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Abstract
In this paper we present a method for learning class-

specific features for recognition. Recently a greedy layer-
wise procedure was proposed to initialize weights of deep
belief networks, by viewing each layer as a separate Re-
stricted Boltzmann Machine (RBM). We develop the Con-
volutional RBM (C-RBM), a variant of the RBM model in
which weights are shared to respect the spatial structure of
images. This framework learns a set of features that can
generate the images of a specific object class. Our fea-
ture extraction model is a four layer hierarchy of alternat-
ing filtering and maximum subsampling. We learn feature
parameters of the first and third layers viewing them as sep-
arate C-RBMs. The outputs of our feature extraction hier-
archy are then fed as input to a discriminative classifier. It
is experimentally demonstrated that the extracted features
are effective for object detection, using them to obtain per-
formance comparable to the state-of-the-art on handwritten
digit recognition and pedestrian detection.

1. Introduction

The success or failure of an object recognition algorithm
hinges on the features used. Successful algorithms have
been built on top of hand-crafted gradient response fea-
tures such as SIFT [1] and histograms of oriented gradients
(HOG) [2]. While their successes have been demonstrated
in a variety of domains, they are fixed features that cannot
adapt to model the intricacies of a particular problem. A
competing approach, followed in this work, is to learn fea-
tures specifically tuned for a particular object recognition
task.

Consider the features shown in Figure 1. These features
for pedestrian detection were automatically learned by our
algorithm. The algorithm learns individual features corre-
sponding to areas around the head, feet, and inverted-”V”
patterns around the legs. Hand-crafting larger scale fea-
tures such as these would be quite difficult. We demonstrate

Figure 1. Large-scale features learned by the proposed model for
pedestrian detection. Each plate corresponds to a set of image
patches with highest compatibility with a feature.

that combining these task-specific features with the generic
HOG features leads to state-of-the-art performance on the
challenging INRIA pedestrian detection benchmark.

The algorithm we develop is based on the Restricted
Boltzmann Machine (RBM) [3]. The RBM is a probabilis-
tic model for a density over observed variables (e.g., over
pixels from images of an object) that uses a set of hidden
variables (representing presence of features). In the stan-
dard RBM all observed variables are related to all hidden
variables by different parameters. While this model can be
used to create features describing image patches, it does
not explicitly capture the spatial structure of images. In-
stead, we incorporate ideas from the convolutional neural
network (CNN) of LeCun et al. [4] and develop a model
called Convolutional RBM (C-RBM). We define patterns
of weight sharing amongst hidden variables that respect
the spatial structure of an entire image, and pooling oper-
ations to aggregate these over areas of an image. Chaining
these operations together in a multilayer hierarchy, we train
stacks of C-RBMs that are able to extract large-scale fea-
tures tuned to a particular object.

The main contribution of this paper is the development
of the C-RBM model. We modify the standard RBM and
learning algorithm to include spatial locality and weight
sharing. We develop these in a generative framework for
layerwise training of multilayer convolutional feature de-
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tectors. The framework learns a small set of stochastic fea-
tures that model a distribution over images of a specific ob-
ject class, which are then used in a discriminatively trained
classifier. We demonstrate experimentally that this gener-
ative feature learning for a discriminative classifier is ef-
fective, using the learned features to obtain state-of-the-art
performance on object recognition tasks.

2. Previous work
The idea of building hierarchical structures of features

for object detection has deep roots in the computer vision
literature, with the development of many such models in-
spired by allusions to the human visual system [5, 4, 6, 7, 8].
The HMAX model [6, 7] applies a layer of hand-crafted Ga-
bor filters to the input image, followed by layers of maxi-
mum pooling and comparisons to a set of stored prototypes.
Unlike stacks of C-RBMs developed in this paper, in the
HMAX model learning is not performed on the feature ex-
traction layers.

LeCun et al. [4] developed the convolutional neural net-
work (CNN), a specialized type of neural network in which
weight sharing is employed with the result that the learned
weights play the role of convolution kernels and can be in-
terpreted as a set of tuned feature detectors. In the original
CNN work, the multilayer hierarchical model was learned
using error back-propagation on a labeled training set. More
recently, Ranzato et al. [9, 8] proposed an unsupervised
energy-based algorithm for separately training layers of a
CNN. This algorithm minimizes a loss function that in-
volves encoding and decoding square errors, and regular-
ization. Also, sparsity is incorporated via sparsifying lo-
gistic, and explicit shift-invariance is built into the model.
In contrast to this line of work, the proposed C-RBM de-
fines a probabilistic model over images and features, using
the criterion of modeling the distribution over input images
rather than a non-probabilistic loss minimization. Further,
shift-invariance is implicitly handled in the C-RBM model.

Hinton et al. [10, 11] proposed a greedy layerwise pro-
cedure for training a multilayer belief network. Layers are
trained separately, and bottom-up where each layer is seen
as a RBM (more details below). This model has been ap-
plied to MNIST digits, faces, and natural image patches.
The fundamental difference between the C-RBM model and
the standard RBM is in the weight sharing and consequent
reuse of filters. As we will describe below, the C-RBM is
trained by modeling distributions over entire images rather
than image patches. As such, the set of filters learned will
implicitly tend to be shift-invariant since spatially-aware fil-
ters will be used to reconstruct entire images rather than in-
dividual patches.

Roth and Black [12] developed the Fields of Experts
(FoE) model, for use in constructing image priors. The
model defines a probability distribution over entire images

as a product of patch potentials. While similar in spirit,
FoEs and C-RBMs are different mainly because of their
distinct patch potentials. Similarly, RBM and product of
Student’s t experts [13] are different. This difference is cru-
cial because as noted in [14] the quadratic potential function
of FoE model favors filters with close to zero responses on
training images and non-zero responses elsewhere. In con-
trast, the C-RBM’s linear patch potential favors filters with
high response on training images. This leads to extracting
frequent patterns of training images e.g., oriented edges in
place of noisy filters learned in [12].

In this work we learn a set of features using a hierarchy
of C-RBMs, which we pass into a supervised learning algo-
rithm to learn a classifier for object detection. We perform
experiments on two datasets: the MNIST handwritten digits
and the INRIA pedestrian detection benchmark [2].

An enormous number of methods has been applied to the
MNIST digit dataset. The aforementioned neural network-
based approaches [9, 8] attain some of the best results on
this dataset. For smaller numbers of training images, the
patchwork of parts (PoP) model of Amit and Trouvé [15],
which learns a deformable model of edge parts, attains ex-
cellent accuracy. Our method obtains results competitive
with the state-of-the-art on MNIST.

A substantial volume of previous work on pedestrian de-
tection also exists. State-of-the-art results on the INRIA
pedestrian detection dataset include Tuzel et al. [16] and
Maji et al. [17]. Tuzel et al. use a set of covariance de-
scriptors describing the statistics of pixels in sub-regions
of a pedestrian image, and develop a classifier for the Rie-
mannian manifold on which such covariance descriptors lie.
Our work focuses on automatically learning a set of fea-
tures for detection, and obtains similar results with a generic
SVM-based classifier. Maji et al. develop an efficient algo-
rithm for using a histogram intersection kernel SVM on top
of multi-scale HOG features. This kernel significantly im-
proves results on the INRIA dataset, and could be combined
with the features we learn using the C-RBMs.

3. Restricted Boltzmann Machine
The Restricted Boltzmann Machine (RBM) [3] is a two

layer undirected graphical model that consists of a layer of
observed and a layer of hidden random variables, with a full
set of connections between them. It is a generative frame-
work that models a distribution over visible variables by in-
troducing a set of stochastic features. In this paper we asso-
ciate the RBM’s observed variables with image pixels and
hidden variables with features.

A key characteristic of the RBM is that its stochastic hid-
den units are conditionally independent given the observed
data. This property makes each hidden unit an independent
expert of a specific feature. Therefore, the RBM is an in-
stance of the product of experts model.
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The probability of observed variables in an RBM with
parameter set θ is defined according to a joint energy of
visible and hidden units E(v,h; θ), as a Gibbs distribution

p(v; θ) =
1

Z(θ)

∑
h

e−E(v,h;θ) , (1)

where v and h denote vectors of visible and hidden vari-
ables, and Z(θ) is the normalization constant.

Commonly RBMs refer to a model with binary hidden
and binary visible random variables. In this paper we call
such model a binary RBM. A modification of the binary
RBM’s energy function makes it suitable for modeling a
density over continuous visible units, while hidden units are
binary [18]. We call the second model continuous RBM. A
continuous RBM is appropriate for modeling natural im-
ages at pixel level, while a binary RBM is applicable to ob-
servable variables corresponding to hidden layer of another
RBM or quasi-binary images (e.g., handwritten digits).

The energy functions of the binary and continuous
RBMs are defined as E1 and E2 respectively,

E1(v,h; θ) = −
∑
i,j

viwijhj −
∑

i

bivi −
∑

j

cjhj , (2)

E2(v,h; θ) = E1(v,h; θ) +
1
2

∑
i

vi
2 , (3)

where variables i and j iterate over observed and hidden
units respectively, and θ = {W,b, c} is the model parame-
ter set. The matrix W determines the symmetric interaction
between pairs of hidden and visible units, and parameters b
and c are bias terms that set the unary energy of the vari-
ables.

Inference in RBMs is straightforward. In the binary
RBM conditionals are of the form

p(hj =1|v) = σ(cj +
∑

i

viwij) , (4)

p1(vi =1|h) = σ(bi +
∑

j

wijhj) , (5)

where σ(x) = 1/(1+ e−x) is the logistic sigmoid function.
For the continuous RBM, (4) still holds, but the conditional
distribution of visible units is a normal,

p2(vi|h) = N (bi +
∑

j

wijhj , 1) , (6)

where the variance is set to one because in a pre-processing
stage visible units can be scaled with an arbitrary value.

3.1. Contrastive Divergence Learning

Ideally we want to learn RBM parameters by maximiz-
ing the likelihood in a gradient ascent procedure. The gra-

dient of the log-likelihood for an energy-based model is

∂

∂θ
L(θ) = −

〈
∂E(v; θ)

∂θ

〉
data

+
〈

∂E(v; θ)
∂θ

〉
model

,

(7)
where E(v; θ) is the free energy of v, and 〈.〉data and
〈.〉model denote expected value over all possible visible
vectors v with respect to the data and model distribu-
tion. For an RBM E(v; θ) = − log

∑
h e−E(v,h;θ) and

∂E(v; θ)/∂θ =
∑

h p(h|v; θ)∂E(v,h; θ)/∂θ. Unfortu-
nately computing expected value regarding an RBM dis-
tribution involves an exponential number of terms, which
makes it intractable. However, Hinton [19] proposed an-
other objective function called contrastive divergence (CD)
that can be efficiently minimized during training as an ap-
proximation to maximizing the likelihood.

During contrastive divergence learning a Gibbs sampler
is initialized at each data point and is run for a small number
of steps (n) to obtain an approximation of the model distri-
bution. For an RBM the CD update rule of parameter wij

becomes

wij = wij + η(〈v0
ih

0
j〉 − 〈vn

ih
n
j〉) , (8)

where η is the learning rate, the random variable v0 takes
value from the data distribution, h0 is obtained according
to p(h0|v0), random variable vn takes value from sampled
data generated by n full steps of Gibbs sampling, and hn is
again obtained from p(hn|vn). It has been formally demon-
strated that minimizing the contrastive divergence is an ap-
proximation of maximizing the likelihood [19].

3.2. Layerwise Training for Stacks of RBMs

Consider learning a fully connected multilayer belief
network with a layer of observable variables v and a number
of hidden layers h1,h2, . . .. Discriminative or generative
learning of this hierarchy has two major problems. First, the
effect of the likelihood gradient on bottom layer parameters
drastically decreases as depth increases. Second, employ-
ing more hidden units might not improve the model per-
formance since some units might become inactive, which
causes their error feedback to become zero, and they stay
inactive.

To tackle these issues, Hinton et al. [20] proposed a
greedy layerwise algorithm that views a multilayer belief
network as a stack of RBMs. In this method parameters of
the bottom-most layer, θ1, are learned by training a single-
layer RBM between v and h1. Subsequently, the first layer
parameters are frozen and conditional probabilities of first
layer hidden units, p(h1|v; θ1), are used to generate data for
training a second RBM between h1 and h2. Additional lay-
ers can be added on top of the model similarly. If the size of
hidden layers does not decrease, it can be proved that train-
ing additional layers increases a variational lower bound on
the likelihood, though the likelihood might fall [20].
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Figure 2. A C-RBM with 3×3 feature kernels. The hidden units
are partitioned into K feature maps, each extracting a particular
feature denoted by wk from a 3×3 neighborhood of visible units.

4. Convolutional RBM
In the standard RBM all observed variables are related

to all hidden variables by different parameters. Using an
RBM for extracting global features from complete images is
not very helpful for object detection. Describing images in
terms of local features needs fewer parameters, generalizes
better, and offers re-usability as identical local features can
be extracted from different locations of an image. Hence,
an RBM can be trained on patches sampled from images to
create local features. However, this approach does not re-
spect the spatial relationship of image patches. Therefore,
features extracted from neighboring patches become inde-
pendent.

To tackle this problem, we introduce an extension of
RBM, called C-RBM. In a C-RBM, features extracted from
neighboring patches complement each other and cooperate
to reconstruct the image. Unlike a patch-based RBM, a
C-RBM is trained on complete images or large regions of
them to exploit spatial structure of neighboring patches. A
C-RBM has a visible and hidden layer that are connected
by sets of local and shared parameters. This connection
scheme, called convolutional, has been used in models such
as [4], but a significant difference here is that convolutional
connections are employed in a generative MRF architecture.

In the C-RBM, hidden units h are divided into K par-
titions, {hk}Kk=1, each called a feature map. Variables
of each feature map are connected via identical x×y fil-
ters to different x×y neighborhoods of observed variables
e.g., pixels (Fig. 2). Hence, binary hidden units of each
feature map represent the presence of a particular feature in
different locations of an image. Let wk denote parameters
of the filter that connect hk units and different neighbor-
hoods of image v.

In our notation, matrices are named by capital letters (or
initial capital words) and lower-case of same names repre-
sent vectors obtained by concatenating elements of the cor-

vb

w∗
K

h2 hKh1

w∗
1 w∗

2

vm

Figure 3. A C-RBM with 3×3 neighborhoods from the view of
visible units. Observable units are divided into middle vm and
boundary vb regions. We can sample from units of vm having the
configuration of hidden unit using the flipped filters {w∗

k}.

responding matrices. Thus, Wk is the kth filter (a x×y ma-
trix) and wk is its vector. To formulate the energy function
of a C-RBM, we need to denote a certain subwindow of an
image. Let V(q) be an x×y subwindow of image V with
top-left corner at pixel q, and v(q) be its corresponding vec-
tor. Later we will use hk(r) to denote a x×y subwindow of
the kth feature map with top-left corner at r.

The joint energy of hidden and observed variables in a
C-RBM is defined similar to that of an RBM as

E3(v,h; θ) = −
∑
k,q

hkq

(
wT

kv(q)

)
−
∑

i

bvi−
∑
k,q

ckhkq (9)

where q iterates over pixels of v with valid v(q), θ =
{{wk}, b, c}, and hkq denotes a hidden unit of feature map
Hk with coordinates q. Essentially, a continuous variant of
C-RBM can be defined with an energy modification similar
to (3). In the energy function of (9), identical bias terms
are applied to all visible units and hidden units of each fea-
ture map. This is due to our assumption that different vis-
ible variables have similar statistics and different features
are equally probable in different locations of images. When
this is not the case, specific bias terms can be associated
with different units in the energy function.

According to (9), the conditional probability of hidden
units is given by

p(hkq =1|v) = σ
(
wT

kv(q) + ck

)
. (10)

However, the conditional probability of visible units needs
more careful treatment, because the boundary units are
within a smaller number of subwindows compared to the
interior pixels. As an extreme case, the top left pixel only
appears in K patches, while a middle pixel may contribute
to Kxy features. This problem is caused by the asymme-
try of the C-RBM connections from the viewpoint of visible
units. To make the model symmetric, one may extend the
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C-RBM’s connections to an infinite field of hidden and visi-
ble variables, but this approach requires unbounded training
signals. Instead, we divide the visible units into two parti-
tions of boundary and middle variables. Let vb denote a
strip of boundary variables including x−1 margin pixels
from left and right, and y−1 pixels form top and bottom of
v, while vm represents the interior pixels. Clearly all nodes
in vm are connected with the same set of filters to different
feature maps as depicted in Fig. 3. These filters, denoted by
{w∗

k}, are horizontally and vertically flipped version of the
original filters.

The conditional probability of the interior observable
units is

p(vm
r =1|h) = σ

(∑
k

w∗
k
Thk(r) + b

)
, (11)

where r iterates over pixels of vm. Furthermore, the condi-
tional probabilities of boundary pixels cannot be computed
accurately as noted above.

An important characteristics of filters learned using a
C-RBM is that they are shift invariant, meaning that none
of filters can be reconstructed by translating another filter.
Shift invariance is a desired property of visual features be-
cause it can considerably decrease the number of features
needed. In a C-RBM this property arises from the fact that
each filter is applied to all overlapping neighborhoods of an
image. Hence, learning two filters that are translations of
each other, is unlikely since it does not increase the likeli-
hood of filters given the training data.

4.1. Shift-invariant Feature Learning

The C-RBM parameters {wk} and b are learned by mini-
mizing the contrastive divergence (CD). We do the required
Gibbs sampling from the C-RBM distribution by sampling
from hidden variables given the visible ones, and next from
observed variables given the hidden ones. However, we do
not have enough features describing the boundary pixels,
so we cannot sample from them precisely. Further, doing
a number of Gibbs sampling steps might cause uninforma-
tive samples of the boundary pixels to propagate over other
pixels.

Therefore, instead of maximizing the full data log-
likelihood we (approximately) maximize the log-likelihood
conditional on the image boundaries

∑
v log p(vm|vb; θ).

Under the new setup, CD learning is still possible since we
can sample from the conditional distribution p(vm|vb; θ)
by n Gibbs sampling steps. This sampling is done by con-
secutive sampling from h given v (10) and from interior
image region vm given h (11). Then the image boundary
is concatenated with the interior pixels to provide data for
another sampling step.

Pseudocode for CD training of binary C-RBMs (using
one step of Gibbs sampling) is provided in Alg. 1. Interest-

Algorithm 1 Stochastic parameter update of a binary C-
RBM. Inputs are a 2D matrix V 0, learning rate η, and K
filters {Wk}Kk=1.

for k = 1 to K do
PH0k ← σ(Filter(V 0,Wk) + ck)
Grad0k ← Filter(V 0, PH0k)
H0k ∼ Bernoulli(PH0k)

end for

V 1m ← σ(
∑K

i=1 Filter(H0k,Wk
∗) + b)

V 1← Concatenate(V 0b, V 1m)

for k = 1 to K do
PH1k ← σ(Filter(V 1,Wk) + ck)
Grad1k ← Filter(V 1, PH1k)

Wk ←Wk + η(Grad0k −Grad1k)
end for

ingly, most of the required computations can be expressed
in terms of valid filtering operations. For instance, the gra-
dient of the joint energy of a C-RBM (9) is given by

∂E3(V,H; θ)
∂Wk

= Filter(V,Hk) , (12)

where Filter(A,B) filters matrix A with filtering kernel
B. This filtering is performed without extending the input
matrix A, so the result will be smaller than A.

4.2. Sparsity

An issue in learning C-RBMs is the overcompleteness
of features. Note that because of the convolutional connec-
tions, the feature space of a C-RBM with K feature types is
almost K times overcomplete. Although CD learning can
deal with overcompleteness [21], our experiments indicate
that it cannot handle this highly overcomplete representa-
tion (more feature maps is better). What happens is that
after a few iterations of parameter update, sampled images
become very close to the original ones, and the learning sig-
nal disappears. Increasing the number of Gibbs sampling
steps is a solution to this problem; but it is time consum-
ing. Alternatively, we add sparsity to the hidden features,
which constrains the information content of each feature
map. This helps the learning signal become stronger and
more hidden units contribute in reconstruction of images.

Previously, Lee et. al [22] developed a sparse variant
of RBMs. In their model the c parameters that control the
sparsity of hidden units, are tuned at each learning itera-
tion to obtain a fixed small activation probability for hidden
units (using square loss). Also in [23], sparsity is added
to RBMs by continuously decreasing a small constant from
hidden bias terms c. Instead, In our experiments, we froze
the c parameters at a negative fixed constant and kept them
unchanged during training.

2739



4.3. Multilayer C-RBMs

Our hierarchy of C-RBMs is trained in a layerwise and
bottom-up procedure similar to a stack of RBMs. The
only difference is that after each C-RBM feature extrac-
tion layer, a deterministic subsampling layer aggregates fea-
tures over local areas of images. This subsampling is per-
formed by taking the maximum conditional feature proba-
bility, p(h1|v), over non-overlapping subwindows of fea-
ture maps. This deterministic max pooling layer makes the
features invariant to small distortions and shifts. The next
C-RBM layer is trained on the subsampled conditionals of
the lower level features. Again, another deterministic max
pooling layer is stacked on top of the feature detectors. In
our model, we stop after the fourth layer, and use the final
subsampled feature probabilities as the input of a discrimi-
native classifier.

5. Experiments and Implementation Details

We experimentally evaluated the discriminative strength
of the proposed shift-invariant feature learning method. We
performed two sets of experiments on handwritten digit
recognition (MNIST dataset) and pedestrian detection (IN-
RIA person dataset). Obtaining state-of-the-art accuracy in
these two different tasks demonstrates the robustness of our
feature learning algorithm and its capability to extract task-
dependent features.

For each task, we construct a separate four layer feature
extractor in bottom-up layerwise manner. The second and
fourth layers of this hierarchy are deterministic max pool-
ing layers that do not have any free parameter except the
subsampling widow size. The first and third layers are the
convolutional connections that are tuned by CD learning of
separate C-RBMs. Finally, a discriminative layer (SVM)
is trained on the fourth layer outputs to do classification.
For pedestrian detection, we combine our large-scale fea-
tures with fine-scale HOG descriptors [2] and train the final
SVM on the combination of these features. We employ the
RBF kernel for digit recognition and the linear kernel for
pedestrian detection.

Ranzato et. al [8] reported that although generative fea-
ture learning procedure benefits from a sparsifying non-
linearity, the final discriminative classifier achieves better
accuracy when the non-linearity is relaxed and features be-
come less sparse. Our experiments supported this relaxation
too. Thus, after the feature learning phase, we relaxed the
bias parameters and scaled down the weights to obtain less
sparse features.

For CD learning, we did batch gradient update with an
additional momentum from the previous step’s gradient. We
subdivided the training data into batches of roughly 100 ex-
amples. In the gradient descent procedure, learning rate is
important because some high and low values of η suppress

Model Error Feature size
LeNet-5, rbf-SVM [24] 0.83% 150

Multilayer C-RBM, rbf-SVM 0.67% 1225
Large CNN, supervised [9] 0.60% 3200

Large CNN, unsupervised [8] 0.64% 3200

Table 1. MNIST Error rate when all the training images used for
training. The models are not allowed to extend the training set by
transforming the images.

Training C-RBM Large CNN[8] PoP[15]
60000 0.67 0.64 0.68
20000 0.84 0.76 -
10000 1.11 0.85 .8
5000 1.45 1.52 1.52
2000 2.26 2.53 -
1000 2.86 3.21 2.14
300 5.18 7.18 3

Table 2. MNIST error rates as function of training set size used

some of C-RBM’s feature maps to become always inactive,
and in fact dismiss some of features. We tested a set of dif-
ferent values for η and selected the one with more number
of active features. In the following we present results and
specific details of MNIST and INRIA experiments.

5.1. MNIST handwritten digits

We used the full MNIST training images, without con-
sidering the digit labels, to train a four layer hierarchical
feature detector. First layer filters, depicted in Fig. 4a, and
third layer large-scale features, illustrated in Fig. 5, were
learned. Next, different amount of labeled data was pro-
vided to an RBF SVM, which was trained using the topmost
layer features. We evaluated all the models on the full test
set. Table 1 shows the error rate for the case that all the
labels used to train the models. It is hard to directly com-
pare these error rates due to many details involved in each
of the models. The feature size column gives an intuition
about the size of the models. Table 2 shows the error rate as
a function of the amount of labeled data.

(a) (b)

Figure 4. (a) First layer 5×5 filters obtained by training C-RBM
on handwritten digit images (b) First layer 7×7 filters learned from
INRIA positive training set
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Figure 5. Each row corresponds to a set of 14×14 patches from
different images that have highest compatibility with a third layer
feature. The 10 illustrated out of 50 features are selected randomly.

The Ranzato et al. [8] model, similar to ours, is a four
layer feature detector followed by a discriminative classi-
fier. Their feature detector hierarchy is trained layerwise
using an energy minimization approach. The model of [8]
is about 2.5 times larger than ours, and a two layer neu-
ral network was used as the final classifier. Although our
model delivers slightly higher error rate on MNIST, it is
much smaller and achieves lower error when fewer labeled
training data were accessible (Table 2). However, We be-
lieve by training larger models we will be able to improve
the accuracy for the full MNIST task as well.

The input of our feature extractor is a 32× 32 image
obtained by evenly zero padding an original 28×28 mnist
digit. As the first layer, we used 15 filters of 5×5 pixels,
followed by a sigmoid non-linearity. Second layer includes
maximum subsampling operators over 2×2 non-overlapping
subwindows. The third layer filters are 3-dimensional, and
operate on the 15 subsampled feature maps. Each filter has
15×5×5 parameters that encode a combination of 5×5
patches of lower level feature maps. We employed 50 of
these third layer features, followed by non-linearity and
again 2×2 max pooling operations. As the final discrim-
inative layer, We combined 10 one-vs-rest binary SVMs,
and built a ten-class digit classifier.

We set the bias terms for both first and second C-RBMs
to −6. This adds the desired sparsity to the features. In
our experiments we observed that having a non-sparse sep-
arate feature helps the features to converge better. Hence,
we added a feature with fixed 0 bias to the C-RBM features.
This additional feature usually takes care of the background,
and becomes active on the zero background regions. The
parameters of the RBF SVM (c and g) were tuned by 5-fold
cross validation for small training sets and using a valida-
tion set for larger trainings.

5.2. INRIA pedestrian detection benchmark

The INRIA person dataset is one of the most challeng-
ing datasets for pedestrian detection. This dataset includes
2416 positive training bounding boxes of size 128×64, and
1218 negative training images of different sizes. It includes
1132 positive test images of size 128×64, and 453 negative
test images. This dataset involves extreme illuminations,
occlusion, background clutter, and a range of human poses.
The results on INRIA are reported as miss rate vs. different
False Positive Per detection Window (FPPW) rates.

While in the digit recognition task background is very
simple, in the INRIA dataset several types of background
clutter appear in images including objects similar to human
parts and parts of other humans in the background. Con-
sequently, in addition to our part-like features, we need to
have a template for the human figure. This template helps
the model to rule out images containing spurious parts, and
achieve highly accurate results. We combine our features
learned from INRIA training set with well-known HOG fea-
tures because of two reasons. First, HOG features are finer-
scale and help the SVM to create the human figure template.
Second, we examine the performance gain of our features
over HOG features that are tuned to the INRIA dataset [2].

The feature learning is performed only on the INRIA
positive training set, to make the model able to extract hu-
man part features. We learned 15 filters of 7× 7 pixels,
depicted in Fig. 4b, as the first layer. A continuous C-
RBM is trained on contrast normalized 32×32 gray-scale
image patches to obtain these filters. After a max pooling
layer with 4×4 subsampling windows, we trained a binary
C-RBM on top of lower level features extracted from full
images. We learned 30 filter of size 15×5×5 for the third
layer, four of them illustrated in Fig. 1. The last max pool-
ing window size was 2×2. Next, the fourth layer outputs
were concatenated with HOG features into a feature vec-
tor. To combine the features we need to make the range of
both types the same. Thus, since all features are bounded
from below by zero, we only equalize their variance, and
learn a linear SVM on them. Fig. 6 shows a significant im-
provement over HOG results when our features were con-
catenated.

In Table 3 we compare our results with two state-of-the-
art approaches for pedestrian detection. our results are very
close to Tuzel et al. [16]. The method proposed by Maji et
al. [17] produces the best results. They proposed an efficient
algorithm for learning histogram intersection kernel SVMs.
This histogram intersection kernel is used on multi-scale
HOG features to obtain these results on INRIA. However,
this kernel can be used for other types of features e.g., our
hierarchical filter responses, to improve the results.
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Figure 6. INRIA DET curves for HOG features and the combina-
tion of HOG and our learned features.

FPPW HOG HOG + Ours Tuzel et al. Maji et al.
10−4 11.0% 6.6% 6.7% 2.5%
10−5 17.8% 13.2% 11.4% 6.7%
10−6 28.6% 22.7% N/A 16.7%

Table 3. Miss rate on INRIA dataset as a function of FPPW.

6. Conclusion

In this paper, we have described an algorithm for learn-
ing features specific to an object class. The algorithm ex-
tends the Restricted Boltzmann Machine model by intro-
ducing weight sharing to define features that are replicated
over spatial neighborhoods. By using this Convolutional
Restricted Boltzmann Machine to model the distribution of
a set of images, we learn a set of features which are tuned to
represent a particular object class. These features are tested
on the MNIST handwritten digits and INRIA pedestrian de-
tection benchmark and obtain results comparable to state-
of-the-art methods on both tasks.
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