Finite Fields

From now on, we look only at channels whose input and output alphabets are the same, each consisting of the elements of some finite field.

A finite field consists of a finite collection of "numbers" that behave like real and complex numbers. Specifically,

- Addition and multiplication are defined, and they are commutative and associative, and multiplication is distributive over addition.
- There are numbers called 0 and 1, such that \(a + 0 = a \) and \(a \cdot 1 = a \) for all \(a \).
- Subtraction and division (except by 0) can be done, and these operations are the inverses of addition and multiplication.

The Finite Field \(\mathbb{F}_2 \)

The smallest finite field, called \(\mathbb{F}_2 \) or \(GF(2) \), has just two elements, 0 and 1. Addition and multiplication are defined as follows:

\[
\begin{align*}
0 + 0 &= 0 & 0 \cdot 0 &= 0 \\
0 + 1 &= 1 & 0 \cdot 1 &= 0 \\
1 + 0 &= 1 & 1 \cdot 0 &= 0 \\
1 + 1 &= 0 & 1 \cdot 1 &= 1
\end{align*}
\]

This can also be seen as arithmetic modulo 2 (called \(\mathbb{Z}_2 \)).

Viewed as logical operations, addition is the same as 'exclusive-or', and multiplication is the same as 'and'.

Note: In \(\mathbb{F}_2 \), \(-a = a \), and hence \(a + b = a + b \).

Other Finite Fields

There is a finite field with \(p \) elements for every prime \(p \). This field is the same as \(\mathbb{Z}_p \), in which arithmetic on \(0, \ldots, p - 1 \) is done module \(p \).

For example, \(\mathbb{F}_3 = F_3 \) works as follows:

\[
\begin{align*}
0 + 0 &= 0 & 0 \cdot 0 &= 0 \\
0 + 1 &= 1 & 0 \cdot 1 &= 0 \\
0 + 2 &= 2 & 0 \cdot 2 &= 0 \\
1 + 0 &= 1 & 1 \cdot 0 &= 0 \\
1 + 1 &= 2 & 1 \cdot 1 &= 1 \\
1 + 2 &= 0 & 1 \cdot 2 &= 2 \\
2 + 0 &= 2 & 2 \cdot 0 &= 0 \\
2 + 1 &= 0 & 2 \cdot 1 &= 2 \\
2 + 2 &= 1 & 2 \cdot 2 &= 1
\end{align*}
\]

There’s also a finite field for every integer power of a prime, with \(p^e \) elements. These fields are not the same as \(\mathbb{Z}_{p^e} \), which is not a field when \(e > 1 \). (See J&J, Section 6.1.)

Vector Spaces Over a Finite Field

Just as we can define vectors over real numbers, we can define vectors over a finite field. We get to add such vectors, and multiply them by a scalar from the finite field.

We can think of these vectors as \(n \)-tuples of field elements. For instance, with vectors of length five over \(\mathbb{F}_2 \):

\[
\begin{align*}
(1,0,0,1,1) + (0,1,0,0,1) &= (1,1,0,1,0) \\
1 \cdot (1,0,0,1,1) &= (1,0,0,1,1) \\
0 \cdot (1,0,0,1,1) &= (0,0,0,0,0)
\end{align*}
\]

Most properties of real vector spaces continue to hold — eg, the existence of basis vectors.

We refer to the vector space of all \(n \)-tuples from \(F_q \) as \(F_q^n \). We will use boldface letters such as \(\mathbf{u} \) and \(\mathbf{v} \) to refer such vectors.
Linear Codes

We can view F_q^n as the input and output alphabet of the nth extension of a channel with input and output alphabet F_q.

A code, C, for this extension of the channel is a subset of F_q^n.

C is a **linear code** if the following conditions hold:

1) If u and v are codewords of C, then $u + v$ is also a codeword of C.

2) If u is a codeword of C and a is in F_q, then au is also a codeword of C.

In other words, C must be a subspace of F_q^n.

Note that the all-zero codeword must be in C, since $0 = 0u$ for any u.

Note: For binary codes (over F_2), condition (2) will always hold if condition (1) does, since $1u = u$ and $0u = 0 = u + u$.

Linear Codes From Basis Vectors

We can construct a linear code by choosing k linearly-independent basis vectors from F_q^n.

We'll call the basis vectors u_1, \ldots, u_k. We define the set of codewords to be all those vectors that can be written in the form

$$a_1u_1 + a_2u_2 + \cdots + a_ku_k$$

where a_1, \ldots, a_n are elements of F_q.

The codewords obtained with different a_1, \ldots, a_k are all different. (Otherwise u_1, \ldots, u_k wouldn't be linearly-independent.)

There are therefore q^k codewords.

We can encode a block consisting of k symbols, a_1, \ldots, a_k, from F_q as a codeword of length n using the formula above.

This is referred to as an $[n, k]$ code.

Linear Codes From Linear Equations

Another way to define a linear code for F_q^n is to provide a set of simultaneous equations that must be satisfied for v to be a codeword.

These equations have the form $b \cdot v = 0$, i.e.

$$b_1v_1 + b_2v_2 + \cdots + b_nv_n = 0$$

The set of solutions is a linear code because

1) $b \cdot u = 0$ and $b \cdot v = 0$ implies $b \cdot (u + v) = 0$.

2) $b \cdot v = 0$ implies $b \cdot (av) = 0$.

If we have $n - k$ such equations, and they are independent, the code will have q^k codewords.

A $[3, 1]$ Code Over F_3

As a simple example, consider the code for F_3^3 defined by the following equations that must be satisfied by a codeword v:

$$v_1 + v_2 = 0$$

$$v_2 + 2v_3 = 0$$

There should be three codewords in this code.

One of them is $(1, 2, 2)$, since in F_3 (which is \mathbb{Z}_3), $1 + 2 = 0$ and $2 + 2 \cdot 2 = 2 + 1 = 0$.

We can take this codeword as a basis vector, and find the other two codewords as the multiples of it:

$$0(1, 2, 2) = (0, 0, 0), \quad 2(1, 2, 2) = (2, 1, 1)$$
The Repetition Codes Over F_2

A repetition code over F_2^2 has only two codewords — one has all 0s, the other all 1s.

This is a linear $[n,1]$ code, with $(1, \ldots, 1)$ as the basis vector.

The code is also defined by the following $n-1$ equations satisfied by a codeword v:

\[v_1 + v_2 = 0, \ v_2 + v_3 = 0, \ldots, \ v_{n-1} + v_n = 0 \]

The Single Parity-Check Codes

An $[n,n-1]$ code over F_2 can be defined by the following single equation satisfied by a codeword v:

\[v_1 + v_2 + \cdots + v_n = 0 \]

In other words, the parity of all the bits in a codeword must be even.

This code can also be defined using $n-1$ basis vectors. One choice of basis vectors when $n = 5$ is as follows:

\[(1,0,0,0,1) \]
\[(0,1,0,0,1) \]
\[(0,0,1,0,1) \]
\[(0,0,0,1,1) \]

Recall the following code from lecture 9b:

\[
\{ \ 00000, \ 00111, \ 11001, \ 11110 \ \}
\]

Is this a linear code? We need to check that all sums of codewords are also codewords:

\[
\begin{align*}
00111 + 11001 &= 11110 \\
00111 + 11110 &= 11001 \\
11001 + 11110 &= 00111 \\
\end{align*}
\]

We can generate this code using 00111 and 11001 as basis vectors. We then get the four codewords as follows:

\[
\begin{align*}
0 \cdot 00111 + 0 \cdot 11001 &= 00000 \\
0 \cdot 00111 + 1 \cdot 11001 &= 11001 \\
1 \cdot 00111 + 0 \cdot 11001 &= 00111 \\
1 \cdot 00111 + 1 \cdot 11001 &= 11110 \\
\end{align*}
\]

The [7,4] Binary Hamming code

The [7,4] Hamming code is defined over F_2 by the following equations that are satisfied by a codeword u:

\[
\begin{align*}
u_4 + u_5 + u_6 + u_7 &= 0 \\
u_2 + u_3 + u_6 + u_7 &= 0 \\
u_1 + u_3 + u_5 + u_7 &= 0 \\
\end{align*}
\]

Since these equations are independent, there should be 16 codewords.

We can also define the code in terms of the following four basis vectors:

\[
\begin{align*}
1001100, \ 0101010, \ 1110000, \ 1101001 \\
\end{align*}
\]

We will see later that this code is capable of correcting any single error.