Compilation of Planning to SAT

Yiqiao Wang
Motivation

- **Propositional SAT**: Given a Boolean formula
 - e.g., \((P \lor Q) \land (\neg Q \lor R \lor S) \land (\neg R \lor \neg P) \), does there exist a model?
 - i.e., an assignment of truth values to the propositions that makes the formula true?

- **Lots of research on algorithms for solving it**
 - This was the very first problem shown to be NP-complete

- **IDEA:**
 - Translate classical planning problems into satisfiability problems, and solving them using highly optimized SAT solvers
Outline

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
- Making encodings more efficient
- Extracting a plan
- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT
- Discussion
Architecture of SAT-based planning system

Init State Goal Actions → Compiler → Simplifier → Solver → Decoder → Plan

Symbol Table

Increment time bound if Unsatisfiable

SAF CNF Satisfying Assignment
Architecture of SAT-based planning system Cont.

- **Compiler**
 - take a planning problem as input, guess a plan length, and generate a propositional logic formula, which if satisfied, implies the existence of a solution plan

- **Symbol table**
 - record the correspondence between propositional variables and the planning instance

- **Simplifier**
 - use fast techniques such as unit clause propagation and pure literal elimination to shrink the CNF formula

- **Solver**
 - use systematic or stochastic methods to find a satisfying assignment. If the formula is unsatisfiable, then the compiler generates a new encoding reflecting a longer plan length

- **Decoder**
 - translate the result of solver into a solution plan.
Outline

✓ Architecture of SAT-based planning
 ➢ SAT-based planning approach
 ➢ Encoding planning problems as SAT problems
 ➢ Making encodings more efficient
 ➢ Extracting a plan
 ➢ Satisfiability algorithms
 • Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 • Stochastic SAT Solvers: GSAT
 ➢ Discussion
Planning Problem Definition

Define what a planning problem is

- **Initial State**
 Describes the facts that hold and do not hold in initial state
- **Goal State**
 Describes the facts that much hold in goal state
- **Transition function** \(\gamma: S \times A \rightarrow S \)
 - \(S \): Sets of states
 - \(A \): Set of actions
 - \(\gamma \) is encoded in terms of actions’ preconditions and effects, and exclusion axioms

Bounded planning problem \((P,n)\):

- \(P \) is a planning problem; \(n \) is a positive integer
- Find a solution for \(P \) of length \(\leq n \)
 - \(<a_0, a_1, \ldots, a_{n-1}> \) is a solution for \((P,n)\),
 - Plan length not known in advance \(\Rightarrow \) the approach needs to repeat for different tentative lengths
SAT-based Planning Approach

- Do iterative deepening:
 - for $n = 0, 1, 2, \ldots$,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ, a solution plan can be constructed, so return it and exit
Fluents

If $\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle$ is a solution for (P,n), then it generates the following states:

$s_0, s_1 = \gamma(s_0, a_0), s_2 = \gamma(s_1, a_1), \ldots, s_n = \gamma(s_{n-1}, a_{n-1})$

Fluents: propositions that describe what’s true in each s_i

- $\text{at}(r1,\text{loc}_1,i)$ is a fluent that’s true iff $\text{at}(r1,\text{loc}_1)$ is in s_i

- We’ll use l_i to denote the fluent for literal l in state s_i
 - e.g., if $l = \text{at}(r1,\text{loc}_1)$
 then $l_i = \text{at}(r1,\text{loc}_1,i)$

- a_i is a fluent saying that a is the i’th step of π
 - e.g., if $a = \text{move}(r1,\text{loc}_2,\text{loc}_1)$
 then $a_i = \text{move}(r1,\text{loc}_2,\text{loc}_1,i)$
Outline

 ✓ Architecture of SAT-based planning
 ✓ SAT-based planning approach
 ➢ Encoding planning problems as SAT problems
 ➢ Making encodings more efficient
 ➢ Extracting a plan
 ➢ Satisfiability algorithms
 ● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 ● Stochastic SAT Solvers: GSAT
 ➢ Discussion
What is in Φ?

- **Formula describing the initial state:**
 \[\land \{ l_0 \mid l \in s_0 \} \land \land \{ \neg l_0 \mid l \in L - s_0 \} \]

- **Formula describing the goal state:**
 \[\land \{ l_n \mid l \in g^+ \} \land \land \{ \neg l_n \mid l \in g^- \} \]

- **Formulas describing the preconditions and effects of actions:**
 For every action a in A, formulas describing what changes a would make if it were the i'th step of the plan:
 - $a_i \Rightarrow \land \{ p_i \mid p \in \text{Precond}(a) \} \land \land \{ e_{i+1} \mid e \in \text{Effects}(a) \}$

- **Formulas describing Complete exclusion:**
 - For all actions a and b, formulas saying they cannot occur at the same time
 \[\neg a_i \lor \neg b_i \]
 - this guarantees there can be only one action at a time

- **Formulas providing a solution to the Frame Problem**
Example

- Planning domain:
 - one robot r1
 - two adjacent locations l1, l2
 - one action (move the robot)

- Encode \((P,n)\) where \(n = 1\)

 - Initial state: \(\{\text{at}(r1,l1)\}\)
 Encoding: \(\text{at}(r1,l1,0) \land \neg\text{at}(r1,l2,0)\)

 - Goal: \(\{\text{at}(r1,l2)\}\)
 Encoding: \(\text{at}(r1,l2,1) \land \neg\text{at}(r1,l1,1)\)
Example (continued)

- **Action:** \texttt{move(r,l1,l2)}
 - precond: \texttt{at(r,l1)}
 - effects: \texttt{at(r,l2), \neg at(r,l1)}

Encoding:
 \[
 \begin{align*}
 \text{move}(r1,l1,l2,0) & \Rightarrow \text{at}(r1,l1,0) \land \text{at}(r1,l2,1) \land \neg \text{at}(r1,l1,1) \\
 \text{move}(r1,l2,l1,0) & \Rightarrow \text{at}(r1,l2,0) \land \text{at}(r1,l1,1) \land \neg \text{at}(r1,l2,1)
 \end{align*}
 \]

- **Complete-exclusion axiom:**
 \[
 \neg \text{move}(r1,l1,l2,0) \lor \neg \text{move}(r1,l2,l1,0)
 \]

- **Explanatory frame axioms:**
 \[
 \begin{align*}
 \neg \text{at}(r1,l1,0) \land \text{at}(r1,l1,1) & \Rightarrow \text{move}(r1,l2,l1,0) \\
 \neg \text{at}(r1,l2,0) \land \text{at}(r1,l2,1) & \Rightarrow \text{move}(r1,l1,l2,0) \\
 \text{at}(r1,l1,0) \land \neg \text{at}(r1,l1,1) & \Rightarrow \text{move}(r1,l1,l2,0) \\
 \text{at}(r1,l2,0) \land \neg \text{at}(r1,l2,1) & \Rightarrow \text{move}(r1,l2,l1,0)
 \end{align*}
 \]
What are these “Explanatory Frame Axioms” and the “Complete Exclusion Axioms”?
The Frame Problem

The Frame Problem:
Describing what does not change between steps i and $i+1$

Two Common Solutions:
1. Classical Frame Axioms
2. Explanatory frame axioms
1. Classical Frame Axioms

- **Classical frame axioms** (McCarthy & Hayes 1969)
 - State which fluents are unaffected by a given action
 - For each action a, for each fluent not in effects(a), and for each step i, we have: $f_i \land a_i \Rightarrow f_{i+1}$
 - Problem: if no action occurs at step i nothing can be inferred about propositions at level $i+1$
 - Sol: at-least-one axiom: at least one action occurs
 - If more than one action occurs at a step, either one can be selected.
2. Explanatory frame axioms

- **Explanatory frame axioms** (Haas 1987)

 - Enumerate the set of actions that could have occurred in order to account for a state change.
 - Says that if \(f \) changes between \(s_i \) and \(s_{i+1} \), then the action at step \(i \) must be responsible:

 \[
 (\neg f_i \land f_{i+1} \Rightarrow \forall \{a_i | f \in \text{effects}^+(a)\}) \land (f_i \land \neg f_{i+1} \Rightarrow \forall \{a_i | l \in \text{effects}^-(a)\})
 \]

 - Example:

 - \(\neg \text{at}(r1,l1,0) \land \text{at}(r1,l1,1) \Rightarrow \text{move}(r1,l2,l1,0) \)
 - \(\neg \text{at}(r1,l2,0) \land \text{at}(r1,l2,1) \Rightarrow \text{move}(r1,l1,l2,0) \)
 - \(\text{at}(r1,l1,0) \land \neg \text{at}(r1,l1,1) \Rightarrow \text{move}(r1,l1,l2,0) \)
 - \(\text{at}(r1,l2,0) \land \neg \text{at}(r1,l2,1) \Rightarrow \text{move}(r1,l2,l1,0) \)
Explanatory frame axioms (cont)

- Allows parallelism
 - Two actions can be executed in parallel if
 - Their preconditions are satisfied at time \(t \)
 - Their effects do not conflict
 - Gives shorter plans – smaller encoding

- Uncontrolled parallelism is problematic
 - Can create valid plans without valid solution
 - Action \(\alpha \) has precondition \(X \) and effect \(Y \)
 - Action \(\beta \) has precondition \(\neg Y \) and effect \(\neg X \)
Explanatory frame axioms (cont)

Need Exclusion Axioms

- **Complete** exclusion axioms – *totally ordered plan*
 - Only one action occurs at a time
 \[\neg \alpha_t \lor \neg \beta_t \]

- **Conflict** exclusion axioms – *partially ordered plan*
 - Two actions conflict if one’s precondition is inconsistent with the other’s effect
 - Conflict exclusion should be used whenever possible
Outline

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
 - Making encodings more efficient
 - Extracting a plan
 - Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT
- Discussion
Architecture of SAT-based planning system

Init State → Compiler → Simplifier → Solver → Decoder → Plan

Symbol Table

Increment time bound if Unsatisfiable CNF CNF Satisfying Assignment
Space of Encodings

- **Want a compiler to quickly produce a small SAT encoding**
 - Number of variables
 - Number of clauses
 - Total number of literals summed over all clauses

- **Two factors determine these sizes:**
 - Encoding
 - Choice of **Action Representation**
 - Regular, simple split, overloaded split, or bitwise
 - Tradeoff between the number of variables and the number of clauses in the formula
 - Choice of **Frame Axioms**: classical or explanatory
 - Optimizations being used
Action Encoding

- **Regular**
 - Each ground action is represented by a different logical variable

- **Simple Operator Splitting**
 - Replace each n-ary action proposition with n unary propositions
 - Advantage: instances of each action share the same variable
 - move2(l1,i) is used to represent move(r1,l1,l2,i), can be reused to represent move(r2,l1,l2,i) – represent cases where starting location is the same

- **Overloaded Operator Splitting**
 - Allowing different actions to share the same variable

- **Bitwise**
 - Propositional variables are represented using bits
Action Encoding

[Ernst et al, IJCAI 1997]

<table>
<thead>
<tr>
<th>Representation</th>
<th>One Propositional Variable per</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>fully-instantiated action</td>
<td>move(r1,l1,l2,i)</td>
</tr>
<tr>
<td></td>
<td>(n</td>
<td>F</td>
</tr>
<tr>
<td>Simply-split</td>
<td>fully-instantiated action’s argument</td>
<td>move1(r1,i) (\land) move1(l1,i) (\land) move1(l2,i)</td>
</tr>
<tr>
<td></td>
<td>(n</td>
<td>F</td>
</tr>
<tr>
<td>Overloaded-split</td>
<td>fully-instantiated argument</td>
<td>Act(move, i) (\land) Act1(r1, i) (\land) Act2(l1, i) (\land) Act3(l2, i)</td>
</tr>
<tr>
<td></td>
<td>(n</td>
<td>F</td>
</tr>
<tr>
<td>Bitwise</td>
<td>Binary encodings of actions</td>
<td>Bit1</td>
</tr>
<tr>
<td></td>
<td>(n</td>
<td>F</td>
</tr>
</tbody>
</table>

N – number of steps; |F| - number of fluents; |O| - number of operators; A_0 – maximum arity of predicates
Comparisons of Different Encodings

- Regular explanatory and simple splitting explanatory encodings are the smallest
 - Explanatory frame axioms are smaller
 - State only what changes, not what does not change
 - Regular explanatory encodings allow for parallel actions
 - Shorter plans
 - Conflict exclusion axioms are a subset of complete exclusion axioms.
Architecture of SAT-based planning system

Increment time bound if Unsatisfiable

Init State
Goal
Actions

Compiler → CNF

Simplifier

CNF

Solver

Decoding
Symbol Table

Satisfying Assignment

Plan
Optimizations

Optimize the CNF formula produced by a compiler

1. Compile-time optimization
 - Shrink the size of CNF formula that SAT-compiler generates

2. Adding domain-specific information (e.g., control knowledge)
 - Precondition |= action conflicts, effects |= derived effects
 - State invariant:
 • A truck is at only one location
 - Optimality: disallowing unnecessary subplans
 • Do not return a package to its original location
 - Simplifying assumptions: not logically entailed
 • Once trucks are loaded they should immediately move
Outline

- Architecture of SAT-based planning
- SAT-based planning approach
- Encoding planning problems as SAT problems
- Making encodings more efficient

- Extracting a plan

- Satisfiability algorithms
 - Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 - Stochastic SAT Solvers: GSAT

- Discussion
Extracting a Plan

- Suppose we find an assignment of truth values that satisfies Φ.
 - This means P has a solution of length n

- For $i=1,\ldots,n$, there will be exactly one action a such that $a_i = true$
 - This is the i’th action of the plan.

- Example (from the previous slides):
 - Φ can be satisfied with $\text{move}(r1,l1,l2,0) = true$
 - Thus $\langle \text{move}(r1,l1,l2,0) \rangle$ is a solution for $(P,0)$
 - It’s the only solution - no other way to satisfy Φ
Outline

✓ Architecture of SAT-based planning
✓ SAT-based planning approach
✓ Encoding planning problems as SAT problems
✓ Making encodings more efficient
✓ Extracting a plan

➢ Satisfiability algorithms
 ● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 ● Stochastic SAT Solvers: GSAT

➢ Discussion
SAT Algorithms

➢ How to find an assignment of truth values that satisfies Φ?
 • Use a satisfiability algorithm

➢ Systematic Search
 • E.g., DP (Davis Putnam Logemann Loveland)
 backtrack search + unit propagation

➢ Local Search
 • E.g., GSAT (Selman), Walksat (Selman, Kautz & Cohen)
 greedy local search + noise to escape minima
Outline

✓ Architecture of SAT-based planning
✓ SAT-based planning approach
✓ Encoding planning problems as SAT problems
✓ Making encodings more efficient
✓ Extracting a plan
✓ Satisfiability algorithms
 ● Systematic SAT Solvers: Davis-Putnam-Logemann-Loveland
 ● Stochastic SAT Solvers: GSAT

➢ Discussion
Discussion

- Recall the overall approach:
 - for \(n = 0, 1, 2, \ldots \),
 - encode \((P,n)\) as a satisfiability problem \(\Phi\)
 - if \(\Phi\) is satisfiable, then
 - From the set of truth values that satisfies \(\Phi\), extract a solution plan and return it

- By itself, not very practical (takes too much memory and time)

- But it can be combined with other techniques
 - e.g., planning graphs
 - Blackbox: combines planning-graph expansion and satisfiability checking
Conclusion

- **What SATPLAN shows**
 - General SAT solvers can compete with state of the art specialized planning systems, in fact today’s SAT-based planners are among the fastest!!!

- **Why SATPLAN works**
 - More flexible than forward or backward chaining
 - Randomized algorithms less likely to get trapped on bad paths
I have reused slides from the following two sources:

- Open-Loop Planning as Satisfiability by Henry Kautz
- Aussagenlogische Erfüllbarkeitstechniken SATPlan by Ulrich Scholz