• We want intelligent agents to act in “intelligent ways”. Taking purposeful actions, predicting the expected effect of such actions, composing actions together to achieve complex goals.
Why Planning

E.g. if we have a robot we want the robot to decide what to do; how to act to achieve our goals
A Planning Problem

• How to change the world to suit our needs
• Critical issue: we need to reason about what the world will be like after doing a few actions, not just what it is like now

GOAL: Steven has coffee
CURRENTLY: robot in mailroom, has no coffee, coffee not made, Steven in office, etc.
TO DO: goto lounge, make coffee,...
Example Planning Applications
Autonomous Agents for Space Exploration

- Autonomous planning, scheduling, control
 - NASA: JPL and Ames
 - Remote Agent Experiment (RAX)
 - Deep Space 1
 - Mars Exploration Rover (MER)
Other Autonomous Systems
Manufacturing Automation

• Sheet-metal bending machines - Amada Corp
• Software to plan the sequence of bends
 [Gupta and Bourne, *J. Manufacturing Sci. and Engr.*, 1999]
E.g., *Bridge Baron* - Great Game Products

- 2004: 2nd place

Games

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

Us:

- East declarer, West dummy
- Opponents: defenders, South & North
- Contract: East – 3NT
- On lead: West at trick 3

West: ♣2

Out: ♣QT98653

On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣5

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q

Us: East declarer, West dummy
Opponents: defenders, South & North
Contract: East – 3NT
On lead: West at trick 3

East: ♣KJ74
West: ♣A2
Out: ♣QT98653

South: ♣Q
Other Applications (cont.)

Scheduling with Action Choices & Resource Requirements
• Problems in supply chain management
• HSTS (Hubble Space Telescope scheduler)
• Workflow management

Air Traffic Control
• Route aircraft between runways and terminals. Crafts must be kept safely separated. Safe distance depends on craft and mode of transport. Minimize taxi and wait time.

Character Animation
• Generate step-by-step character behaviour from high-level spec

Plan-based Interfaces
• E.g. NLP to database interfaces
• Plan recognition, Activity Recognition
Other Applications (cont.)

Web Service Composition
• Compose web services, and monitor their execution
• Many of the web standards have a lot of connections to plan representation languages
 • BPEL; BPEL-4WS allow workflow specifications
 • OWL-S allows process specifications

Grid Services/Scientific Workflow Management

Genome Rearrangement
• The relationship between different organisms can be measured by the number of “evolution events” (rearrangements) that separate their genomes
• Find shortest (or most likely) sequence of rearrangements between a pair of genomes
Planning

• Reasoning about what the world will be like after doing a few actions is similar to what we have already examined.
• Only now we want to reason about **dynamic environments**.
 • in(robby,Room1), lightOn(Room1) are true: will they be true after robby performs the action turnOffLights?
 • in(robby,Room1) is true: what does robby need to do to make in(robby,Room3) true?
• Reasoning about the effects of actions, and computing what actions can achieve certain effects is at the heart of **decision making**.
Planning under Uncertainty

• One of the major complexities in planning that we will deal with later is planning under uncertainty.

• Our knowledge of the world is probabilistic.

• Sensing is subject to noise (especially in robots).

• Actions and effectors are also subject to error (uncertainty in their effects).
Planning

For now we restrict our attention to the deterministic case.

We will examine:

• determining the effects of actions.
• finding sequences of actions that can achieve a desired set of effects.
 • This will in some ways be a lot like search, but we will see that representation also plays an important role.
What we’ll cover

• Representing and reasoning about actions (including planning) in the situation calculus, a (mostly) first-order logical language for reasoning about action and change
• Planning in STRIPS
• Planning as Search
• GraphPlan
Situation Calculus

• First we look at how to model dynamic worlds within first-order logic.
• The situation calculus is an important formalism developed for this purpose.
• Situation Calculus is a first-order language.
• Include in the domain of individuals a special set of objects called situations. Of these \(S_0 \) is a special distinguished constant which denotes the “initial” situation.
Situation Calculus Building Blocks

• Situations
• Fluents
• Actions
Situations

• Situations are the history of actions from s_0. You can think of them as indexing “states” of the world, but two different situations can have the same state. (E.g., “scratch, eat” may lead to the same state of the world as “eat, scratch”.) When dealing with dynamic environments, the world has different properties at different points in time.

• e.g., $\text{in}(\text{robbym}, \text{room1}, s_0)$, $\neg \text{in}(\text{robbym}, \text{room3}, s_0)$
 $\neg \text{in}(\text{robbym}, \text{room3}, s_1)$, $\text{in}(\text{robbym}, \text{room1}, s_1)$.

 • Different things are true in situation s_1 than in the initial situation s_0.
 • Contrast this with the previous kinds of knowledge we examined.
Fluents

• Previously, we were encoding a property of a term as a relation in first-order logic. The distinction here is that properties that change from situation to situation (called fluents) take an extra situation argument.
 • clear(b) → clear(b,s)
 • “clear(b)” is no longer statically true, it is true contingent on what situation we are talking about
Blocks World Example.

```plaintext
clear(c,s_0)
on(c,a,s_0)
clear(b,s_0)
handempty(s_0)
```
Actions

• Actions are also part of language
 • A set of “primitive” action objects in the (semantic) domain of individuals.
 • In the syntax they are represented as functions mapping objects to primitive action objects.

Examples:
• pickup(X) function mapping blocks to actions
 • pickup(c) = “the primitive action object corresponding to ‘picking up block c’
• stack(X,Y)
 • stack(a,b) = “the primitive action object corresponding to ‘stacking a on top of b’
Actions applied to situation \(\rightarrow\) new situation

- Remember that actions are terms in the language.
- In order to talk about the situation that results from executing an action in a particular situation, there is a “generic” action application function \(\text{do}(A,S)\).
 \(\text{do}\) maps a primitive action \(A\) and a situation \(S\) to a new situation.
 - The new situation is the situation that results from applying \(A\) to \(S\).

Example:
- \(\text{do}(\text{pickup}(c), s_0)\) = the new situation that is the result of applying action “pickup(c)” to the initial situation \(s_0\).
What do Actions do?

• Actions affect the situation by changing what is true.
 • on(c,a,s₀); clear(a,do(pickup(c),s₀))

• We want to represent the effects of actions, this is done in the situation calculus with two components:
 • Action Precondition Axioms
 • Action Effect Axioms
Specifying the effects of actions

• **Action preconditions.** Certain things must hold for actions to have a predictable effect.
 - pickup(c) this action is only applicable to situations S when “clear(c,S) ∧ handempty(S)” is true.

• **Action effects.** Actions make certain things true and certain things false.
 - holding(c, do(pickup(c), S))
 - ∀ X.¬handempty(do(pickup(X),S))
Specifying the effects of actions

- Action effects are conditional on their precondition being true.

$$\forall S,X. \ontable(X,S) \land \text{clear}(X,S) \land \text{handempty}(S) \rightarrow \text{holding}(X, \text{do(pickup}(X),S))$$

$$\land \lnot \text{handempty}(\text{do(pickup}(X),S))$$

$$\land \lnot \ontable(X, \text{do(pickup}(X),S))$$

$$\land \lnot \text{clear}(X, \text{do(pickup}(X),S)).$$
Plan Generation

There are many ways to generate plans. Here we show how to do it by representing actions in the situation calculus (as you have just seen) and generating a plan via deductive plan synthesis.

This is not the approach taken by state of the art planners, as we will see later, but it is where the field started and is still used for more complex tasks in reasoning about action and change.

...so for now, back to resolution!
Reasoning with the Situation Calculus.

1. clear(c,s₀)
2. on(c,a,s₀)
3. clear(b,s₀)
4. ontable(a,s₀)
5. ontable(b,s₀)
6. handempty(s₀)

Query:
∃Z.holding(b,Z)
7. (¬holding(b,Z), ans(Z))

Does there exists a situation in which we are holding b? And if so what is the name of that situation.
Resolution

• Convert “pickup” action axiom into clause form:

\[\forall S,Y.\]
\[\text{ontable}(Y,S) \land \text{clear}(Y,S) \land \text{handempty}(S) \rightarrow\]
\[\text{holding}(Y, \text{do}(\text{pickup}(Y),S))\]
\[\land \neg \text{handempty}(\text{do}(\text{pickup}(Y),S))\]
\[\land \neg \text{ontable}(Y,\text{do}(\text{pickup}(Y,S)))\]
\[\land \neg \text{clear}(Y,\text{do}(\text{pickup}(Y,S))).\]

8. \((\neg \text{ontable}(Y,S), \neg \text{clear}(Y,S), \neg \text{handempty}(S), \neg \text{handempty}(\text{do}(\text{pickup}(Y),S)))\)

9. \((\neg \text{ontable}(Y,S), \neg \text{clear}(Y,S), \neg \text{handempty}(S), \neg \text{handempty}(\text{do}(\text{pickup}(X),S)))\)

10. \((\neg \text{ontable}(Y,S), \neg \text{clear}(Y,S), \neg \text{handempty}(S), \neg \text{ontable}(Y,\text{do}(\text{pickup}(Y,S))))\)

11. \((\neg \text{ontable}(Y,S), \neg \text{clear}(Y,S), \neg \text{handempty}(S), \neg \text{clear}(Y,\text{do}(\text{pickup}(Y,S))))\)
Resolution

12. $R[8d, 7] \{Y=b, Z=do(pickup(b), S)\}$

 $(\neg\text{ontable}(b, S), \neg\text{clear}(b, S), \neg\text{handempty}(S),$

 $\text{ans}(do(pickup(b), S)))$

13. $R[12a, 5] \{S=s_0\}$

 $(\neg\text{clear}(b, s_0), \neg\text{handempty}(s_0),$

 $\text{ans}(do(pickup(b), s_0)))$

 $(\neg\text{handempty}(s_0), \text{ans}(do(pickup(b), s_0)))$

15. $R[14a, 6] \{\}$

 $\text{ans}(do(pickup(b), s_0))$
The answer?

• \(\text{ans(do(pickup(b),s_0))} \)

• This says that a situation in which you are holding \(b \) is called “\(\text{do(pickup(b),s_0)} \)”

• This tells you what actions to execute to achieve “\(\text{holding(b)} \)”.
Two types of reasoning.

- In general we can answer questions of the following form:

 1. Predicting the effects of a *given* sequence of action
 E.g., \(\text{on}(b,c, \text{do}(\text{stack}(b,c), \text{do}(\text{pickup}(b), s_0))) \)

 2. Computing a sequence of actions that achieve a goal conditions E.g.,
 \(\exists S. \text{on}(b,c,S) \land \text{on}(c,a,S) \)
The Frame Problem

• Unfortunately, logical reasoning won’t immediately yield the answer to these kinds of questions.

 • e.g., query: on(c,a,do(pickup(b),s_0))?
 • is c still on a after we pickup b?
 • Intuitively it should be
 • Can logical reasoning reach this conclusion given the representation of actions that we have proposed thus far?
The Frame Problem

1. clear(c,s₀)
2. on(c,a,s₀)
3. clear(b,s₀)
4. ontable(a,s₀)
5. ontable(b,s₀)
6. handempty(s₀)
8. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S),
 holding(Y,do(pickup(Y),S)))
9. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S),
 ¬handempty(do(pickup(X),S)))
10. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S),
 ¬ontable(Y,do(pickup(Y,S))))
11. (¬ontable(Y,S), ¬clear(Y,S), ¬handempty(S),
 ¬clear(Y,do(pickup(Y,S))))
12. ¬on(c,a,do(pickup(b),s₀)) {QUERY}

Nothing can resolve with 12!
Logical Consequence

• Remember that resolution only computes logical consequences.

• We stated the effects of pickup(b), but did not state that it doesn’t affect on(c,a).

• Hence there are models in which on(c,a) no longer holds after pickup(b) (as well as models where it does hold).

• The problem is that representing the non-effects of actions is very tedious and in general is not possible.
 • Think of all of the things that pickup(b) does not affect!
The Frame Problem

• Finding an effective way of specifying the non-effects of actions, without having to explicitly write them all down is the frame problem.

• Good solutions have been proposed, and the situation calculus has been a powerful way of dealing with dynamic worlds:
 • Logic-based high level robotic programming languages
Computation Problems

- Although the situation calculus is a very powerful representation. It is not always efficient enough to use to compute sequences of actions.

- The problem of computing a sequence of actions to achieve a goal is “planning”

- Next we will study some less expressive representations that support more efficient planning.
Simplifying the Planning Problem

• Assume complete information about the initial state through the closed-world assumption (CWA).
• Assume a finite domain of objects
• Assume that action effects are restricted to making (conjunctions of) atomic formulae true or false. No conditional effects, no disjunctive effects, etc.
• Assume action preconditions are restricted to conjunctions of ground atoms.
Closed World Assumption (CWA)

• “Classical Planning”. No incomplete or uncertain knowledge.

• Use the “Closed World Assumption” in our knowledge representation and reasoning.
 • The knowledge base used to represent a state of the world is a list of positive ground atomic facts.
 • CWA is the assumption that
 a) if a ground atomic fact is not in our list of “known” facts, its negation must be true.
 b) the constants mentioned in KB are all the domain objects.
CWA

- CWA makes our knowledge base much like a database: if employed(John,CIBC) is not in the database, we conclude that \(\neg \text{employed}(\text{John}, \text{CIBC}) \) is true.
CWA Example

KB = \{handempty
clear(c), clear(b),
on(c,a),
ontable(a), ontable(b)\}

1. $\text{clear}(c) \land \text{clear}(b)$?
2. $\neg \text{on}(b,c)$?
3. $\text{on}(a,c) \lor \text{on}(b,c)$?
4. $\exists X. \text{on}(X,c)$? ($D = \{a,b,c\}$)
5. $\forall X. \text{ontable}(X)$$\rightarrow X = a \lor X = b$?
Querying a Closed World KB

• With the CWA, we can evaluate the truth or falsity of arbitrarily complex first-order formulas.
• This process is very similar to query evaluation in databases.
• Just as databases are useful, so are CW KB’s.

“CW KB” or “CW-KB” = Closed-world knowledge base
“CWA” = Closed World Assumption
Querying A CW KB

Query(F, KB) /*return whether or not KB |= F */

if F is atomic
 return(F ∈ KB)
Querying A CW KB

if $F = F_1 \land F_2$
 return(Query(F_1) && Query(F_2))

if $F = F_1 \lor F_2$
 return(Query(F_1) || Query(F_2))

if $F = \neg F_1$
 return(! Query(F_1))

if $F = F_1 \rightarrow F_2$
 return(!Query(F_1) || Query(F_2))
Querying A CW KB

if $F = \exists X. F_1$

for each constant $c \in KB$

if $(\text{Query}(F_1\{X=c\}))$

return(true)

return(false).

if $F = \forall X. F_1$

for each constant $c \in KB$

if (!\text{Query}(F_1\{X=c\}))

return(false)

return(true).
Guarded quantification (for efficiency).

\[\text{if } F = \forall X. F_1 \]

for each constant \(c \in KB \)

\[\text{if } (!\text{Query}(F_1\{X=c\})) \]

\[\text{return(false)} \]

\[\text{return(true).} \]

E.g., consider checking

\[\forall X. \text{apple}(x) \rightarrow \text{sweet}(x) \]

we already know that the formula is true for all “non-apples”
Guarded quantification (for efficiency).

\[\forall X: [p(X)] F_1 \iff \forall X: p(X) \rightarrow F_1 \]
for each constant c s.t. p(c)
if (!Query(F_1{X=c}))
 return(false)
return(true).

\[\exists X: [p(X)] F_1 \iff \exists X: p(X) \land F_1 \]
for each constant c s.t. p(c)
if (Query(F_1{X=c}))
 return(true)
return(false).
STRIPS representation.

• STRIPS (Stanford Research Institute Problem Solver.) is a way of representing actions.
• Actions are modeled as ways of modifying the world.
 • since the world is represented as a CW-KB, a STRIPS action represents a way of updating the CW-KB.
 • Now actions yield new KB’s, describing the new world—the world as it is once the action has been executed.
Sequences of Worlds

• In the situation calculus where in one logical sentence we could refer to two different situations at the same time.
 • \(\text{on}(a,b,s_0) \land \neg \text{on}(a,b,s_1) \)

• In STRIPS, we would have two separate CW-KB’s. One representing the initial state, and another one representing the next state (much like search where each state was represented in a separate data structure).
STRIPS Actions

• STRIPS represents actions using 3 lists.
 1. A list of action \textbf{preconditions}.
 2. A list of action \textbf{add effects}.
 3. A list of action \textbf{delete effects}.

• These lists contain variables, so that we can represent a whole class of actions with one specification.

• Each ground instantiation of the variables yields a specific action.
STRIPS Actions: Example

pickup(X):
Pre: {handempty, clear(X), ontable(X)}
Adds: {holding(X)}
Dels: {handempty, clear(X), ontable(X)}

“pickup(X)” is called a STRIPS **operator**.
a particular instance e.g.
“pickup(a)” is called an **action**.
Operation of a STRIPS action.

- For a particular STRIPS action (ground instance) to be applicable to a state (a CW-KB)
 - every fact in its precondition list must be true in KB.
 - This amounts to testing membership since we have only atomic facts in the precondition list.
- If the action is applicable, the new state is generated by
 - removing all facts in Dels from KB, then
 - adding all facts in Adds to KB.
Operation of a Strips Action: Example

pre = \{\text{handempty}, \text{clear(b)}, \text{ontable(b)}\}

add = \{\text{holding(b)}\}

del = \{\text{handempty}, \text{clear(b)}, \text{ontable(b)}\}

KB = \{\text{handempty}

\text{clear(c), clear(b),

on(c,a),

ontable(a), ontable(b)}\}

KB = \{\text{holding(b),

\text{clear(c),

on(c,a),

ontable(a)}}\}
STRIPS Blocks World Operators.

• pickup(X)
 Pre: \{clear(X), ontable(X), handempty\}
 Add: \{holding(X)\}
 Del: \{clear(X), ontable(X), handempty\}

• putdown(X)
 Pre: \{holding(X)\}
 Add: \{clear(X), ontable(X), handempty\}
 Del: \{holding(X)\}
STRIPS Blocks World Operators.

- `unstack(X,Y)`
 Pre: `{clear(X), on(X,Y), handempty}`
 Add: `{holding(X), clear(Y)}`
 Del: `{clear(X), on(X,Y), handempty}`

- `stack(X,Y)`
 Pre: `{holding(X),clear(Y)}`
 Add: `{on(X,Y), handempty, clear(X)}`
 Del: `{holding(X),clear(Y)}`
STRIPS has no Conditional Effects

• putdown(X)
 Pre: \{holding(X)\}
 Add: \{clear(X), ontable(X), handempty\}
 Del: \{holding(X)\}

• stack(X,Y)
 Pre: \{holding(X), clear(Y)\}
 Add: \{on(X,Y), handempty, clear(X)\}
 Del: \{holding(X), clear(Y)\}

• The table has infinite space, so it is always clear. If we “stack(X,Y)” if Y=Table we cannot delete clear(Table), but if Y is an ordinary block “c” we must delete clear(c).
Conditional Effects

• Since STRIPS has no conditional effects, we must sometimes utilize extra actions: one for each type of condition.
 • We embed the condition in the precondition, and then alter the effects accordingly.
Other Example Domains

• 8 Puzzle as a planning problem
 • A constant representing each position, P1,…,P9

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>P5</td>
<td>P6</td>
</tr>
<tr>
<td>P7</td>
<td>P8</td>
<td>P9</td>
</tr>
</tbody>
</table>

• A constant for each tile. B,T1, …, T8.
8-Puzzle

• \(\text{at}(T,P) \) tile \(T \) is at position \(P \).

\[
\begin{array}{ccc}
1 & 2 & 5 \\
7 & 8 & \\
6 & 4 & 3
\end{array}
\]

\(\text{at}(T_1,P_1), \text{at}(T_2,P_2), \text{at}(T_5,P_3), \ldots \)

• \(\text{adjacent}(P_1,P_2) \) \(P_1 \) is next to \(P_2 \) (i.e., we can slide the blank from \(P_1 \) to \(P_2 \) in one move).
 • \(\text{adjacent}(P_5,P_2), \text{adjacent}(P_5,P_8), \ldots \)
8-Puzzle

slide(T,X,Y)

Pre: \{at(T,X), at(B,Y), adjacent(X,Y)\}

Add: \{at(B,X), at(T,Y)\}

Del: \{at(T,X), at(B,Y)\}

\[\text{at}(T_1,P_1), \text{at}(T_5,P_3), \text{at}(T_8,P_5), \text{at}(B,P_6), \ldots, \text{at}(T_1,P_1), \text{at}(T_5,P_3), \text{at}(B,P_5), \text{at}(T_8,P_6), \ldots,\]

\[
\begin{array}{ccc}
1 & 2 & 5 \\
7 & 8 & \\
6 & 4 & 3 \\
\end{array}
\]
Elevator Control

Figure 1: A Miconic-10™ keypad allows passengers to enter their destination before they enter the elevator. A display informs the passenger about the elevator that will offer the most suitable transport.
Elevator Control

• Schindler Lifts.
 • Central panel to enter your elevator request.
 • Your request is scheduled and an elevator assigned to you.
 • You can’t travel with someone going to a secure floor, emergency travel has priority, etc.

• Modeled as a planning problem and fielded in one of Schindler’s high end elevators.
Planning as a Search Problem

• Given a CW-KB representing the initial state, a set of STRIPS or ADL (Action Description Language) operators, and a goal condition we want to achieve (specified either as a conjunction of facts, or as a formula)
 • The planning problem is to determine a sequence of actions that when applied to the initial CW-KB yield an updated CW-KB which satisfies the goal.

This is known as the classical planning task.
Planning As Search

• This can be treated as a search problem.
 • The initial CW-KB is the initial state.
 • The actions are operators mapping a state (a CW-KB) to a new state (an updated CW-KB).
 • The goal is satisfied by any state (CW-KB) that satisfies the goal.
Example.

1. move(b,c)

2. move(c,b)

3. move(c,table)

4. move(a,b)
Problems

• Search tree is generally quite large
 • randomly reconfiguring 9 blocks takes thousands of CPU seconds.

• The representation suggests some structure. Each action only affects a small set of facts, actions depend on each other via their preconditions.

• Planning algorithms are designed to take advantage of the special nature of the representation.
Planning

• We will look at one technique:
 Relaxed Plan heuristics used with heuristic search.

 The heuristics are domain independent. As such they are part of a class of so-called domain-independent heuristic search for planning.
Reachability Analysis.

• The idea is to consider what happens if we ignore the delete lists of actions.

• This is yields a “relaxed problem” that can produce a useful heuristic estimate.
Reachability Analysis

• In the relaxed problem actions add new facts, but never delete facts.
• Then we can do reachability analysis, which is much simpler than searching for a solution.
Reachability

• We start with the initial state S_0.
• We alternate between state and action layers.
• We find all actions whose preconditions are contained in S_0. These actions comprise the first action layer A_0.
• The next state layer consists of all of S_0 as well as the adds of all of the actions in A_0.
• In general
 • A_i is the set of actions whose preconditions are contained in S_i.
 • S_{i+1} is S_i union the add lists of all of the actions in A_i.
 (again, remember we’re ignoring the delete lists!!)
RECALL: STRIPS Blocks World Operators.

• pickup(X)
 Pre: \{clear(X), ontable(X), handempty\}
 Add: \{holding(X)\}
 Del: \{clear(X), ontable(X), handempty\}

• putdown(X)
 Pre: \{holding(X)\}
 Add: \{clear(X), ontable(X), handempty\}
 Del: \{holding(X)\}
STRIPS Blocks World Operators.

• unstack(X,Y)
 Pre: \{clear(X), on(X,Y), handempty\}
 Add: \{holding(X), clear(Y)\}
 Del: \{clear(X), on(X,Y), handempty\}

• stack(X,Y)
 Pre: \{holding(X),clear(Y)\}
 Add: \{on(X,Y), handempty, clear(X)\}
 Del: \{holding(X),clear(Y)\}
STRIPS has no Conditional Effects

• putdown(X)
 Pre: \{holding(X)\}
 Add: \{clear(X), ontable(X), handempty\}
 Del: \{holding(X)\}

• stack(X,Y)
 Pre: \{holding(X), clear(Y)\}
 Add: \{on(X,Y), handempty, clear(X)\}
 Del: \{holding(X), clear(Y)\}

• The table has infinite space, so it is always clear. If we “stack(X,Y)” if Y=Table we cannot delete clear(Table), but if Y is an ordinary block “c” we must delete clear(c).
Example

\[S_0 \]

on(a, b),
on(b, c),
on(table(c),
clear(a),
clear(d),
handempty

\[A_0 \]

unstack(a, b)
pickup(d)

on(a, b),
on(b, c),
on(table(c),
clear(a),
clear(d),
holding(a),
clear(b),
holding(d)

\[S_1 \]

this is not a state!
Example

\begin{align*}
on(a,b), & \quad \text{putdown}(a), \\
on(b,c), & \quad \text{putdown}(d), \\
on\text{ontable}(c), & \quad \text{stack}(a,b), \\
on\text{ontable}(d), & \quad \text{stack}(a,a), \\
clear(a), & \quad \text{stack}(d,b), \\
clear(d), & \quad \text{stack}(d,a), \\
\text{handempty}, & \quad \text{pickup}(d), \\
\text{holding}(a), & \quad \ldots \\
\text{clear}(b), & \quad \text{unstack}(b,c) \\
\text{holding}(d) & \quad \ldots
\end{align*}

\begin{align*}
S_1 & = A_1
\end{align*}
Reachability

• We continue until the goal G is contained in the state layer, or until the state layer no longer changes.

• Intuitively, the actions at level A_i are the actions that could be executed at the i-th step of some plan, and the facts in level S_i are the facts that could be made true after some i-1 step plan.

• Some of the actions/facts have this property. But not all!
Reachability

\[
\begin{align*}
S_0 & \quad A_0 & \quad S_1 & \quad A_1 \\
\text{on}(a,b), & \quad \text{on}(b,c), & \quad \text{on}(a,b), & \quad \text{on}(c,b), \\
\text{ontable}(c), & \quad \text{ontable}(b), & \quad \text{ontable}(c), & \quad \text{ontable}(b), \\
\text{clear}(a), & \quad \text{clear}(b), & \quad \text{clear}(a), & \quad \text{clear}(b), \\
\text{clear}(c), & \quad \text{clear}(c), & \quad \text{handempty,} & \quad \text{holding}(a), \\
\text{handempty} & \quad \text{holding}(c) & \quad \text{stack}(c,b) & \quad \text{stack}(c,b)
\end{align*}
\]

and \(\text{on}(c,b)\) needs 4 actions

unstack(a,b) pickup(c)

but \(\text{stack}(c,b)\) cannot be executed after one step
Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final state level $S[K]$.

- If the state level stops changing and the goal is not present. The goal is unachievable. (The goal is a set of positive facts, and in STRIPS all preconditions are positive facts).

- Now do the following
Heuristics from Reachability Analysis

CountActions(G,S_K):
/* Compute the number of actions contained in a relaxed plan achieving the goal. */

- Split G into facts in S_{K-1} and elements in S_K only. These sets are the previously achieved and just achieved parts of G.
- Find a minimal set of actions A whose add-effects cover the just achieved part of G. (The set contains no redundant actions, but it might not be the minimum sized set.)
- Replace the just achieved part of G with the preconditions of A, call this updated G, NewG.
- Now return $\text{CountAction}(\text{NewG},S_{K-1}) + \text{number of actions needed to cover the just achieved part of G}$.
Example

legend: [pre]act[add]

\[S_0 = \{f_1, f_2, f_3\} \]
\[A_0 = \{[f_1]a_1[f_4], \ [f_2]a_2[f_5]\} \]
\[S_1 = \{f_1, f_2, f_3, f_4, f_5\} \]
\[A_1 = \{[f_2,f_4,f_5]a_3[f_6]\} \]
\[S_2 = \{f_1, f_2, f_3, f_4, f_5, f_6\} \]
\[G = \{f_6, f_5, f_1\} \]

We split \(G \) into \(G_P \) and \(G_N \):

\[\text{CountActs}(G, S_2) \]
\[G_P = \{f_5, f_1\} \quad \text{//already in S1} \]
\[G_N = \{f_6\} \quad \text{//New in S2} \]
\[A = \{a_3\} \quad \text{//adds all in } G_N \]

//the new goal: \(G_P \cup \text{Pre}(A) \)
\[G_1 = \{f_5, f_1, f_2, f_4\} \]

Return
\[1 + \text{CountActs}(G_1, S_1) \]
Example

Now, we are at level S1

\[S_0 = \{f_1, f_2, f_3\} \]
\[A_0 = \{[f_1]a_1[f_4], [f_2]a_2[f_5]\} \]
\[S_1 = \{f_1, f_2, f_3, f_4, f_5\} \]
\[A_1 = \{[f_2, f_4, f_5]a_3[f_6]\} \]
\[S_2 = \{f_1, f_2, f_3, f_4, f_5, f_6\} \]

\[G_1 = \{f_5, f_1, f_2, f_4\} \]

We split \(G_1 \) into \(G_P \) and \(G_N \):
\[\text{CountActs}(G_1, S_1) \]
\[G_P = \{f_1, f_2\} \quad \text{//already in S0} \]
\[G_N = \{f_4, f_5\} \quad \text{//New in S1} \]
\[A = \{a_1, a_2\} \quad \text{//adds all in G_N} \]

\[\text{//the new goal: } G_P \cup \text{Pre}(A) \]
\[G_2 = \{f_1, f_2\} \]

Return
\[2 + \text{CountActs}(G_2, S_0) \]
\[= 2 + 0 \]

So, in total \(\text{CountActs}(G, S_2) = 1 + 2 = 3 \)
Using the Heuristic

1. To use CountActions as a heuristic, we build a layered structure from a state S that reaches the goal.
2. Then we CountActions to see how many actions are required in a relaxed plan.
3. We use this count as our heuristic estimate of the distance of S to the goal.
4. This heuristic tends to work better as a best-first search, i.e., when the cost of getting to the current state is ignored.
Admissibility

• An optimal length plan in the relaxed problem (actions have no deletes) will be a lower bound on the optimal length of a plan in the real problem.
• However, CountActions does NOT compute the length of the optimal relaxed plan.
• The choice of which action set to use to achieve G_P (“just achieved part of G”) is not necessarily optimal.
• In fact it is NP-Hard to compute the optimal length plan even in the relaxed plan space.
• So CountActions will not be admissible.
Empirically

• However, empirically refinements of CountActions performs very well on a number of sample planning domains.
GraphPlan

• GraphPlan is an approach to planning that is built on ideas similar to “reachability”. But the approach is not heuristic: delete effects are not ignored.

• The performance is not as good as heuristic search, but GraphPlan can be generalized to other types of planning, e.g., finding optimal plans, planning with sensing, etc.
Graphplan

- Operates in two phases.
 - **Phase I.** Guess a “concurrent” plan length k, then build a leveled graph with k alternating layers.
 - **Phase II.** Search this leveled graph for a plan. If no plan is found, return to phase I and build a bigger leveled graph with k+1 alternating layers. The final plan, if found, consists of a sequence of sets of actions

\[
\{a_1^1, a_2^1, \ldots\} \rightarrow \{a_1^2, a_2^2, \ldots\} \rightarrow \{a_1^3, a_2^3, \ldots\} \rightarrow \ldots
\]

The plan is “concurrent” in the sense that at stage I, all actions in the i-th set are executed in parallel.
Graphplan

- The leveled graph alternates between levels containing propositional nodes and levels containing action nodes. (Similar to the reachability graph).

- Three types of edges:
 - precondition-edges,
 - add-edges, and
 - delete-edges.
GraphPlan Level Graph

Initial state
Only the propositions true in the initial state.

Possible actions
Only the actions whose preconditions are in the previous level.
Also have no-ops for capturing non-changes.

Next state
All propositions added by actions in previous level

Precondition
Delete
Add
GraphPlan Level Graph

Level S_0 contains all facts true in the initial state.

Level A_0 contains all actions whose preconditions are true in S_0. Included in the set of actions are no-ops. One no-op for every ground atomic fact. The precondition of the no-op is its fact, its add effect is its fact.

...

Level S_i contains all facts that are added by actions at level A_{i-1}

Level A_i contains all actions whose preconditions are true in S_i
GraphPlan Mutexes.

In addition to the facts/actions, GraphPlan also computes and adds mutexes to the graph.

Mutexes are edges between two labels, indicating that these two labels cannot be true at the same time.

Mutexes are added as we construct each layer, and in fact alter the set of labels the eventually appear in a layer.
Mutexes

• A mutex between two actions a_1 and a_2 in the same action layer A_i, means that a_1 and a_2 cannot be executed simultaneously (in parallel) at the i^{th} step of a concurrent plan.

• A mutex between two facts F_1 and F_2 in the same state layer S_i, means that F_1 and F_2 cannot be simultaneously true after i stages of parallel action execution.
Mutexes

• It is not possible to compute all mutexes.
 • This is as hard as solving the planning problem, and we want to perform mutex computation as a precursor to solving a planning instance.

• However, we can quickly compute a subset of the set of all mutexes. Although incomplete these mutexes are still very useful.
 • This is what GraphPlan does.
Mutexes

- Two actions are mutex if either action deletes a precondition or add effect of another.
- Note no-ops participate in mutexes.
 - Intuitively these actions have to be sequenced—they can’t be executed in parallel.
Mutexes

- Two propositions p and q are mutex if all actions adding p are mutex of all actions adding q.
 - Must look at all pairs of actions that add p and q.
 - Intuitively, can’t achieve p and q together at this stage because we can’t concurrently execute achieving actions for them at the previous stage.
Mutexes

- Two actions are mutex if two of their preconditions are mutex.
 - Intuitively, we can’t execute these two actions concurrently at this stage because their preconditions can’t simultaneously hold at the previous stage.
How Mutexes affect the level graph.

1. Two actions are mutex if either action deletes a precondition or add effect of another
2. Two propositions \(p \) and \(q \) are mutex if all actions adding \(p \) are mutex of all actions adding \(q \)
3. Two actions are mutex if two of their preconditions are mutex

We compute mutexes as we add levels.

\(S_0 \) is set of facts true in initial state. (Contains no mutexes).
\(A_0 \) is set of actions whose preconditions are true in \(S_0 \).
Mark as mutex any action pair where one deletes a precondition or add effect of the other.

\(S_1 \) is set of facts added by actions at level \(A_0 \).
Mark as mutex any pair of facts \(p \) and \(q \) if all actions adding \(p \) are mutex with all actions adding \(q \).

\(A_1 \) is set of actions whose preconditions are true and not mutex at \(S_1 \).
Mark as mutex any action pair with preconditions that are mutex in \(S_1 \), or where one deleted a precondition or add effect of the other.
How Mutexes affect the level graph.

1. Two actions are mutex if either action deletes a precondition or add effect of another
2. Two propositions p and q are mutex if all actions adding p are mutex of all actions adding q
3. Two actions are mutex if two of their preconditions are mutex

...

S_i is set of facts added by actions in level A_{i-1}
Mark as mutex all facts satisfying 2 (where we look at the action mutexes of A_{i-1} is set of facts true in initial state. (Contains no mutexes).

A_i is set of actions whose preconditions are true and non-mutex at S_i.
Mark as mutex any action pair satisfying 1 or 2.
How Mutexes affect the level graph.

- Hence, mutexes will prune actions and facts from levels of the graph.
- They also record useful information about impossible combinations.
Example

on(a,b), on(b,c), ontable(c), ontable(b), clear(a), clear(c), handempty

unstack(a,b)

NoOp-on(a,b)

pickup(c)

pickup deletes handempty, one of unstack(a,b)’s preconditions.

unstack(a,b) deletes the add effect of NoOp-on(a,b), so these actions are mutex as well.
Example

on(a,b), on(b,c), ontable(c), ontable(b), clear(a), clear(c), handempty

unstack(a,b) is the only action that adds clear(b), and this is mutex with pickup(c), which is the only way of adding holding(c).
Example

These two are mutex for the same reason.
Example

unstack(a,b) is also mutex with the NoOp-on(a,b).
So these two facts are mutex (NoOp is the only way on(a,b) can be created).

precondition add effect del effect
Phase II. Searching the Graphplan

- Build the graph to level \(k \), such that every member of the goal is present at level \(k \), and no two are mutex. Why?
Searching the Graphplan

- Find a non-mutex collection of actions that add all of the facts in the goal.
The preconditions of these actions at level K-1 become the new goal at level K-1.

Recursively try to solve this new goal. If this fails, backtrack and try a different set of actions for solving the goal at level k.
Phase II-Search

• Solve(G,K)
 • forall sets of actions $A=\{a_i\}$ such that no pair $(a_i, a_j) \in A$ is mutex
 the actions in A suffice to add all facts in G
 • Let $P =$ union of preconditions of actions in A
 • If Solve(P,K-1)
 Report PLAN FOUND
 • At end of forall. Exhausted all possible action sets A
 Report NOPLAN

This is a depth first search.
Graph Plan Algorithm

Phase I. build leveled graph.
Phase II. Search leveled graph.

• Phase I: While last state level does not contain all goal facts with no pair being mutex
 • add new state/action level to graph
 • if last state/Action level = previous state/action level (including all MUTEXES) graph has leveled off report NO PLAN.

• Phase II: Starting at last state level search backwards in graph for plan. Try all ways of moving goal back to initial state.
 • If successful report PLAN FOUND.
 • Else goto Phase I.
Dinner Date Example

- Initial State
 \{dirty, cleanHands, quiet\}

- Goal
 \{dinner, present, clean\}

- Actions
 - Cook: Pre: \{cleanHands\}
 Add: \{dinner\}
 - Wrap: Pre: \{quiet\}
 Add: \{present\}
 - Tidy: Pre: \{
 Add: \{clean\}
 Del: \{cleanHands, dirty\}
 - Vac: Pre: \{
 Add: \{clean\}
 Del: \{quite, dirty\}
Dinner example: rule1 action mutex

Actions (including all No-OP actions)

- **Cook**: Pre: \{H\} Add: \{D\} Del: \{
- **Wrap**: Pre: \{Q\} Add: \{P\} Del: \{
- **Tidy**: Pre: \{\} Add: \{C\} Del: \{H, R\}
- **Vac**: Pre: \{\} Add: \{C\} Del: \{Q, R\}
- **NO(C)**: Pre: \{C\} Add: \{C\} Del: \{
- **NO(D)**: Pre: \{D\} Add: \{D\} Del: \{
- **NO(H)**: Pre: \{H\} Add: \{H\} Del: \{
- **NO(P)**: Pre: \{P\} Add: \{P\} Del: \{
- **NO(Q)**: Pre: \{Q\} Add: \{Q\} Del: \{
- **NO(R)**: Pre: \{R\} Add: \{R\} Del: \{

Legend:
- NO: No-Op,
- C: Clean,
- D: Dinner,
- H: cleanHands,
- P: Present,
- Q: Quiet,
- R: dirty

- Look at those with non-empty Del, and find others that have these Del in their Pre or Add:
- So, **Rule 1 action mutex** are as follows (these are fixed):
 (Tidy, Cook), (Tidy, NO(H)), (Tidy, NO(R)), (Vac, Wrap), (Vac, NO(Q)), (Vac, NO(R))
- Rule 3 action mutex depend on state layer and you have to build the graph.
Dinner Example:

Legend:
- **Blue**: pre, **Green**: add, **Red**: Del, **Black**: Mutex
- **D**: Dinner, **C**: clean, **H**: cleanHands, **Q**: quiet, **P**: Present, **R**: dirty
- **Init**={R,H,Q} **Goal**={D,P,C}

Note:
- At layer S1 all goals are present and no pair forms a mutex
- So, go to phase II and search the graph:
- i.e. Find a set of non-mutex actions that adds all goals {D,P,C}:
 - {Cook, Wrap, Tidy} mutex Tidy&Cook
 - {Cook, Wrap, Vac} mutex Vac&Wrap
- No such set exists, nothing to backtrack, so goto phase I and add one more action and state layers
Dinner Example:

- Arrows: Blue: pre, Green: add, Red: Del, Black: Mutex
- D: Dinner, C: clean, H: cleanHands, Q: quiet,
 P: Present, R: dirty
- Init={R,H,Q} Goal={D,P,C}

At layer A1, first draw rule 1 action mutex, then find rule 3 action mutex (for this only look at mutex fact at level S1).
At S2, apply rule 2 for fact mutex. At layer S2 all goals are present and no pair forms a mutex, so Phase II.

Phase II: Find a set of non-mutex actions that adds all goals {D,P,C}:

- x{Cook, Wrap, Tidy}
- x{Cook, Wrap, Vac}

✓{Cook, Wrap, NO(C)}

NewG={H,Q,C} @ S1

- Cannot find any non-mutex action set in A0
- Backtrack to S2, try another action set

✓{Cook, NO(P), Vac}
Dinner Example:

- **Arrows:** Blue: pre, Green: add, Red: Del, Black: Mutex
- **D:** Dinner, **C:** clean, **H:** cleanHands, **Q:** quiet, **P:** Present, **R:** dirty
- **Init:** {R,H,Q} **Goal:** {D,P,C}

so try

✓{Cook, NO(P), Vac}

NewG={H,P} @ S1

Find a nonmutex set of act in A0 to get NewG:

- {NO(H),Wrap}
- NewG’={H,Q} @ S0 ✓
- Done!
- So, the actions are
- Wrap, {Cook, Vac}:

 I.e., sequentially either
 - Wrap,Cook,Vac
 - Wrap,Vac,Cook

 Note that we could still backtrack to S2, try remaining action sets!
Beyond STRIPS

STRIPS operators are not very expressive and as a consequence not as compact as they might be. ADL (Action Description Language) extends the expressivity of STRIPS
ADL Operators.

ADL operators add a number of features to STRIPS.

1. Their preconditions can be arbitrary formulas, not just a conjunction of facts.

2. They can have conditional and universal effects.

3. Open world assumption:
 1. States can have negative literals
 2. The effect \(P \land \neg Q \) means add \(P \) and \(\neg Q \) but delete \(\neg P \) and \(Q \).

But they must still specify atomic changes to the knowledge base (add or delete ground atomic facts).
ADL Operators Examples.

move(X,Y,Z)
Pre: on(X,Y) \land clear(Z)
Effs: ADD[on(X,Z)]
 DEL[on(X,Y)]
 Z \neq \text{table} \rightarrow DEL[clear(Z)]
 Y \neq \text{table} \rightarrow ADD[clear(Y)]
ADL Operators, example

$$\begin{array}{|c|c|c|}
\hline
C & \longrightarrow & C \\
A & & B \\
\hline
\end{array}$$

move\((c,a,b)\)

Pre: \(\text{on}(c,a) \land \text{clear}(b)\)

Effs: ADD[\text{on}(c,b)]

\hspace{1em}\hspace{1em}DEL[\text{on}(c,a)]

\hspace{1em}b \neq \text{table} \rightarrow \text{DEL}[\text{clear}(b)]

\hspace{1em}a \neq \text{table} \rightarrow \text{ADD}[\text{clear}(a)]

KB = \{ \text{clear}(c), \text{clear}(b), \text{on}(c,a), \text{on}(a,\text{table}), \text{on}(b,\text{table})\}

KB = \{ \text{on}(c,b) \text{clear}(c), \text{clear}(a) \text{on}(a,\text{table}), \text{on}(b,\text{table})\}\
ADL Operators Examples.

clearTable()

Pre:

Effs: $\forall X. \text{on}(X,\text{table}) \rightarrow \text{DEL}[\text{on}(X,\text{table})]$
ADL Operators.

1. Arbitrary formulas as preconditions.
 - in a CW-KB we can evaluate whether or not the preconditions hold for an arbitrary precondition.

2. They can have conditional and universal effects.
 - Similarly we can evaluate the condition to see if the effect should be applied, and find all bindings for which it should be applied.

Specify **atomic changes** to the knowledge base.
- CW-KB can be updated just as before.