1 Preliminaries

1.a Keys, partitions, “relatedness” of tuples

We saw last week that the join operator builds on a notion of “keys”—and “join keys” in particular—to identify tuples from different tables that are related to each other. Recall also that the remaining (non-key) fields of a tuple can be treated as a payload, similar to the value associated with a key in a map or dictionary data structure. Finally, recall that we expanded the notion of a join key from a unique identifier of tuples to an arbitrary identifier of “relatedness” (with duplicates leading to the join result containing Cartesian product of partitions being joined).

With this background in mind—keys, partitions, and tuples that are related to each other—we will consider the relational aggregation (or “grouping”) operator, and we will find, perhaps surprisingly at first, that it shares a similarity with join in the same way that projection and selection resemble each other.

1.b Partitioning revisited

Consider again two of the tables from the join example:

Students (student_id, surname, name) TAs (student_id, course, section)

Foreign keys are highlighted in bold, as before. Joining related tables allows us to connect the names of students with the descriptions of courses tutored. Each partition produced in a join is one potential answer to the query (namely, courses taught by a particular student). What if we wanted to know how many courses a given student has tutored? Or how many tutors a given course has had? As with joins, partitions hide the answers to these questions: the one asks for TA records sharing the same student_id while the other asks for TA records with the same course number.
Figure 1. Partitioning TA records (left) by student (middle) and by course (right)

Figure 1 shows a sample TA table partitioned according to two different partitioning keys (with section numbers omitted for clarity). The partitioning in the center groups together all tuples with the same student, while the one on the right groups tuples having the same course.

<table>
<thead>
<tr>
<th>Student</th>
<th>Year</th>
<th>Dept</th>
<th>Course</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>CS</td>
<td>A08</td>
<td>B-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>CS</td>
<td>A48</td>
<td>B</td>
</tr>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>CS</td>
<td>A65</td>
<td>B+</td>
</tr>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>Math</td>
<td>A23</td>
<td>B</td>
</tr>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>Math</td>
<td>A30</td>
<td>B+</td>
</tr>
<tr>
<td>Xiao</td>
<td>2009</td>
<td>Math</td>
<td>A37</td>
<td>A</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>CS</td>
<td>B07</td>
<td>B</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>CS</td>
<td>B09</td>
<td>B-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>CS</td>
<td>B36</td>
<td>B-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>CS</td>
<td>B58</td>
<td>B</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>Math</td>
<td>B24</td>
<td>A-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>Math</td>
<td>B41</td>
<td>B</td>
</tr>
<tr>
<td>Xiao</td>
<td>2010</td>
<td>Stats</td>
<td>B52</td>
<td>B-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2011</td>
<td>CS</td>
<td>C24</td>
<td>B+</td>
</tr>
<tr>
<td>Xiao</td>
<td>2011</td>
<td>CS</td>
<td>C43</td>
<td>A-</td>
</tr>
<tr>
<td>Xiao</td>
<td>2011</td>
<td>CS</td>
<td>C69</td>
<td>A</td>
</tr>
</tbody>
</table>

Figure 2. Adding attributes to a partitioning key gives more, smaller partitions

In general, a relation can be partitioned by any attribute (or set of attributes); an empty partition key puts all tuples into the same giant partition, while a partition key equal to the schema puts every tuple in its own partition (recall that tuples in a relation are all unique). For example, Figure 2 shows three of the partitions that result when a partition key is empty (all courses), contains one attribute (year), or contains two attribute (year, department). Note that, for clarity, the figure only shows one partition for each of the latter cases; there are actually three year partitions and six year-dept partitions.
1.c The MAP and REDUCE functions

Suppose we wish to compute a single value from a *homogenous* sequence of values (with all elements having the same type T). Examples might include computing a sum or average, but many computations have this property. A pair of higher-order functions\(^1\) called *map* and *reduce* work together to perform this task. The *map* function performs a transformation on the sequence, modifying the elements and possibly changing their type. The *reduce* function then distills the elements into a single value.

The *map* function accepts two arguments as input: the sequence to transform and the “mapping function” \(g(T) \rightarrow R\) to be applied to each element. The output of *map* is another *homogenous* sequence, with values of type R; the input sequence is not altered, and R may be the same type as T (if the mapping function only changes the value). We might define *map* in python as follows:\(^2\)

```python
def my_map(seq, g):
    rval = []
    for x in seq:
        rval.append(g(x))
    return rval
```

Assuming \(seq=[1, 2, 3, 4]\), example uses of *map* might include:

```python
my_map(seq, lambda x:x) -> [1, 2, 3, 4] # identity, type unchanged
my_map(seq, lambda x:-x) -> [-1, -2, -3, -4] # negate, type unchanged
my_map(seq, lambda x:.5*(x-2)*(x+1)) -> [-1.0, 0.0, 2.0, 5.0] # polynomial function, type is real
my_map(seq, lambda x:str(x)) -> ['1', '2', '3', '4'] # convert to string
```

Mapping of an element is completely independent of any other element, so an implementation is free to re-order and parallelize the computation as it sees fit. Database engines, and map/reduce frameworks such as Hadoop, rely on this property for efficient processing of large datasets.

After *map* has prepared the sequence, *reduce* collapses it to a single value. The *reduce* function accepts three arguments:

- A homogenous sequence \(seq\), whose elements all have type R (e.g. the output type of *map*).
- A function \(f(R, R) \rightarrow R\) used to combine two values into a single value.
- An optional value \(x\) (of type R), to be returned if the sequence is empty. It defaults to NULL.

The *reduce* operation returns \(x\) if the sequence is empty. Otherwise, it remembers the first element of the sequence; all subsequent elements are passed to \(g()\) in turn, with the remembered result also

\(^1\) Higher order functions accept other functions as arguments

\(^2\) Note that python provides a native *map* function with the same behavior. Also, python’s list comprehension syntax allows an even simpler definition: my_map = lambda seq, g: [g(x) for x in seq]
passed in and replaced by the new return value. When processing reaches end-of-sequence, the remembered result is returned to the user.

For convenience, we will merge the functionality of map into reduce by allowing the latter to accept \(g(T) \rightarrow R \) as an optional fourth argument, and pass it an input sequence of type \(T \) instead of \(R \). If we were to implement this augmented reduce in python, it might look like the following:

```python
def my_reduce(seq, f, g=lambda x: x, x=None):
    it = iter(seq)
    try:
        x = g(next(it))
        while 1:
            x = f(x, g(next(it)))
        except StopIteration:
            return x
```

Because it is a higher-order function, reduce is quite powerful and flexible; it’s probably easiest to show this by example. Suppose we have \(\text{seq}=\{1,2,3,4\} \); and that we call \(\text{my}_\text{reduce} \) repeatedly with the same input, but pass different functions as \(f \) and \(g \):

```python
my_reduce(seq, lambda x,y:x+y)
-> 10 # sum: \((1+2+3)+4\)

my_reduce(seq, lambda x,y:x*y)
-> 24 # product: \((1*2)*3\)*4

my_reduce(seq, lambda x,y:x+y, g=lambda x:1)
-> 4 # count: \((1+1)+1\)+1

my_reduce(seq, lambda x,y:x+'-'+y, g=lambda x:str(x))
-> '1-2-3-4' # string concatenation, similar to '-'\( \text{.join}(\text{seq}) \)

my_reduce(seq, lambda x,y:x*y, g=lambda x:x+1)
-> 120 # product of sums: \((((1+1)*2+1))*(3+1))*4+1\)
```

Thought experiment: how might you compute the average of a sequence using \(\text{my}_\text{reduce} \)?

Before we continue, it is worth noting that the function passed to reduce often has properties that allow an implementation considerable freedom in evaluating it. In the worst case, an arbitrary reducer function forces the implementation to evaluate all arguments one by one, serially (e.g. as shown in the above examples). An associative reducer, where \(f(x, f(y, z)) = f(f(x, y), z) \), allows some parallelism: neighboring pairs of elements can be reduced independently (cutting the list size in half), pairs of outputs can be reduced as well (again cutting the list size by half), and so on until only one value remains. All the reducing functions shown above are associative, and the effect of parallelism is easy to see with a longer input to string concatenation: \([1, 2, 3, 4, 5, 6, 7, 8] \) becomes \([1', 2', 3', 4', 5', 6', 7', 8']\) (with the mapper), then \([1'-2', 3'-4', 5'-6', 7'-8']\), then \([1'-2-3'-4', 5'-6-7-8']\), and finally \([1'-2-3-4-5-6-7-8']\).

3 Merging map into reduce is more concise, more efficient in practice (avoiding an intermediate result), and makes it easier to express the aggregate functions commonly used in SQL.

4 Note that python provides a built-in function called reduce that accepts the standard three arguments, though it uses the default value \((x) \) differently.
In addition to associativity, many reducer functions are *commutative*, where \(f(x, y) = f(y, x) \). When a reducer is both associative and commutative, `reduce` gives the same result no matter how the input is grouped or permuted for processing (as long as each element is processed exactly once). All aggregates specified in the SQL language are both commutative and associative, and database optimizers exploit this flexibility in several ways.

Finally, some reducers have the additional property of being *idempotent*, where the output of `reduce` depends only on what distinct values are in the input, not on how many times they occur. The `min` and `max` functions have this property, for example.

2. Introducing the grouping operator (\(\Gamma \))

With an understanding of partitioning and map/reduce, we are finally prepared to introduce the grouping operator used in relational algebra. The operator first partitions its input relation into “groups” according to a specified partitioning key (also known as the “grouping key”), and then applies a reduce operation within each group, using one reducer for each non-key attribute. The output thus includes one tuple for every group, with each tuple’s grouping key attributes containing a combination of values that uniquely identifies the group that produced it; each of the remaining aggregate attributes contains the output of the reduce operation chosen for that attribute.

![Figure 3. Example of grouping with one key attribute and two aggregate attributes](image)

Figure 3 illustrates the grouping operator in action, with grouping performed on column A and functions \(f_1 \) and \(f_2 \) specified as reducers for columns B and C. For each of the three partitions, the grouping key is copied to the output and the remaining fields are populated with the result of a reduce operation on the appropriate column of the partition.

Note that, unlike with join, grouping computes something about the partition as a whole rather than focusing on individual tuples. Where join combines multiple partitions (having the same partitioning key) into a single partition, aggregation combines multiple tuples within a partition into a single tuple.

5 Note that a function can be commutative without being associative. \(f(x, y) = (x+y)/2 \) is one such example: \(f(1, f(2, 3)) = 1.75 \) and \(f(f(1,2), 3) = 2.25 \). Such functions do not allow meaningful reordering.
2.a Grouping operators in SQL

The SQL standard specifies several aggregate functions suitable for use with the grouping operator. These include min, max, count, sum, and average. Most database engines provide additional aggregates, as well as some mechanism for users to specify custom ones. Database aggregations are stateful, and are usually specified as three functions:

- `init()` initializes an internal state object and returns it for safekeeping
- `step(state, x)` accumulates one additional value and returns the updated internal state
- `fini(state)` finalizes the internal state and returns the result of the aggregation

Together, these allow the same functionality as the map/reduce pair we discussed earlier, but the ability to maintain arbitrary internal state allows additional functionality. For example:

```python
# average
init = lambda: (0,0)
step = lambda s,x: (s[0]+x,s[1]+1)
fini = lambda s: s[0]/s[1] if s[1] else 0

# safe min
init = lambda: (False,None)
step = lambda s,x: (True,x if not s[0] or x < s[1] else s[1])
fini = lambda s: s[1]

# uniformly random element
init = lambda: (0,0)
def step(s,x):
    if (s[0] and random.randint(1,s[0]) > 1:
        return s[0]+1,s[1]
    return s[0]+1,x
fini = lambda s:s[s[1]]
```

As an extreme case, advanced statistical aggregates might need to collect the entire partition (sometimes even multiple columns at once) before performing vector and matrix operations internally to arrive at a final result. We will not consider such complex aggregates in this course, however.

2.b Aggregating aggregates

Recall that in relational algebra, the output of every operator is a relation that can serve as input to additional operators. This is true for grouping, which means (among other things) that we can perform grouping over previously-computed aggregations. As one example, consider the course listing in Figure 2: we can easily compute the average GPA for Xiao in each year (2009, 2010, 2011), using a grouping operator keyed by year and aggregating grade with the `average` function; given that result (containing three rows and two attributes) we might then compute the Xiao’s highest average yearly GPA (an empty grouping key, aggregating `average_gpa` with the `max` function); the corresponding relational algebra expression would be: \(\Gamma_{max(AG)}(\Gamma_{Y,AG=avg(G)}(R)) \). This sort of nesting of aggregates could continue arbitrarily deep, but in practice there are seldom more than two aggregates in a row.