Syntax of Programming Languages

Reading:

- Sebesta, sections 3.1–3.4, sections 4.3–4.5

©Diane Horton 2000; Modified by Sheila McIlraith 2004.

What is a Programming Language?

We tend to think of a compiler or an IDE as a programming language. E.g., JDF, Java Workshop.

But these things are not Java. The language is an abstract entity, which these pieces of software implement.

Specification:

vs

Implementation:

Formal notion of a “language”: a set of strings of symbols from some alphabet.
Language Specification

Two parts: syntax and semantics.

Syntax

Definition*: (1) The way in which words are put together to form phrases and sentences. (2) Analysis of the grammatical arrangement of words, to show their relation. Root: means “arrange”.

The syntax of a language tells us two things: what’s legal, and what the relationships are in a legal sentence.

Example of relationships: “used kids clothing store”

*Definitions are paraphrased from Webster’s and the OBD.
Specifying syntax informally

Example: “Everything between “/*” and “*/” is a comment and should be ignored.”

Code:

/* Do such and such, watching out for problem fleep.
 Store the result in y. */
x = 3; */
y = x * 17.2;

When syntax is defined informally, incompatible dialects of the language may evolve.

Specifying syntax formally

The state of the art is to define programming language syntax formally.

There are a number of well-understood formalisms for doing so.

We’ll talk about this in some detail.

Semantics

Definition: The study or science of meaning in language forms. Root: means “signify”.

The semantics of a language defines the meaning of the legal sentences of the language.

Specifying semantics informally

Example: The Java Language Specification by Gosling, Joy, and Steele, page 93:
“...The meaning of a name classified as a PackageName
is determined as follows:
(1) If the package name consists of a single Identifier,
then this identifier denotes a top-level package named by
that identifier. If no packages of that name is accessible,
then a compile-time error occurs.
(2) If a package name is of the form Q.Id, then ...”

Problems with informal specification of semantics?
Unfortunately

Defining semantics is inherently harder than defining syntax.

There are several formalisms for specifying programming language semantics (see Sebesta section 3.5), but they are hard to use and have not been widely adopted.

The state of the art is to define programming language semantics informally, in English.

Intended Audience

A language specification is written for three categories of people:

- Implementers, *i.e.*, programmers writing a compiler for that language.
- Users, *i.e.*, programmers writing in that language.
- Potential future users, during development of the language.

Want: What properties do we want a good language specification to have?
Specifying PL syntax

Two parts: Lexical rules, and syntax.

Lexical rules

Specify the form of the building blocks of the language:

- what’s a token
- how tokens are delimited
- where can white space go
- syntax of comments

This is often described informally, in English.

Trickier parts (e.g., syntax of real numbers) are sometimes described more formally.

Syntax

Specifies how to put the building blocks together.

Grammars

Informal idea of grammar: A bunch of rules.

- Don’t end a sentence with a preposition.
- Subject and verb must agree in number.

A Formal grammar is a different concept.

A “language” is a set of strings; A grammar “generates” a language — it specifies which strings are in the language.

A grammar can be used to define any language: Java, Spanish, Unix commands.

There are many kinds of formal grammar.
Chomsky’s Hierarchy

There are several categories of grammar, ordered by expressiveness (the last one is the least expressive):

- Phrase-Structure Grammars
- Context-Sensitive Grammars
- Context-Free Grammars
- Regular Grammars (can be described by regular expressions)

This hierarchy (circa 1950) is named after linguist (and political activist) Noam Chomsky, who researched grammars for natural language.

Regular Expressions

Kleene’s language definition for Regular Languages.

Examples:

- \((0 + 1)^*\)
- \(1^+: + ;)^*\)
- \((a + b)^*aa(a + b)^*\)

Notation:

Kleene Closure: \(^*\) superscript denotes 0 or more repetitions

Positive Closure: \(^+\) superscript denotes 1 or more repetitions

Alternation: binary “+” denotes choice. It is also denoted by |, i.e., \((0|1)^*\).

“(" and ")" are used for grouping

\(\epsilon\) (epsilon) denotes the empty or “null” string.

\(\emptyset\) denotes the language with *no* strings.
Regular Grammars

Defined over alphabet Σ, using non-terminals and grammar rules, analogous to terminals (words), and production rules of Context-Free Grammars (which we'll see later), but more restricted.

Left-recursive:

$$<N> ::= <X> \ a \ b$$
$$<X> ::= a \mid <X> \ b$$

Right-recursive:

$$N ::= b \mid b <Y>$$
$$Y ::= a \ b \mid a \ b <Y>$$

Give regular expressions for these languages:

1. All alphanumerical strings beginning with an upper-case letter.

2. All strings of a’s and b’s in which the third-last character is b.

3. All strings of 0’s and 1’s in which every pair of adjacent 0’s appears before any pairs of adjacent 1’s.

4. All the binary numbers with exactly six 1’s.

5. What is another way of writing $0^+1^+2^+$
Limitations of Regular Expressions

Regular expressions are not powerful enough to describe some languages.

Examples:

- The language consisting of all strings of one or more a’s followed by the same number of b’s.
- The language consisting of strings containing a’s, left brackets, and right brackets, such that the brackets match.

Research question: How can we be sure there is no regular expression for these languages?

Research question: Exactly what things can and cannot be expressed with a regular expression?

Context-Free Grammar

CFGs are more powerful than regular expressions.

Definition

A CFG has four parts:

- A set of tokens (or “terminals”):
 The atomic symbols of the language.
- A set of “non-terminals”:
 Variables used in the grammar.
- A special non-terminal chosen as the “starting non-terminal” or “start symbol”:
 It represents the top-level construct of the language.
- A set of rules (or “productions”), each specifying one legal way that a non-terminal could be constructed from a sequence of tokens and non-terminals.
Example

A CFG for real numbers:

- Terminals: 0 1 2 3 4 5 6 7 8 9 .
- Non-terminals: real-number, part, digit.
- Productions:

 - A digit is any single token except ".".
 - A part is a digit.
 - A part is a digit followed by a part.
 - A real-number is a part, followed by ".", followed by a part.

- Start symbol: real-number.

Note that we use recursion to specify repeated occurrences.

We have defined this CFG using plain English. A notation might be more convenient.

Backus-Naur Form

A notation for writing down a CFG.

Example

<real-number> --> <part> . <part>
<part> --> <digit> | <digit> <part>
<digit> --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Notation

- Productions: Non-terminal, followed by "\(\rightarrow\)”, then the list of tokens and non-terminals that it can be made of, without punctuation.
- Terminals: Just written within the rules.
- Non-terminals: enclosed with "<" and ">". (<empty> denotes the empty string.)
- Start symbol: Usually just the first non-terminal listed.
Note that this is a language for describing a language! We call this a “meta-language”. (“meta” meaning “above” or “transcending”.)

Write a CFG for each of the 3 languages we wrote regular expressions for a few slides ago.

More Examples

Write a CFG for each of these languages:

1. all non-empty strings containing only a’s.
2. all strings of odd length containing only a’s.
3. all strings of one or more a’s followed by one more more b’s.

CFGs Are More “Powerful” Than REs

That is, there are languages that cannot be described with a RE but can be described with a CFG.

Example: The language consisting of strings with one or more a’s followed by the same number of b’s.

There is no regular expression for this language.

CFG for the language:
Extended BNF

There are extensions to BNF that make it more concise but no more powerful (i.e., there is no language that can be expressed with EBNF but not with BNF).

Examples:

- { blah } denotes zero or more repetitions of blah.
- [blah] denotes that blah is optional.
- a + superscript denotes one or more repetitions.
- a numeric superscript denotes a maximum number of repetitions.
- (and) are used for grouping.

There is no one standard EBNF; it just refers to any extension of BNF.

EBNF is more concise than BNF.

Example (Sebesta, p. 121)

BNF grammar:

\[
<\text{expr}> \rightarrow <\text{expr}> + <\text{term}> \mid \\
<\text{expr}> - <\text{term}> \mid \\
<\text{term}> \\
<\text{term}> \rightarrow <\text{term}> * <\text{factor}> \mid \\
<\text{term}> / <\text{factor}> \mid \]

<factor>

EBNF grammar for the same language:

\[
<\text{expr}> \rightarrow <\text{term}> \{ (+|-) <\text{term}> \} \\
<\text{term}> \rightarrow <\text{factor}> \{ (*)/ <\text{factor}> \} \\
\]
Derivations

Example:

Parse Trees

Parse trees show the structure within a sentence of the language.

Example

Grammar:

\[
\begin{align*}
\text{<real-number> } & \rightarrow \text{ <part> . <part>} \\
\text{<part> } & \rightarrow \text{ <digit> | <digit> <part>} \\
\text{<digit> } & \rightarrow \text{ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}
\end{align*}
\]

Parse tree for the sentence “97.123”:

Definition: Beginning with the start symbol, apply rules until there are only terminals left.

A sentence is in the language generated by a grammar iff there is a derivation for it.
Definitions

Parse tree: A tree in which
- the root is the start symbol;
- every leaf is a terminal; and
- every internal node is a non-terminal, and its children correspond, in order, to the RHS of one of its productions in the grammar.

Parsing: The process of producing a parse tree.

A sentence is in the language generated by a grammar iff there is a parse tree for the sentence.

Syntax of Programming Languages (cont’d)

Reminder of Readings:
- Sebesta, sections 3.1–3.4, sections 4.3–4.5

Syntactic Ambiguity

In English

Syntactically ambiguous sentences of English:

- “I saw the dog with the binoculars.”
- “The friends you praise sometimes deserve it.”
- “He seemed nice to her.”

Other kinds of ambiguity in English:

Aside: We can often “disambiguate” ambiguous sentences. **Question:** How?

But we can be wrong.

Example: “I put the box on the table.”

In a programming language

Example:

\[
\begin{align*}
<\text{stmt}> & \rightarrow <\text{assnt-stmt}> \mid <\text{loop-stmt}> \mid <\text{if-stmt}> \\
<\text{if-stmt}> & \rightarrow \text{if} <\text{boolean-expr}> \text{ then } <\text{stmt}> \mid \text{ if } <\text{boolean-expr}> \text{ then } <\text{stmt}> \text{ else } <\text{stmt}>
\end{align*}
\]

Example sentence:

\[
\begin{align*}
\text{if (x odd) then} \\
\text{if (x == 1) then} \\
\text{print "bleep";} \\
\text{else} \\
\text{print "boop";}
\end{align*}
\]

Exercise: Draw the two parse trees.
Definition: A **grammar is ambiguous** iff it generates a sentence for which there are two or more distinct parse trees.

To prove that a grammar is ambiguous, give a string and two parse trees for it.

A **sentence is ambiguous** with respect to a grammar iff that grammar generates two or more distinct parse trees for the sentence.

Note that having two distinct *derivations* does not make a sentence ambiguous. A derivation corresponds to a traversal through a parse tree, and one can traverse a single tree in many orders.

Example

Grammar: if statement two slides ago.

Sentence:

```plaintext
    if (x odd) then
        print "bleep";
```

One parse tree:

Two derivations:
Want: When specifying a programming language, we want the grammar to be completely unambiguous.

Research question: Is there a procedure one can follow to determine whether or not a given grammar is ambiguous?

Notation and Terminology

We say that $L(G)$ is the language generated by grammar G.

So G is ambiguous if $L(G)$ contains a sentence which has more than one parse tree, or more than one leftmost (or canonical) derivation.

Dealing with ambiguity

We have two strategies:

1. Change the language to include delimiters

2. Change the grammar to impose associativity and precedence
Changing the language to include delimiters

Algol 68 if-statement grammar:

\[
\begin{align*}
\text{<stmt>} & \rightarrow \text{assnt-stmt} \mid \text{loop-stmt} \mid \text{if-stmt} \\
\text{if-stmt} & \rightarrow \text{if <boolean-exp> then <stmt> fi} \\
& \quad \mid \text{if <boolean-exp> then <stmt> else <stmt>} \\
& \quad \quad \text{fi}
\end{align*}
\]

Example: A CFG for Arithmetic Expressions

Grammar 1:

\[
\begin{align*}
\text{<expn>} & \rightarrow \text{<expn>} + \text{<expn>} \\
& \quad \mid \text{<expn>} - \text{<expn>} \\
& \quad \mid \text{<expn>} \ast \text{<expn>} \\
& \quad \mid \text{<expn>} / \text{<expn>} \\
& \quad \mid \text{<expn>} \sim \text{<expn>} \\
& \quad \mid \text{<identifier>} \\
& \quad \mid \text{<literal>}
\end{align*}
\]

Example: parse \(8 - 3 \ast 2\)
Changing the language to include delimiters

Grammar 2:

<expn> --> (<expn>) - (<expn>) |
(<expn>) * (<expn>) |
<identifier> |
<literal>

(8)-((3)*(2)) ∈ L(G)
((8)-(3))*2 ∈ L(G)
8 - 3 * 2 ∉ L(G)

Grammar 3:

<expn> --> <expn> - <expn> |
<expn> * <expn> |
<identifier> |
<literal> |
(<expn>)

Accepts all expressions, but still ambiguous!

Changing the grammar to impose precedence

Grammar 4:

<expn> -->
Grouping in parse tree now reflects precedence

Example: parse 8 - 3 * 2

Precedence

- Low Precedence:
 Addition + and Subtraction -

- Medium Precedence:
 Multiplication * and Division /

- Higher Precedence:
 Exponentiation ^

- Highest Precedence:
 Parenthesized expressions \((\text{<expr>}) \)

\(\Rightarrow \) Ordered lowest to highest in grammar.

Approach: Introduce a non-terminal for every precedence level.
Associativity

- Deals with operators of same precedence

- Implicit grouping or parenthesizing

- Left associative: *, /, +, -

- Right associative: ^

Approach: For left-associative operators, put the recursive term *before* the nonrecursive term in a production rule. For right-associative operators, put it *after*.

Associativity (cont.)

Examples:

- We want multiplication to be left-associative, so we wrote:

 \[<\text{term}> \rightarrow <\text{term}> * <\text{factor}> \]

- We want exponentiation to be right-associative, so might write:

 \[<\text{exp}> \rightarrow <\text{num}> ** <\text{exp}> \mid <\text{num}> \]
Dealing with Ambiguity

1. Can’t always remove an ambiguity from a grammar by restructuring productions.

2. When specifying a programming language, we want the grammar to be completely unambiguous.

3. An inherently ambiguous language does not possess an unambiguous grammar.

4. There is no algorithm that can examine an arbitrary context-free grammar and tell if it is ambiguous, i.e., detecting ambiguity in context-free grammars is an undecidable problem.

An Inherently Ambiguous Language

Suppose we want to generate the following language:

\[\mathcal{L} = \{a^i b^j c^k \mid i, j, k \geq 1, i = j \text{ or } j = k \} \]

Grammar:
Two parse trees for $a^ib^ic^i$

Limitations of CFGs

CFGs are not powerful enough to describe some languages.

Example:

- The language consisting of strings with one or more a’s followed by the same number of b’s then the same number of c’s.
 \[\{ a^ib^ic^i \mid i \geq 1 \}. \]
- \[\{ a^m b^n c^m d^n \mid m, n \geq 1 \}. \]

Research question: Exactly what things can and cannot be expressed with a CFG?

Research question: Can we write an algorithm which examines an arbitrary CFG and tells if it is ambiguous or not? – Undecidable!

Research question: Is there an algorithm that can examine two arbitrary CFGs and determine if they generate the same language? – Undecidable!
The Chomsky Hierarchy

Recall: There are several categories of grammar that are more and less expressive, forming a hierarchy:

Phrase-structure grammars
Context-sensitive grammars
Context-free grammars
Regular grammars

This is called the Chomsky hierarchy, after linguist Noam Chomsky, who did much of the original research.

Regular vs. Context-Free Languages

Regular languages are simpler than programming languages (e.g., numbers, identifiers).

- Context-free grammars can describe nested constructs, matching pairs of items.
- Regular grammars can only describe linear, not nested, structure.
Using CFGs for PL Syntax

Some aspects of programming language syntax can’t be specified with CFGs:

- Cannot declare the same identifier twice in the same block.
- Must declare an identifier before using it.
- A[i,j] is valid only if A is two-dimensional.
- The number of actual parameters must equal the number of formal parameters.

Other things are awkward to say with CFGs:

- Identifier names must be no more than 50 characters long.

These aspects of a programming language are usually specified informally, separately from the formal grammar.

Implementations

The Translation Process

1. **Lexical Analysis:** Converts source code into sequence of tokens.
 We use regular grammars and finite state automata (recognizers).

2. **Syntactic Analysis:** Structures tokens into initial parse tree.
 We use CFGs and parsing algorithms.

3. **Semantic Analysis:** Annotates parse tree with semantic actions.

4. **Code Generation:** Produces final machine code.
Compiler-compilers

![Diagram of compiler-compilers]

Examples:
- **yacc** ("yet another compiler-compiler"). See: man yacc.
- **bison** (the GNU replacement for yacc)

So why does anyone still write compilers by hand?

Parsing Techniques

Two general strategies:
- **Bottom-up:** Beginning with the leaves (the sentence to be parsed), work upwards to the root (the start symbol).
- **Top-down:** Beginning with the root (the start symbol), work downwards to the leaves (the sentence to be parsed).

Recursive descent parsing (top-down)

Every non-terminal is represented by a sub-program that parses strings generated by that non-terminal, according to its production rules.

When it needs to parse another non-terminal, it calls the corresponding subprogram.

Requires: No left-recursion in the productions; ability to know which RHS applies without looking ahead.
Addressing the "no left-recursion" problem

Problem: Left Recursion

\[\text{<expr> } \rightarrow \text{<expr> } + \text{<term> } | \text{<term>} \]

Possible Solutions:

1. Right Recursion? E.g.,

\[\text{<expr> } \rightarrow \text{<term> } | \text{<term> } + \text{<expr>} \]

2. Left Recursion Removal, E.g.,

\[\text{<expr> } \rightarrow \text{<term> } [+ \text{<term>}] \]

3. Left Factoring, E.g.,

\[\text{<expr> } \rightarrow \text{<term> } [+ \text{<expr>}] \]

The EBNF corresponds to the code you’d write.

Other Applications of Formal Grammars

Identifying strings for an operating system command

Examples
(Unix commands that use extended REs):

- `ls s[y-z]*`
- `grep Se.h syntax.tex`
- Scripting languages like awk use regular expressions.
 `awk '/to[kg]e/ {print $1}' syntax.tex`
Voice recognition

Problem: Given recorded speech, produce a string containing the words that were spoken.

Difficulties:

How can a grammar help?