16.
The Tradeoff between Expressiveness and Tractability

Limit expressive power?

Defaults, probabilities, etc. can all be thought of as extensions to FOL, with obvious applications

Why not strive for the union of all such extensions? all of English?

Problem: automated reasoning

Lesson here:

reasoning procedures required for more expressive languages may not work very well in practice

Tradeoff: expressiveness vs. tractability

Overview:

– a Description Logic example
– limited languages
– the problem with cases
– vivid reasoning as an extreme case
– less vivid reasoning
– hybrid reasoning systems
Simple description logic

Consider the language FL defined by:

\[
\begin{align*}
\text{<concept>} & ::= \text{atom} & \text{<role>} & ::= \text{atom} \\
& | [\text{AND} \text{<concept>} ... \text{<concept>}] & & | [\text{RESTR} \text{<role>} \text{<concept>}] \\
& | [\text{ALL} \text{<role>} \text{<concept>}] & & | [\text{SOME} \text{<role>}] \\
& & (= [\text{EXISTS} 1 \text{<role>}])
\end{align*}
\]

Example:

\[
[\text{ALL} \text{:Child} \ [\text{AND} \text{Female Student}]]
\]

an individual whose children are female students

\[
[\text{ALL} [\text{RESTR} \text{:Child Female} \text{Student}]
\]

an individual whose female children are students

there may or may not be male children and they may or may not be students

Interpretation \(\mathcal{I} = \langle D, I \rangle \) as before, but with

\[I[[\text{RESTR} \ r \ c]] = \{ (x,y) \ | \ (x,y) \in I[r] \text{ and } y \in I[c] \}\]

So \([\text{RESTR} \text{:Child Female}] \) is the :Child relation restricted to females = :Daughter

Subsumption defined as usual

Computing subsumption

First for FL\(^-\) = FL without the \text{RESTR} operator

- put the concepts into normalized form
- to see if \(C \) subsumes \(D \) make sure that
 1. for every \(p \in C, \ p \in D \)
 2. for every \([\text{SOME} \ r] \in C, [\text{SOME} \ r] \in D \)
 3. for every \([\text{ALL} \ s \ c] \in C, \text{ find an } [\text{ALL} \ s \ d] \in D \text{ such that } c \text{ subsumes } d. \)

Can prove that this method is sound and complete relative to definition based on interpretations

Running time:

- normalization is \(O(n^2) \)
- structural matching: for each part of \(C \), find a part of \(D \). Again \(O(n^2) \)

What about all of FL, including \text{RESTR}?
Subsumption in FL

- cannot settle for part-by-part matching
 \[\text{ALL} [\text{RESTR} : \text{Friend} \ [\text{AND} \ \text{Male} \ \text{Doctor}]] \ [\text{AND} \ \text{Tall} \ \text{Rich}] \]
 subsumes
 \[\text{AND} [\text{ALL} [\text{RESTR} : \text{Friend} \ \text{Male}] \ [\text{AND} \ \text{Tall} \ \text{Bachelor}]] \]
 \[[\text{ALL} [\text{RESTR} : \text{Friend} \ \text{Doctor}] \ [\text{AND} \ \text{Rich} \ \text{Surgeon}]]] \]
- complex interactions
 \[\text{SOME} [\text{RESTR} \ r \ [\text{AND} \ a \ b]]] \]
 subsumes
 \[[\text{AND} [\text{SOME} [\text{RESTR} \ r \ [\text{AND} \ c \ d]]] [\text{ALL} [\text{RESTR} \ c] \ [\text{AND} \ a \ e]]] \]
 \[[\text{ALL} [\text{RESTR} \ r \ [\text{AND} \ d \ e]] \ b]] \]

In general: FL is powerful enough to encode all of propositional logic.

There is a mapping Ω from CNF wffs to FL where
\[| = (\alpha \supset \beta) \text{ iff } \Omega(\alpha) \text{ is subsumed by } \Omega(\beta) \]
But \[| = (\alpha \supset (p \land \neg p)) \text{ iff } \alpha \text{ is unsatisfiable} \]

Conclusion: there is no good algorithm for FL unless P=NP

Moral

Even small doses of expressive power can come at a significant computational price

Questions:
- what properties of a representation language control its difficulty?
- how far can expressiveness be pushed without losing good algorithms
- when is easy reasoning adequate for KR purposes?

These questions remain unanswered, but some progress:
- need for case analyses is a major factor
- tradeoff for DL languages is reasonably well understood
- best addressed (perhaps) by looking at working systems

Useful approach:
- find reasoning tasks that are tractable
- analyze difficulty in extending them
Limited languages

Many reasoning problems that can be formulated in terms of FOL entailment (KB \(\models \alpha \)) admit very specialized methods because of the restricted form of either KB or \(\alpha \)

although problem could be solved using full resolution, there is no need

Example 1: Horn clauses

• SLD resolution provides more focussed search
• in propositional case, a linear procedure is available

Example 2: Description logics

Can do DL subsumption using Resolution

Introduce predicate symbols for concepts, and “meaning postulates” like

\[
\forall x (P(x) \equiv \forall y (\text{Friend}(x,y) \supset \text{Rich}(y))) \\
\land \forall y (\text{Child}(x,y) \supset \\
\forall z (\text{Friend}(y,z) \supset \text{Happy}(z)))
\]

[ALL :Child] \\
[ALL :Friend Happy]]

Then ask if \(\text{MP} \models \forall x (P(x) \supset Q(x)) \)?

Equations

Example 3: linear equations

Let \(E \) be the usual axioms for arithmetic:

\[
\forall x \forall y (x+y = y+x), \ \forall x (x+0 = x), \ \ldots \ \text{Peano axioms}
\]

Then we get the following:

\[E \models (x+2y=4 \land x-y=1) \supset (x=2 \land y=1) \]

Can “solve” linear equations using Resolution!

But there is a much better way:

Gauss-Jordan method with back substitution

– subtract (2) from (1): 3y = 3
– divide by 3: \(y = 1 \)
– substitute in (1): \(x = 2 \)

In general, a set of linear equations can be solved in \(O(n^3) \) operations

This idea obviously generalizes!

always advantageous to use a specialized procedure when it is available, rather than a general method like Resolution
When is reasoning hard?

Suppose that instead of linear equations, we have something like
\[(x+2y=4 \lor 3x–y=7) \land x–y=1\]

Can still show using Resolution: \(y > 0 \)

To use GJ method, we need to split cases:
\[
\begin{align*}
 x+2y=4 & \land x–y=1 & \quad y=1 \\
 3x–y=7 & \land x–y=1 & \quad \therefore y > 0
\end{align*}
\]

What if 2 disjunctions? \((eqnA_1 \lor eqnB_1) \land (eqnA_2 \lor eqnB_2)\)

there are four cases to consider with GJ method

What if \(n\) binary disjunctions? \((eqnA_1 \lor eqnB_1) \land ... \land (eqnA_n \lor eqnB_n)\)

there are \(2^n\) cases to consider with GJ method

with \(n=30\), would need to solve \(10^{9}\) systems of equations!

Conclusion: case analysis is still a big problem.

Question: can we avoid case analyses??

Expressiveness of FOL

Ability to represent incomplete knowledge

\[P(a) \lor P(b) \quad \text{but which?}\]
\[\exists x \ P(x) \quad P(a) \lor P(b) \lor P(c) \lor ...\]

and even
\[c \neq 3 \quad c=1 \lor c=2 \lor c=4 \lor ...
\]

Reasoning with facts like these requires somehow "covering" all the implicit cases

languages that admit efficient reasoning do not allow this type of knowledge to be represented

– Horn clauses,
– description logics,
– linear equations, ...

only limited forms of disjunction, quantification etc.
Complete knowledge

One way to ensure tractability:

somehow restrict contents of KB so that reasoning by cases is not required

But is complete knowledge enough for tractability?

suppose \(KB \models \alpha \) or \(KB \models \neg \alpha \), as in the CWA

Get: queries reduce to \(KB \models p \), literals

But: it can still be hard to answer for literals

Example: \(KB = \{(p \lor q), (\neg p \lor q), (\neg p \lor \neg q)\} \)

Have: \(KB \models \neg p \land q \) complete!

But to find literals may require case analysis

So complete knowledge is not enough to avoid case analyses if the knowledge is “hidden” in the KB.

Need a form of complete knowledge that is more explicit...

Vivid knowledge

Note: If KB is complete and consistent, then it is satisfied by a unique interpretation \(I \)

Why? define \(I \) by \(I \models p \) iff \(KB \models p \)

Then for any \(I^* \), if \(I^* \models KB \) then \(I^* \) agrees with \(I \) on all atoms \(p \)

Get: \(KB \models \alpha \) iff \(I \models \alpha \)

entailments of KB are sentences that are true at \(I \)

explains why queries reduce to atomic case

\((\alpha \lor \beta)\) is true iff \(\alpha \) is true or \(\beta \) is true, etc.

if we have the \(I \), we can easily determine what is or is not entailed

Problem: KB can be complete and consistent, but unique interpretation may be hard to find

Solution: a KB is vivid if it is a complete and consistent set of literals (for some language)

e.g. \(KB = \{\neg p, q\} \) specifies \(I \) directly
Quantifiers

As with the CWA, we can generalize the notion of vivid to accommodate queries with quantifiers

A first-order KB is vivid iff for some finite set of positive function-free ground literals \(KB^+ \), \(KB = KB^+ \cup Negs \cup Dc \cup Un \).

Get a simple recursive algorithm for \(KB \models \alpha \):

\[
\begin{align*}
KB \models \exists x. \alpha & \iff KB \models \alpha[x/c], \text{ for some } c \in KB^+ \\
KB \models (\alpha \lor \beta) & \iff KB \models \alpha \text{ or } KB \models \beta \\
KB \models \neg \alpha & \iff KB \not\models \alpha \\
KB \models (c = d) & \iff c \text{ and } d \text{ are the same constant} \\
KB \models p & \iff p \in KB^+
\end{align*}
\]

This is just database retrieval

- useful to store \(KB^+ \) as a collection of relations
- only \(KB^+ \) is needed to answer queries, but \(Negs, Dc, \) and \(Un \) are required to justify the correctness of the procedure

Analogues

Can think of a vivid KB as an analogue of the world

there is a 1-1 correspondence between

- objects in the world and constants in the \(KB^+ \)
- relationships in the world and syntactic relationships in the \(KB^+ \)

for example, if constants \(c_1 \) and \(c_2 \) stand for objects in the world \(o_1 \) and \(o_2 \)

there is a relationship \(R \) holding between objects \(o_1 \) and \(o_2 \) in the world

iff

constants \(c_1 \) and \(c_2 \) appear as a tuple in the relation represented by \(R \)

Not true in general

for example, if \(KB = \{ P(a) \} \) then it only uses 1 constant, but could be talking about a world where there are 5 individuals of which 4 satisfy \(P \)

Result: certain reasoning operations are easy

- how many objects satisfy \(P \) (by counting)
- changes to the world (by changes to \(KB^+ \))
Beyond vivid

Requirement of vividness is very strict.

Want weaker alternatives with good reasoning properties

Extension 1

Suppose KB is a finite set of literals

- not necessarily a complete set (no CWA)
- assume consistent, else trivial

Cannot reduce $\text{KB} \models \alpha$ to literal queries

if $\text{KB} = \{p\}$ then $\text{KB} \models (p \land q \lor p \land \neg q)$ but $\text{KB} \not\models p \land q$ and $\text{KB} \not\models p \land \neg q$

But: assume α is small. Can put into CNF

$\alpha = (c_1 \land \ldots \land c_n)$

- $\text{KB} \models \alpha$ iff $\text{KB} \models c_i$, for every clause in CNF of α
- $\text{KB} \models c$ iff c has complimentary literals — tautology or $\text{KB} \cap c$ is not empty

Extension 2

Imagine KB vivid as before + new definitions:

$\forall xyz[R(x,y,z) \equiv \ldots \text{wff in vivid language \ldots}]$

Example: have vivid KB using predicate ParentOf

add: $\forall xy[\text{MotherOf}(x,y) \equiv \text{ParentOf}(x,y) \land \text{Female}(x)]$

To answer query containing $R(t_1,t_2,t_3)$, simply macro expand it with definition and continue

- can handle arbitrary logical operators in definition since they become part of *query*, not KB
- can generalize to handle predicates not only in vivid KB, provided that they bottom out to KB^+

$\forall xy[\text{AncestorOf}(x,y) \equiv \text{ParentOf}(x,y) \lor \exists z \text{ParentOf}(x,z) \land \text{AncestorOf}(z,y)]$

- clear relation to Prolog

 a version of logic programming based on inductive definitions, not Horn clauses
Other extensions

Vivification: given non-vivid KB, attempt to make vivid e.g. by eliminating disjunctions etc.

for example,
- use taxonomies to choose between disjuncts
 Flipper is a whale or a dolphin.
- use intervals to encompass disjuncts
 The picnic will be on June 2, 3, or 4th.
- use defaults to choose between disjuncts
 Serge works in Toronto or Montreal.

Problem: what to do with function symbols, when Herbrand universe is not finite?
partial Herbrand base?

Hybrid reasoning

Want to be able to incorporate a number of special-purpose efficient reasoners into a single scheme such as Resolution
Resolution will be the glue that holds the reasoners together

Simple form: semantic attachment
- attach procedures to functions and predicates
e.g. numbers: procedures on plus, LessThan, ...
- ground terms and atomic sentences can be evaluated prior to Resolution
 - \(P(\text{factorial}(4), \text{times}(2,3)) \quad P(24, 6) \)
 - \(\text{LessThan}(\text{quotient}(36,6), 5) \lor \alpha \quad \alpha \)
- much better than reasoning directly with axioms

More complex form: theory resolution
- build theory into unification process (the way paramodulation builds in =)
- extended notion of complimentary literals
 \(\{\alpha, \text{LessThan}(2, x)\} \) and \(\{\text{LessThan}(x, 1), \beta\} \) resolve to \(\{\alpha, \beta\} \)
Using descriptions

Imagine that predicates are defined elsewhere as concepts in a description logic

\[\text{Married} \equiv \text{AND} \ldots \quad \text{Bachelor} \equiv \text{AT-MOST} \ldots \]

then \(\{P(x), \text{Married}(x)\} \) and \(\{\text{Bachelor}(\text{john}), Q(y)\} \) resolve to \(\{P(\text{john}), Q(y)\} \)

Can use description logic procedure to decide if two predicates are complimentary

instead of explicit meaning postulates

Residues: for “almost” complimentary literals

\(\{P(x), \text{Male}(x)\} \) and \(\{\neg \text{Bachelor}(\text{john}), Q(y)\} \)

resolve to

\(\{P(\text{john}), Q(y), \text{Married}(\text{john})\} \)

since the two literals are contradictory unless John is married

Main issue: what resolvents are necessary to get the same conclusions as from meaning postulates?

residues are necessary for completeness