Schedule to Minimize Lateness Section 4.2 in the text. (Although the proof given here is slightly different.)

Given \(n \) jobs \(J_1, \ldots, J_n \), where job \(J_i \) has deadline \(d_i \) and processing time \(t_i \). There is a single processor that can process only one job at a time.

A schedule is just an ordering of the jobs. For a schedule \(S \), let \(f_S(J_i) \) be the finishing time of job \(J_i \). If a job \(J_i \) misses its deadline, i.e. \(f_S(J_i) > d_i \), its lateness is defined to be \(f_S(J_i) - d_i \). The lateness of the schedule is defined to be the maximum lateness of all the late jobs in the schedule.

The problem is to schedule the job with smallest possible lateness. In other words, we want to minimize the maximum lateness of all late jobs.

The Greedy Algorithm

The idea is to get the early jobs done first.

1. Sort the jobs so that
 \[
d_i \leq d_2 \leq \ldots \leq d_n
 \]

2. Output the schedule \(J_1, \ldots, J_n \).

Proof of Correctness

We follow the same framework for the proofs of correctness of other greedy algorithms. Let

\[
P_i = \langle J_1, \ldots, J_i \rangle
\]

We show that every \(P_i \) is “promising” in the sense that there is an optimal schedule that extends \(P_i \), i.e. of the form

\[
\langle J_1, J_2, \ldots, J_i, J'_{i+1}, \ldots, J'_n \rangle
\]

where \(J'_{i+1}, \ldots, J'_n \) is a permutation of \(J_{i+1}, \ldots, J_n \). Then, the output \(P_n \) must be itself an optimal schedule.

Claim: \(P_i \) is promising for every \(0 \leq i \leq n \).

We prove the Claim by induction on \(i \).

Base case: \(i = 0 \), \(P_0 = \emptyset \). The Claim holds because every (optimal) schedule extends the empty sequence.

Induction step: Assume that \(P_i \) is promising. We show that \(P_{i+1} \) is also promising. Since \(P_i \) is promising, there is an optimal schedule of the form

\[
OPT = \langle J_1, \ldots, J_i, J'_{i+1}, \ldots, J'_n \rangle
\]

Consider two cases:

Case 1 \(J'_{i+1} = J_{i+1} \). Then \(OPT \) also extends \(P_{i+1} \), so \(P_{i+1} \) is promising, and we are done.

Case 2 \(J'_{i+1} \neq J_{i+1} \). Then \(J_{i+1} \) must occur at some position \(k + 1 \) in \(OPT \), where \(k > i \). So

\[
OPT = \langle J_1, \ldots, J_i, J'_{i+1}, \ldots, J'_k, J_{i+1}, J'_{k+2}, \ldots, J'_n \rangle
\]
Modify OPT to get J_{i+1} just after J_i – let

$$OPT' = \langle J_1, \ldots, J_i, J_{i+1}, J_{i+1}', \ldots, J'_k, J'_{k+2}, \ldots, J'_n \rangle$$

Then OPT' extends P_{i+1}. We show that OPT' is an optimal schedule. In fact, we will show that the maximum lateness of the jobs in OPT' will be at most as large as that of OPT.

Notice that OPT and OPT' differ only in the block

$$J'_{i+1}, \ldots, J'_k, J_{i+1} \quad (1)$$

for OPT and

$$J_{i+1}, J'_{i+1}, \ldots, J'_k \quad (2)$$

for OPT'. Also, since J_{i+1} has smallest deadline amongst $J'_{i+1}, \ldots, J'_k, J_{i+1}$, the maximum lateness among the jobs in (1) is that of J_{i+1}: The following exercise is to show that for the schedule OPT', all the jobs in (2) has lateness \leq the lateness of J_{i+1} in OPT.

Exercise Show that in OPT', all jobs in (2) has lateness at most as large as the lateness of J_{i+1} in OPT.

Longest Common Subsequence

Input: Two sequences (arrays) $X[1 \ldots n]$, $Y[1 \ldots m]$.

Output: A longest common subsequence of X, Y.

Let

$$S_{i,j} = LCS(X[1 \ldots i], Y[1 \ldots j])$$

Observation:

$$S_{n,m} = \begin{cases} S_{n-1,m-1} \circ X[n], & \text{if } X[n] = Y[m] \\ \text{longer of } \{S_{n-1,m}, S_{n,m-1}\}, & \text{otherwise} \end{cases}$$

A Recursive Program

LCS(X,Y,n,m):

1. If $n = 0$ or $m = 0$: return \emptyset
2. If $X[n] = Y[m]$ return $LCS(X, Y, n-1, m-1) \circ X[n]$
3. Else
4. \hspace{1em} $L_1 = LCS(X, Y, n-1, m)$
5. \hspace{1em} $L_2 = LCS(X, Y, n, m-1)$
6. \hspace{1em} If $|L_1| > |L_2|$ return L_1
7. \hspace{1em} Else
8. \hspace{2em} return L_2
9. End If
10. End If
11. End If
Running Time (Assume $n \leq m$):
\[\Omega(2^n) \]

Reason: Repeated calls to small (sub)problems

\[LCS(X,Y,i,j) \quad \text{for } 1 \leq i \leq n, 1 \leq j \leq m \]

There are only $n \times m$ subproblems.

 Improvement: Solve the subproblems once and store their solutions!

LCS2(X,Y,n,m):

1. S: $n \times m \times n$ array % For storing solution.
2. For $j = 1$ to m do $S[0,j] \leftarrow \emptyset$
3. For $i = 1$ to n do $S[i,0] \leftarrow \emptyset$
4. For $i = 1$ to n do
 5. For $j = 1$ to m do
 6. If $X[i] = Y[j]$ do $S[i,j] \leftarrow S[i-1,j-1] \odot X[i]$
 7. Else $S[i,j] \leftarrow$ longer of \{ $S[i-1,j], S[i,j-1]$ \}
 8. End If
 9. End For
10. End For
11. Return $S[n,m]$

Space: $n \times m \times n$

Observation: No need to store $S[i,j]$

Can just store the lengths of $S[i,j]$, and recover $S[n,m]$ at the end. Will continue next week.