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A
s many researchers have found, the

data they have to deal with are often

high-dimensional—that is, expressed

by many variables—but may contain a great

deal of latent structure. Discovering that struc-

ture, however, is nontrivial. To illustrate the

point, consider a case in the relatively low

dimension of three. Suppose you are handed a

large number of three-dimensional points in

random order (where each point is denoted

by its coordinates along the x, y, and z axes):

{(−7.4000, −0.8987, 0.4385), (3.6000, −0.4425,

−0.8968), (−5.0000, 0.9589, 0.2837), …}. Is

there a more compact, lower dimensional

description of these data? In this case, the

answer is yes, which one would quickly dis-

cover by plotting the points, as shown in the

left panel of the figure. Thus, although the data

exist in three dimensions, they really lie along

a one-dimensional curve that is embedded in

three-dimensional space. This curve can be

represented by three functions of x, as (x, y, z)

= [x, sin(x), cos(x)]. This immediately reveals

the inherently one-dimensional nature of these

data. An important feature of this description is

that the natural distance between two points is

not the Euclidean, straight line distance;

rather, it is the distance along this curve. As

Hinton and Salakhutdinov report on page 504

of this issue (1), the discovery of such low-

dimensional encodings of very high-dimen-

sional data (and the inverse transformation

back to high dimensions) can now be effi-

ciently carried out with standard neural net-

work techniques. The trick is to use networks

initialized to be near a solution, using unsuper-

vised methods that were recently developed by

Hinton’s group.

This low-dimensional structure is not

uncommon; in many domains, what initially

appears to be high-dimensional data actually

lies upon a much lower dimensional manifold

(or surface). The issue to be addressed is how

to find such lower dimensional descriptions

when the form of the data is unknown in

advance, and is of much higher dimension than

three. For example, digitized images of faces

taken with a 3-megapixel camera exist in a

very high dimensional space. If each pixel is

represented by a gray-scale value between 0

and 255 (leaving out color), the faces are

points in a 3-million-dimensional hypercube

that also contains all gray-scale pictures of that

resolution. Not every point in that hypercube is

a face, however, and indeed, most of the points

are not faces. We would like to discover a lower

dimensional manifold that corresponds to

“face space,” the space that contains all face

images and only face images. The dimensions

of face space will correspond to the important

ways that faces differ from one another, and

not to the ways that other images differ. 

This problem is an example of unsupervised

learning, where the goal is to find underlying

regularities in the data, rather than the standard

supervised learning task where the learner must

classify data into categories supplied by a

teacher. There are many approaches to this

problem, some of which have been reported in

this journal (2, 3). Most previous systems learn

the local structure among the points—that is,

they can essentially give a neighborhood struc-

ture around a point, such that one can measure

distances between points within the manifold.

A major limitation of these approaches, how-

ever, is that one cannot take a new point and

decide where it goes on the underlying mani-

fold (4). That is, these approaches only learn

the underlying low-dimensional structure of a

given set of data, but they do not provide a map-

ping from new data points in the high-dimen-

sional space into the structure that they have

found (an encoder), or, for that matter, a map-

ping back out again into the original space (a

decoder). This is an important feature because

without it, the method can only be applied to

the original data set, and cannot be used on

novel data. Hinton and Salakhutdinov address

the issue of finding an invertible mapping by

making a known but previously impractical

With the help of neural networks, data sets

with many dimensions can be analyzed to find

lower dimensional structures within them.New Life for Neural Networks
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Searching for structure. (Left) Three-dimensional data that are inherently one-dimensional. (Middle) A
simple “autoencoder” network that is designed to compress three dimensions to one, through the narrow
hidden layer of one unit. The inputs are labeled x, y, z, with outputs x’, y’, and z’. (Right) A more complex
autoencoder network that can represent highly nonlinear mappings from three dimensions to one, and from
one dimension back out to three dimensions.
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method work effectively. They do this by mak-

ing good use of recently developed machine

learning algorithms for a special class of neural

networks (5, 6).

Hinton and Salakhutdinov’s approach uses

so-called autoencoder networks—neural net-

works that learn a compact description of data,

as shown in the middle panel of the figure. This

is a neural network that attempts to learn to

map the three-dimensional data from the spiral

down to one dimension, and then back out to

three dimensions. The network is trained to

reproduce its input on its output—an identity

mapping—by the standard backpropagation of

error method (7, 8). Although backpropagation

is a supervised learning method, by using the

input as the teacher, this method becomes

unsupervised (or self-supervised). Unfor-

tunately, this network will fail miserably at this

task, in much the same way that standard meth-

ods such as principal components analysis will

fail. This is because even though there is a

weighted sum of the inputs (a linear mapping)

to a representation of x—the location along the

spiral—there is no (semi-)linear function (9) of

x that can decode this back to sin(x) or cos(x).

That is, the network is incapable of even repre-

senting the transformation, much less learning

it. The best such a network can do is to learn the

average of the points, a line down the middle of

the spiral. However, if another nonlinear layer

is added between the output and the central

hidden layer (see the figure, right panel), then

the network is powerful enough, and can learn

to encode the points as one dimension (easy)

but also can learn to decode that one-dimen-

sional representation back out to the three

dimensions of the spiral (hard). Finding a set of

connection strengths (weights) that will carry

out this learning problem by means of back-

propagation has proven to be unreliable in

practice (10). If one could initialize the weights

so that they are near a solution, it is easy to

fine-tune them with standard methods, as

Hinton and Salakhutdinov show.

The authors use recent advances in training

a specific kind of network, called a restricted

Boltzmann machine or Harmony network

(5, 6), to learn a good initial mapping recur-

sively. First, their system learns an invertible

mapping from the data to a layer of binary

features. This initial mapping may actually

increase the dimensionality of the data, which

is necessary for problems like the spiral. Then,

it learns a mapping from those features to

another layer of features. This is repeated as

many times as desired to initialize an extremely

deep autoencoder. The resulting deep network

is then used as the initialization of a standard

neural network, which then tunes the weights to

perform much better.

This makes it practical to use much deeper

networks than were previously possible, thus

allowing more complex nonlinear codes to be

learned. Although there is an engineering fla-

vor to much of the paper, this is the first practi-

cal method that results in a completely invert-

ible mapping, so that new data may be pro-

jected into this very low dimensional space.

The hope is that these lower dimensional repre-

sentations will be useful for important tasks

such as pattern recognition, transformation, or

visualization. Hinton and Salakhutdinov have

already demonstrated some excellent results in

widely varying domains. This is exciting work

with many potential applications in domains of

current interest such as biology, neuroscience,

and the study of the Web. 

Recent advances in machine learning have

caused some to consider neural networks obso-

lete, even dead. This work suggests that such

announcements are premature.
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T
he exposure of Earth’s surface to the

Sun’s rays (or insolation) varies on time

scales of thousands of years as a result of

regular changes in Earth’s orbit around the Sun

(eccentricity), in the tilt of Earth’s axis (obliq-

uity), and in the direction of Earth’s axis of rota-

tion (precession). According to the Milankovitch

theory, these insolation changes drive the glacial

cycles that have dominated Earth’s climate for

the past 3 million years. 

For example, between 3 and 1 million years

before present (late Pliocene to early Pleistocene,

hereafter LP-EP), the glacial oscillations fol-

lowed a 41,000-year cycle. These oscillations

correspond to insolation changes driven by obliq-

uity changes. But during this time, precession-

driven changes in insolation on a 23,000-year

cycle were much stronger than the obliquity-

driven changes. Why is the glacial record for the

LP-EP dominated by obliquity, rather than by the

stronger precessional forcing? How should the

Milankovitch theory be adapted to account for

this “41,000-year paradox”? 

Two different solutions are presented in this

issue. The first involves a rethinking of how

the insolation forcing should be defined (1),

whereas the second suggests that the Antarctic

ice sheet may play an important role (2).The two

papers question some basic principles that are

often accepted without debate.

On page 508, Huybers (1) argues that the

summer insolation traditionally used in ice age

models may not be the best parameter. Because

ice mass balance depends on whether the tem-

perature is above or below the freezing point, a

physically more relevant parameter should be

the insolation integrated over a given threshold

that allows for ice melting. This new parameter

more closely follows a 41,000-year periodicity,

thus providing a possible explanation for the

LP-EP record.

On page 492, Raymo et al. (2) question

another pillar of ice age research by suggesting

that the East Antarctic ice sheet could have con-

tributed substantially to sea-level changes dur-

ing the LP-EP. The East Antarctic ice sheet is

land-based and should therefore be sensitive

mostly to insolation forcing, whereas the West

Antarctic ice sheet is marine-based and thus

influenced largely by sea-level changes. Be-

cause the obliquity forcing is symmetrical with

respect to the hemispheres, whereas the preces-

Between 3 and 1 million years ago, ice ages

followed a 41,000-year cycle. Two studies

provide new explanations for this periodicity.What Drives the Ice Age Cycle?
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