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Abstract

This paper takes a first step towards the design and nor-
malization theory for XML documents. We show that,
like relational databases, XML documents may contain
redundant information, and may be prone to update
anomalies. Furthermore, such problems are caused by
certain functional dependencies among paths in the doc-
ument. Our goal is to find a way of converting an arbi-
trary DTD into a well-designed one, that avoids these
problems. We first introduce the concept of a func-
tional dependency for XML, and define its semantics
via a relational representation of XML. We then define
an XML normal form, XNF, that avoids update anoma-
lies and redundancies. We study its properties and show
that it generalizes BCNF and a normal form for nested
relations when those are appropriately coded as XML
documents. Finally, we present a lossless algorithm for
converting any DTD into one in XNF.

1 Introduction

The concepts of database design and normal forms are
a key component of the relational database technology.
In this paper, we study design principles for XML data.
XML has recently emerged as a new basic format for
data exchange. Although many XML documents are
views of relational data, the number of applications us-
ing native XML documents is increasing rapidly. Such
applications may use native XML storage facilities [20],
and update XML data [28]. Updates, like in relational
databases, may cause anomalies if data is redundant.
In the relational world, anomalies are avoided by using
well-designed database schema. XML has its version
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of schema too; most often it is DTDs (Document Type
Definitions), and some other proposals exist or are un-
der development [31, 30]. What would it mean then for
such a schema to be well or poorly designed? Clearly,
this question has arisen in practice: one can find com-
panies offering help in “good DTD design.” This help,
however, comes in form of consulting services rather
than commercially available software, as there are no
clear guidelines for producing well designed XML.

Our goal is to find principles for good XML data de-
sign, and algorithms to produce such designs. We be-
lieve that it is important to do this research now, as a
lot of data is being put on the web. Once massive web
databases are created, it is very hard to change their or-
ganization; thus, there is a risk of having large amounts
of widely accessible, but at the same time poorly orga-
nized legacy data.

Normalization is one of the most thoroughly researched
subjects in database theory (a survey [4] produced many
references more than 20 years ago), and cannot be re-
constructed in a single paper in its entirety. Here we
follow the standard treatment of one of the most com-
mon (if not the most common) normal forms, BCNF.
It eliminates redundancies and avoids update anoma-
lies which they cause by decomposing into relational
subschemas in which every nontrivial functional depen-
dency defines a key. Just to retrace this development
in the XML context, we need the following:

a) Understanding of what a redundancy and an up-
date anomaly is.

b) A definition and basic properties of functional de-
pendencies (so far, most proposals for XML con-
straints concentrate on keys).

c) A definition of what “bad” functional dependen-
cies are (those that cause redundancies and update
anomalies).

d) An algorithm for converting an arbitrary DTD into
one that does not admit such bad functional de-
pendencies.
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Figure 1: Examples of XML documents.

Starting with point a), how does one identify bad de-
signs? We have looked at a large number of DTDs and
found two kinds of commonly present design problems.
They are illustrated in two examples below.

Example 1.1: Consider the following DTD that de-
scribes a part of a university database:

<IELEMENT courses (coursex)>
<!ELEMENT course (title, taken_by)>
<VATTLIST course
cno CDATA #REQUIRED>
<'ELEMENT title (#PCDATA)>
<!ELEMENT taken_by (student*)>
<!ELEMENT student (name, grade)>
<!VATTLIST student
sno CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA) >

For every course, we store its number (cno), its title and
the list of students taking the course. For each student
taking a course, we store his/her number (sno), name,
and the grade in the course.

An example of an XML document that conforms to this
DTD is shown in Figure 1, (a). This document satis-
fies the following constraint: any two student elements
with the same sno value must have the same name. This
constraint (which looks very much like a functional de-
pendency), causes the document to store redundant in-
formation: for example, the name Deere for student
st1 is stored twice. And just as in relational databases,
such redundancies can lead to update anomalies: for
example, updating the name of st1 for only one course
results in an inconsistent document, and removing the
student from a course may result in removing that stu-
dent from the document altogether.

In order to eliminate redundant information, we use a
technique similar to the relational one, and split the in-
formation about the name and the grade. Since we deal
with just one XML document, we must do it by creating
an extra element type, info, for student information,
as shown below:

<'ELEMENT courses (course*, info*)>
<!ELEMENT course (title,taken_by)>
<VATTLIST course
cno CDATA #REQUIRED>
<IELEMENT title (#PCDATA)>
<!ELEMENT taken_by (studentx*)>
<!ELEMENT student (grade)>
<VATTLIST student
sno CDATA #REQUIRED>
<!ELEMENT grade (#PCDATA) >
<'ELEMENT info (number*,name)>
<!ELEMENT number EMPTY>
<VATTLIST number
sno CDATA #REQUIRED>
<1ELEMENT name (#PCDATA)>

Each info element has as children one name and a se-
quence of number elements, with sno as an attribute.
Different students can have the same name, and we
group all student numbers sno for each name under the
same info element. A restructured document that con-
forms to this DTD is shown in Figure 1, (b). Note that
st2 and st3 are put together because both students
have the same name.

This example is reminiscent of the canonical example
of bad relational design caused by non-key functional
dependencies, and so is the modification of the schema.
Some examples of redundancies are more closely related
to the hierarchical structure of XML documents.



Example 1.2: The DTD below is a part of the DBLP
database [8] for storing data about conferences.

<!ELEMENT db (conf*)>
<V'ELEMENT conf (title, issue+)>
<!'ELEMENT title (#PCDATA)>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings (author+,
title, booktitle)>
<!ATTLIST inproceedings
key ID #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>
<!ELEMENT author (#PCDATA)>
<!ELEMENT booktitle (#PCDATA)>

Each conference has a title, and one or more issues
(which correspond to years when the conference was
held). Papers are stored in inproceedings elements;
the year of publication is one of its attributes.

Such a document satisfies the following constraint: any
two inproceedings children of the same issue must
have the same value of year. This too is similar to
relational functional dependencies, but now we refer to
the values (the year attribute) as well as the structure
(children of the same issue). Moreover, we only talk
about inproceedings nodes that are children of the
same issue element. Thus, this functional dependency
can be considered relative to each issue.

The functional dependency here leads to redundancy:
year is stored multiple times for a conference. The natu-
ral solution to the problem in this case is not to create a
new element for storing the year, but rather restructure
the document and make year an attribute of issue.
That is, we change attribute lists as:

<!ATTLIST issue
year CDATA #REQUIRED>
<!ATTLIST inproceedings
key ID #REQUIRED
pages CDATA #REQUIRED>

Our goal is to show how to detect anomalies of those
kinds, and to transform documents in a lossless fashion
into ones that do not suffer from those problems.

The first step towards that goal is to introduce func-
tional dependencies (FDs) for XML documents. So far,
most proposals for XML constraints deal with keys and
foreign keys [5, 6, 31]. We introduce FDs for XML
by considering a relational representation of documents
and defining FDs on them. The relational represen-
tation is somewhat similar to the total unnesting of a
nested relation [26, 29]; however, we have to deal with
DTDs that may contain arbitrary regular expressions,
and be recursive. Qur representation via tree tuples,
introduced in Section 3, may contain null values. In
Section 4, XML FDs are introduced via FDs on incom-
plete relations [3, 21].

The next step is the definition of a normal form that dis-
allows redundancy-causing FDs. We give it in Section
5, and show that our normal form, called XNF, gener-
alizes BCNF and a nested normal form NNF [22, 23].

The last step then is to find an algorithm that con-
verts any DTD into one in XNF. We do this in Section
6. On both examples shown earlier, the algorithm pro-
duces exactly the desired reconstruction of the DTD.
The main algorithm uses implication of functional de-
pendencies (although there is a version that does not use
implication, but it may produce suboptimal results). In
Section 7, we show that for a large class of DTDs, cov-
ering most DTDs that occur in practice, the implication
problem is tractable (in fact, quadratic).

One of the reasons for the success of the normalization
theory is its simplicity, at least for the commonly used
normal forms such as BCNF, 3NF and 4NF. Hence, the
normalization theory for XML should not be extremely
complicated in order to be applicable. In particular,
this was the reason we chose to use DTDs instead of
more complex formalisms [31, 30]. This is in perfect
analogy with the situation in the relational world: al-
though SQL DDL is a rather complicated language with
numerous features, BCNF decomposition uses a simple
model of a set of attributes and a set of functional de-
pendencies.

Related work For survey of relational normalization,
see [1, 4]. Normalization for nested relations and object-
oriented databases is studied in [23, 22, 27]. Coding
nested relations into flat ones, similar to our tree tuples,
is done in [26, 29]. We use FDs and relational algebra
queries over incomplete relations using the techniques
from [3, 7, 15, 19, 21]. XML constraints (mostly keys)
have been studied in [5, 6, 12]; these constraints do
not use DTDs. XML constraints that takes DTDs into
account are studied in [11]. Finally, [2] considers normal
forms for extended context-free grammars similar to the
Greibach normal form for CFGs; these, however, do not
necessarily guarantee good XML design.

2 Notations

Assume that we have the following disjoint sets: FEl of
element names, Att of attribute names, Str of possi-
ble values of string-valued attributes, and Vert of node
identifiers. All attribute names start with the symbol
@, and these are the only ones starting with this sym-
bol. We let S and L (null) be reserved symbols not in
any of those sets.

Definition 1 A DTD (Document Type Definition) is
defined to be D = (E, A, P, R, r), where:

e F C Fl is a finite set of element types.
o A C Att is a finite set of attributes.



e P is a mapping from E to element type defini-
tions: Given 7 € E, P(1) =S or P(7) is a regular
expression a defined as follows:

a = |7 |ala]aala*

where ¢ is the empty sequence, T € E, and “|”,
“w

7 and “¢” denote union, concatenation, and the
Kleene closure, respectively.

e R is a mapping from E to the powerset of A. If
@! € R(7), we say that @[ is defined for 7.

e r € F and is called the element type of the root.
Without loss of generality, we assume that r does
not occur in P(7) for any 7 € F.

The symbols ¢ and S represent element type declara-
tions EMPTY and #PCDATA, respectively.

Given a DTD D = (E, A, P, R, r), a string w =
wy - -wy 18 a path in D if wy = 7, w; i1s in the al-
phabet of P(w;_1), for each i € [2,n — 1], and w,
is in the alphabet of P(w,_1) or w, = @[ for some
@ € R(wp—1). We define length(w) as n and last(w)
as wy. We let paths(D) stand for the set of all paths
in D and EPaths(D) for the set of all paths that ends
with an element type (rather than an attribute or S);
that is, EPaths(D) = {p € paths(D) | last(p) € E}. A
DTD is called recursive if paths(D) is infinite.

Definition 2 An XML tree T is defined to be a tree
(V, lab, ele, att, root), where

o V C Vert is a finite set of vertices (nodes).
o lab:V — FEl.

e cle:V —= StruV™*.

e att is a partial function V x Att — Str. For each
v €V, the set {@Ql € Att | att(v, @) is defined} is
required to be finite.

e root € V is called the root of T'.

The parent-child edge relation on V, {(v1,v2) |
vg occurs in ele(v1)}, is required to form a rooted tree.

Notice that we do not allow mixed content in XML
trees. The children of an element node can be either
zero or more element nodes or one string.

Given an XML tree T, a string wi---wy,, with
Wi, ..., Ws—1 € El and w, € ElU AttU{S}, is a path in
T if there are vertices vy ---v,_1 in V such that:

e v; = root, vi41 is a child of v; (1 < i < n—2),
lab(vi) = w; (1 <i<n—1).

o If w, € El, then there is a child v, of v,_; such
that lab(v,) = w,. If w, = @/, with @ € Att,
then att(vyp_1, @) is defined. If w, = S, then
vy_1 has a child in Str.

We let paths(T') stand for the set of paths in T

We next give a standard definition of a tree conforming
to a DTD (T |= D) as well as a weaker version of T
being compatible with D (T < D).

Definition 3 Given a DTD D = (E, A, P, R, r) and
an XML tree T = (V, lab, ele, att, root), we say that T
conforms to D (T |= D) if

o lab is a mapping from V to E.

e For each v € V, if P(lab(v)) = S, then ele(v)
[s], where s € Str. Otherwise, if ele(v)
[v1,...,vn], then the string lab(vy) - - -lab(v,) must
be in the regular language defined by P(lab(v)).

e att 1s a partial function from V x A to Str such that
foranyv € V and @Ql € A, att(v, @) is defined iff
@ € R(lab(v)).

e lab(root) = r.

We say that T is compatible with D (written T < D)
iff paths(T) C paths(D).

3 Tree Tuples

To extend the notions of functional dependencies to the
XML setting, we represent XML trees as sets of tuples.
While various mappings from XML to the relational
model have been proposed [14, 25], the mapping that
we use is of a different nature, as our goal is not to find
a way of storing documents efficiently, but rather find a
correspondence between documents and relations that
lends itself to a natural definition of functional depen-
dency.

Various languages proposed for expressing XML in-
tegrity constraints such as keys, [5, 6, 31], treat XML
trees as unordered (for the purpose of defining the se-
mantics of constraints): that is, the order of children
of any given node is irrelevant as far as satisfaction of
constraints is concerned. In XML trees, on the other
hand, children of each node are ordered. We first define
a notion of subsumption that disregard this ordering.

Given two XML trees Ty = (V4, laby, eleq, atty, rooty)
and Ty = (Va, laba, eles, atty, roots), we say that Ty is
subsumed by T5, written as 77 < T3 if

o V1 CVa

e rooty = roots.



L] labgrv = labl.

L] (lttz fv = (lttl.

1 X Att

e Forall v € V7, eleq (v) is a sublist of a permutation

of elea(v).

This relation is a pre-order, which gives rise to an equiv-
alence relation: 77 = Ty iff 71 < T3 and T5 < T7. That
18, Ty = T5 iff T} and T3 are equal as unordered trees.
We define [T] to be the =-equivalence class of T

We write [T = D if Ty | D for some Ty € [T]. Tt is
easy to see that for any 71 = Ts, paths(T1) = paths(T5);
hence T7 < D iff Ty <« D. We shall also write T7 < 15
when 77 < Ty and Ty A T7.

Definition 4 (Tree tuples) Given ¢ DTD D = (E,
A, P, R, r), a tree tuple ¢t in D is a function from
paths(D) to Vert U Str U {L} such that:

e Forpe€ EPaths(D), t(p) € VertU{ L}, andt(r)# L.
e For p € paths(D) — EPaths(D), t(p) € Str U {L}.
o Ift(p1) =t(p2) and t(p1) € Vert, then p1 = pa.

o Ift(p1) =L and py is a prefiz of pa, thent(ps)= L.
e {p € paths(D) | t(p) # L} is finite.

T (D) is defined to be the set of all tree tuples in D. For
a tree tuple t and a path p, we write t.p for t(p).

Example 3.1: Suppose that D is the DTD shown in
example 1.1 (a). Then a tree tuple in D assigns values
to each path in paths(D) as is shown in figure 2 (a).

We use nulls (L) in tree tuples because of the disjunc-
tion in DTDs. For example, let D = (E, A, P, R, r),
where £ = {r,a,b}, A = 0, P(r) = (alb), P(a) = ¢
and P(b) = €. Then paths(D) = {r,r.a,r.b} but no tree
tuple coming from an XML tree conforming to D can
assign non-null values to both r.a and r.b.

If D is a recursive DTD, then paths(D) is infinite; how-
ever, only a finite number of values in a tree tuple are
different from L. For each tree tuple ¢, its non-null
values give rise to an XML tree as follows.

Definition 5 (treep) Given a DTD D = (E, A, P,
R, r) and a tree tuple t € T (D), treep(t) is defined to
be an XML tree (V,lab,ele, att, root), where root = t.r
and

V = {v € Vert | Ip € paths(D) such thatv =t.p}.
If v =t.p, then lab(v) = last(p).

o If v = t.p, then ele(v) is defined to be the list
containing {t.p' | tp’ # Landp = pr,7 €
E, or p' = p.S}, ordered lexicographically.

e /fv = tp, @ € A and t.p.@ # L, then
att(v, @) =t.p.@l.

Example 3.2: The non-null values of the tree tuple ¢
shown in figure 2 (a) give rise to the XML tree shown
in figure 2 (b).

Note that treep(t) need not conform to the DTD D,
but:

Proposition 1 Ift € T(D), then treep(t) < D. |

We would like to describe XML trees in terms of the
tuples they contain. For this, we need to select tu-
ples containing the maximal amount of information.
This is done via the usual notion of ordering on tu-
ples (and relations) with nulls, [7, 15, 16]. If we have
two tree tuples tq,%5, we write t; T ¢ if whenever
t1.p is defined, then so is t3.p, and #;.p # L implies
ti1.p = ts.p. As usual, t; C t3 means t; C #5 and
t1 # to. Given two sets of tree tuples, X and Y, we write
XCYifVt e XTIy €Y ty Cts.

Definition 6 (tuplesp) Given a DTD D and an
XML tree T such that T < D, tuplesp(T) is defined
to be the set of mazimal, wrt C, tree tuples t such that
treep (t) is subsumed by T that is:

maxg {t € T(D) | treep(t) < T}.

Observe that 79 = Ty implies tuplesp(Ty) =
tuplesp (T2). Hence, tuplesp applies to equivalence
classes: tuplesp ([T) = tuplesp (T).

Proposition 2 If T <1 D, then tuplesp(T) is a finite
subset of T(D). Furthermore, tuplesp(-) is monotone:
Ty < Ty implies tuples, (T1) C° tuplesp (Ty). a

Finally, we define the trees represented by a set of tuples
X as the minimal, with respect to <, trees containing
all tuples in X.

Definition 7 (treesp) Given a DTD D and a set of
tree tuples X C T (D), treesp(X) is defined to be:

min{7 | T D and ¥t € X, treep(t) < T}.

For T' € treesp(X) and T =T, T' € treesp(X); thus
treesp(X) is a union of = equivalence classes.

The following shows that every XML document can be
represented as a set of tree tuples, if we consider it as an
unordered tree. That is, a tree T' can be reconstructed
from tuplesp (T), up to equivalence =.

Theorem 1 Gwen a DTD D and an XML tree T, if
T <1 D, then treesp (tuplesp ([T1)) = [T]. O
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Figure 2: Tree tuple ¢ and its tree representation.

The converse does not hold, but can be partially recov-
ered when treesp (X) is a single equivalence class. We
say that X C 7(D) is D-compatible if there is an XML
tree T such that T'<1 D and X C tuplesp (7).

Proposition 3 If X C T (D) is D-compatible, then
(a) There is an XML tree T such that T <1 D and
treesp(X) = [T, and (b) X T tuples (treesp(X)).

Theorem 1 and Proposition 3 are summarized in the
diagram presented in the following figure. In this dia-
gram, X 1s a D-compatible set of tree tuples. The arrow
c—» stands for the C" ordering.

treesp

X [T]

tuplesp treesp

X/
4 Functional Dependencies

We define functional dependencies for XML by using
tree tuples. For a DTD D, a functional dependency
(FD) over D is an expression of the form S; — S5
where S7, Sy are finite non-empty subsets of paths(D).
The set of all FDs over D is denoted by FD(D).

For S C paths(D), and t,t' € T(D), t.S = 1'.S means
t.p =t.pfor all p € S. Furthermore, ¢.S5 # L means
tp# LforallpeS.

If Sy = Sy € FD(D) and T is an XML tree such that
T <D and S; USs C paths(T), we say that T' satisfies
S1 — Sy (written T |= S1 — Sa) if for every t1,t5 €
tuplesp (T'), t1.51 = t2.51 and ¢1.51 # L imply #1.55 =
t5.S5. This extends to equivalence classes, since for any

FDp,and T=T' TE¢iff T E ¢.

We write T |= X, for © C FD(D), if T |E ¢ for each
¢ € X, and we write 7' = (D, ), if TE D and T | X.

Example 4.1: Referring back to Example 1.1, we have
the following FDs. cno is a key of course:

(FD1)

courses.course. @cno — courses.course.

Another FD says that two distinct student subelements
of the same course cannot have the same sno:

{ courses.course,
courses.course.taken_by.student. @sno } —
courses.course.taken_by.student. (FD2)

Finally, to say that two student elements with the same
sno value must have the same name, we use

courses.course.taken_by.student. @sno —
courses.course.taken_by.student.name.S.

(FD3)

We offer a few remarks on our definition of FDs. First,
using the tree tuples representation, it is easy to com-
bine node and value equality: the former corresponds
to equality between vertices and the latter to equal-
ity between strings. Moreover, keys naturally appear
as a subclass of FDs, and relative constraints can also
be encoded. Note that by defining the semantics of
FD(D) on T(D), we essentially define satisfaction of
FDs on relations with null values, and our semantics is
the standard semantics used in [3, 21].



Given a DTD D, aset ¥ C FD(D) and ¢ € FD(D),
we say that (D, X) implies ¢, written (D, X) F ¢, if for
any tree T with T'|= D and T |= X, it is the case that
T = ¢. The set of all FDs implied by (D, ) will be
denoted by (D, X)*.

An FD ¢ is triwialif (D,0) F ¢. In relational databases,
the only trivial FDs are X — Y, with Y C X. Here,
DTD forces some more interesting trivial FDs. For in-
stance, for each p € EPaths(D) and p’ a prefix of p,
(D,0) F p — p'. Furthermore, for p,p.@l € paths(D),
(D,0) Fp— p@l.

5 XNF: An XML Normal Form

With the definitions of the previous section, we are
ready to present the normal form that generalizes
BCNF for XML documents.

Definition 8 Given ¢ DTD D and ¥ C FD(D),
(D,%) is in XML normal form (XNF) iff for every
non-trivial FD ¢ € (D,X)% of the form S — p.@l or
S — p.S, it is the case that S — p is in (D, X)T.

The intuition i1s as follows. Suppose that S — p.@[
isin (D,X)*. If T is an XML tree conforming to D
and satisfying X, then in T for every set of values of
the elements in S, we can find only one value of p.@I.
Thus, for every set of values of S we need to store the
value of p.@[ only once; in other words, S — p must be
implied by (D, X).

In this definition, we impose the condition that ¢ is
a non-trivial FD. Indeed, the trivial FD p.@l — p.@]
is always in (D,X)*, but often p.@l — p ¢ (D,X)*,
which does not necessarily represent a bad design.

To show how XNF distinguishes good XML design from
bad design, we revisit the examples from the introduc-
tion, and prove that XNF generalizes BCNF and NNF,
a normal form for nested relations [22, 23].

Example 5.1: Consider the DTD from example 1.1 (a)
whose FDs are (FD1), (FD2), (FD3) shown in the previ-
ous section. (FD3) associates a unique name with each
student number, which is therefore redundant. The de-
sign is not in XNF, since it contains (FD3) but does not
imply the FD

courses.course.taken_by.student.@sno —

courses.course.taken_by.student.name

To remedy this, we gave a revised DTD in example
1.1 (b). The idea was to create a new element info for
storing information about student. That design satisfies
FDs (FD1), (FD2) as well as

courses.info.number.@sno — courses.info,

and can be easily verified to be in XNF.

Example 5.2: Suppose that D is the DBLP DTD from
example 1.2. Among the set ¥ of FDs satisfied by the
documents are:

db.conf.title.S — db.conf (FD4)
db.conf.issue —
db.conf.issue.inproceedings. @year ~ (FD5)

For each issue of a conference, its year is stored in every
article in that issue; thus, (D, X) is not in XNF, since

db.conf .issue — db.conf .issue.inproceedings
is not in (D, X)*.

The solution we proposed in the introduction was to
make year an attribute of issue. (FD5) is not valid
in the revised specification, which can be easily verified
to be in XNF. Note that we do not replace (FD5) by
db.conf.issue — db.conf.issue. @year, since it is a trivial
FD and thus is implied by the new DTD alone.

BCNF and XNF Relational databases can be eas-
ily mapped into XML documents. Given a schema
G(Ay,...,A;), a DTD D¢ has two element types
db and G, P(db) = G*, P(G) = ¢, and R(G) =
{@A,,...,@A,}. For a set F of FDs over G,
we define a set Xp of FDs over Dg that in-
cludes, for each A; ---A; — A; in F an FD

{db.G.@Ail,...,db.G.@Aim}m—> db.G.@A;, as well as
{db.G.@QA,,...,db.G.@QA,} — db.G (to avoid dupli-
cates).

Example 5.3: A schema G(A, B,C) can be coded by
the following DTD:

<!ELEMENT db (Gx*)>
<!'ELEMENT G EMPTY>
<'ATTLIST G
A CDATA #REQUIRED
B CDATA #REQUIRED
C CDATA #REQUIRED>

In this schema, an FD A — B is translated into
db.G. @A — db.G.@B.

Proposition 4 (G, F) is in BCNF iff (Dg,Xr) is in
XNF. a

NNF and XNF A nested schema is either a set of
attributes X, or X(G1)* ...(G,)*, where G;’s are
nested schemas. An example of a nested relation for
the schema Hy; = Country(Hs)*, Hy = State(Hs)*,
Hs = City is shown in figure 3 (a).

Nested schemas are naturally mapped into DTDs, as
they are defined by means of regular expressions. For a



| Country |

United States | State |
Toxas
Houston
Dallas
| State |
Ohio
Columbus
Cleveland

(a) Nested relation H,

| Country State City ]
United States Texas  Houston
United States Texas Dallas
United States Ohio Columbus
United States Ohio  Cleveland

(b) Complete unnesting of Hy

Figure 3: Nested relation and its unnesting.

nested schema G = X(G1)* ...
element type G with P(G) = G7,...,G}, and R(G) =
{@A,,...,@A,}, where X = {Ay,..., A,}; at the top
level we have a new element type db with P(db) = G*
and R(db) = 0. In our example the DTD is:

(Gn)*, we introduce an

<!ELEMENT db (H1x)>
<!ELEMENT H1 (H2%)>

<'ATTLIST H1 Country CDATA #REQUIRED>
<!ELEMENT H2 (H3%)>

<'ATTLIST H2 State CDATA #REQUIRED>
<!'ELEMENT H3 EMPTY>

<!'ATTLIST H3 City CDATA #REQUIRED>

The definition of FDs for nested relations uses the no-
tion of complete unnesting. The complete unnesting of
a nested relation from our example is shown in figure 3
(b); in general, this notion is easily defined by induction.
In our example, we have a valid FD State — Country,
while the FD State — City does not hold.

Normalization is usually considered for nested relations
in the partition normal form (PNF) [1, 22, 23]. A nested
relation r over X (G1)* ... (Gy)* isin PNF if for any two
tuples #1, t2 in r: (1) if £1.X = #2.X, then the nested
relation ¢;.G; and t5.G; are equal, for every i € [1,n],
and (2) each nested relation #;.G; must be in PNF, for
every 1 € [1,n]. Note that PNF can be enforced by
using FDs on the XML representation. In our example
this is done as follows:

db.H,.@Country — db.H,
{db.Hl, deng@State} — de1H2
{db.Hl.Hg, dengHg@Clty} — de1H2H3

It turns out that one can define FDs over nested rela-
tions by using the XML representation. Let U be a set
of attributes, (G; a nested relation schema over U and
FD a set of functional dependencies over (G;. Assume
that G4 includes nested relation schemas Gs, ..., G,

and a set of attributes U/ C U. For each G; (i € [1, n]),
path(G;) is inductively defined as follows. If G; = Gy,
then path(G;) = db.Gy. Otherwise, if G; is a nested
attribute of Gj;, then path(G;) = path(G;).G;. Fur-
thermore, if A € U’ is an atomic attribute of G, then
path(A) = path(G;).@QA. For instance, for the schema
of the nested relation in Figure 3, path(Hsz) = db.H1.H»
and path(City) = db.Hy.Hy.H3.@City.

We now define X pp as follows:

e For each FD A, ---A
{path(A;,),

e For each ¢ € [1,n], if A;,,..., A;  1is the set of
atomic attributes of G; and G is a nested attribute
of Gy, {path(G;), path(A;,), ..., path(A;, )} —
path(G;) isin Xpp.

Furthermore, if B;,, ..., B;, is the set of atomic at-
tributes of G, then {path(B;,), ..., path(B;,)} —
path(G1) is in Xpp.

im - A; € FD,
.., path(A; )} — path(4;) is in

Note that the last rule imposes the partition normal
form.

A Nested Normal Form (NNF) for nested relations was
proposed in [22; 23]. Here we use the presentation of
[22] restricted to FDs only. Given a nested relational
schema GG and a subschema R, for each atomic attribute
A of R we define ancestor(A) as the union of the atomic
attributes of all the nested relation schemas mentioned
in path(R). For instance, ancestor(State) = {Country,
State}. If FD is aset of FDs over GG, then say that it isin
NNF if for each non-trivial FD X - A (A € U),if X —
A € (G, FD)* | then X — ancestor(A) € (G, FD)*. As
before, (G, FD)* stands for the set of all FDs implied
by (G, FD).

The result below says that a nested relational schema
(G, FD) isin NNF if and only if its XML representation,



that consists of a DTD Dg and a set of FDs X pp as
defined above, 1s in XNF.

Proposition 5 (G, FD) is in NNF iff (Dg,Xrp) is in
XNF. O

6 Normalizing XML Documents

We show how to transform a DTD D and a set of FDs &
into a new specification (D', ¥') that is in XNF and con-
tains the same information. Throughout the section, we
assume that the DTDs are non-recursive (the recursive
case can be handled in a very similar fashion), and that
all FDs are of the form: {q,p1.@Qly,...,p,.@Ql,} — p.
That is, they contain at most one element path on the
left-hand side. Note that all the FDs we have seen
so far are of this form. While constraints of the form
{q,¢', ...} are not forbidden, they appear to be quite un-
natural, and can be easily eliminated by creating a new
attribute @/ and splitting {q,¢'}US — pinto ¢’.@Ql — ¢’
and {¢,q. @} US — p. Furthermore, we assume that
paths do not contain the symbol S (since p.S can always
be replaced by a path of the form p.@).

Given a DTD D and a set of FDs X, a non-trivial
FD S — p.@ is called anomalous, over (D,X), if
it violates XNF; that is, S — p.@ € (D,X)* but
S — p ¢ (D, X)*. A path on the right-hand side of
an anomalous FD 1is called an anomalous path, and the
set of all such paths is denoted by AP(D,X).

The algorithm combines two basic ideas presented in the
introduction: creating a new element type, and moving
an attribute.

Moving attributes Let D = (E, A, P, R, r) be aDTD,
p.@l € paths(D), ¢ € EPaths(D) and @m be an at-
tribute. The DTD D[p.@[ := ¢q.@m] is constructed by
moving the attribute @/ from the set of attributes of
last(p) to the set of attributes of last(q), and changing
its name to @m, as shown in the following figure.

last(p)
last(q)
@] a
; m

Formally, D[p.@Ql := q.@m] is (E, A, P, R, r), where
A" = AU {@m}, R'(last(q)) = R(last(q)) U {@m},
R'(last(p)) = R(last(p)) \ {@!} and R/(7') = R(r’) for
each 7 € E \ {last(q),last(p)}. This is the same kind
of transformation we saw in moving the year attribute
in the DBLP example.

Given a set of FDs X over D, a set of FDs X[p.@!/ :=
q.@m] over D[p.@l := ¢q.@m] consists of all FDs S; —
Sy € (D, )t with S; U Sy C paths(D[p.@l := q.@m]).

Creating new element types Let D = (E, A, P, R,
r) be a DTD, S = {q, p1.@ly, ..., p,.@l,} C paths(D)
such that n > 1 and ¢ € EPaths(D). We construct
a new DTD D’ by creating a new element type T as
a child of the last element of ¢, making =y, ..., 7, its
children, @/ its attribute, and @l;,..., @/, attributes
of 7, ..., 7,. Furthermore, we remove @[ from the set
of attributes of the last element of p, as shown in the
following figure.

Formally, if {r, 7, ..., 7} are element types which
are not in E, the new DTD, denoted by D[p.@l :=
q.7[m.Qly, ..., 1,.@L,, @], is (E', A, P/, R', r), where
E'=FU{r, m,..., ™} and

1. P'(last(q)) = P(last( )), 7™, P'(r) =
P'(r) = v for each i € [1,n], and P'(7
for each 7 € E'\ {last(q)}.

2. R'(r) = {@!}, R'(m;) = {@l;}, for each i € [1,n],
R (last(p )) R(last(p))\{@!} and R'(7') = R(')
for each 7 € E'\ {last(p)}.

*
aTna

= P(7)

o
)

Given D' = D[p.@Ql := ¢q.7[r.Qly,..., 7,.@Ql,, @/]] and
a set X of FDs over D, we define a set X[p.@Ql :=
q.7[m. @l ..., Tn.@ln,@l]] of FDs over D' as the set
that contains the following:

1. 81 — Sy € (D, X)* with S; U Sy C paths(D');

2. Each FD over q, p;, p;.@l; (i € [1,n]) and p.@!
is transferred to 7 and its children. That is, if
SIUS2 g {qa P -y Pn, p1~@lla R pn@lna p@l}
and S; — S € (D,X)*, then we include an FD
obtained from S; — S by changing p; to q.7.7;,
p;.@Ql; to q.7.7;.@Ql;, and p.@[ to ¢q.7.QI,



(1) TIf (D,X)is in XNF then return (D, X), other-
wise go to step (2).

(2) TIf there is an anomalous FD S — p.@/ with
q € EPaths(D) NS and ¢ — S € (D, )T,
then:

D := D[p.@Ql := q.@m]
Y = X[p.Ql := q.Qm)]
where @m is fresh, and go to step (1).

(3) Choose a (D, X)-minimal anomalous FD S —
p.@Ql where S = {q,p1.@ly, ..., p,.@l,}. Cre-
ate fresh element types 7, 71, ..., T,; set

D := D[p.Ql := q.7[r.Q@Qly, ..., 1,.@l,, @[]
Y =X[p.@Ql = q.7[1.Qly, ..., 7,,.Ql,, @[]
and go to step (1).

Figure 4: XNF decomposition algorithm.

3. {q, q.7.m.Qly, ...
q.7.7:.@QlL;} = q.7.7; for 1 € [1,n]

, q.7.7,.Q@Ql,} — ¢.7, and {q.7,
1

This construction, when applied to the student example
from the introduction, yields exactly the revised DTD,
with 7 being info, @/ being name, 7 being number and
@/, being sno.

We are not interested in applying this transformation
to an arbitrary anomalous FD, but rather to a minimal
one. In the relational context, a minimal FD is X — A
such that X’ 4 A for any X’ ; X. In our case the
definition is a bit more complex to account for paths
used in FDs. We say that {q,p1.@Ql1,...,p,.@l,} —
po.@ly is (D, X)-minimal if there is no anomalous FD
S" — pi.@l; € (D,X)* such that i € [0,n] and S’ is
a subset of {q,p1,...,Pn,po-@Qlo, ..., pn.@l,} such that
|S"|< n and S’ contains at most one element path.

Proposition 6 Let (D',X') be constructed from (D, X)
by using either the “mouving attributes” construction, or
the “creating new element types” construction applied to
a (D,X)-minimal FD. Then AP(D',X') ; AP(D,Y).
O

The algorithm The algorithm applies the two trans-
formations until the schema is in XNF, as shown in fig-
ure 4. It involves FD implication, that is, testing mem-
bership in (D, X)* (and consequently testing XNF and
(D, ¥)-minimality), which will be described in Section
7. Since each step reduces the number of anomalous
paths (Proposition 6), we obtain:

Theorem 2 The XNF decomposition algorithm termi-
nates, and outputs a specification (D,X) in XNF.

Mf L can be a value of p.@l in tuples ;(T), the definition must be
modified slightly, by letting P'(7) be 7, ,..., 7%, (7'|€), where 7' is
fresh, making @! an attribute of 7', and modifying the definition of
FDs accordingly.

Even if testing FD implication is infeasible, one can
still decompose into XNF, although the final result may
not be as good as with using the implication. A slight
modification of the proof of Proposition 6 yields:

Proposition 7 Consider a simplification of the XNF
decomposition algorithm which only consists of step (3)
applied to FDs S — p.@l € X, and wn which the defini-
tion of X[p.@Ql := ¢q.7[1.Qly, ..., 1,.Ql,, @]] is modi-
fied by using ¥ instead of (D, X)*. Then such an algo-
rithm always terminates and its result is in XNF.

Lossless Decompositions To prove that our transfor-
mations do not lose any information from the docu-
ments, we define the concept of lossless decomposi-
tions similarly to the relational notion of “generic dom-
inance” from [18]. That notion requires the existence of
two relational algebra queries that translate back and
forth between two relational schemas. Adapting this
definition poses two problems in our setting: first, no
XML query language yet has the same “yardstick” sta-
tus as relational algebra for relational databases, and
second, our transformations generate new node ids,
which cannot be described by generic queries.

To deal with this, we use the relational represen-
tation via the tuplesp(-) operator, and say that
Dy, Xa) is a lossless decomposition of (D1, Y1), written
D1, 31) <iossless (Da, Xa), if there exist relational alge-
bra queries @1, @, @2 such that for any T' |= (D1, %4),
there exists T’ |= (D2, X2) such that the diagram below
commutes:

T T
tuplesp, l 0 ltuplesp2
1

tuples, (T T_/’ Q1 (tuplesy, (T)) <Q_2 tuplesD2(T/)
1

The goal of query @5 1s to eliminate extra node ids that
may occur in 7" but not in T'; then @1 and @} go back
and forth between tuplesp (1) and the result of Q3 on
tuplesp (T'). As relations of the form tuplesp, (T) may
contain nulls, we use the semantics of Codd tables [1, 19]
for evaluating relational algebra queries on them.

Proposition 8 (a) The relation <jgssiess 15 transitive.
(b) If (D', X} is obtained from (D,X) by using one of
the transformations from the normalization algorithm,
then (Da E) Slossless (D/; El)

Thus, if (D', ') is the output of the normalization al-
gorithm on (D, X), then (D, X) <jossless (D', L'). More-
over, the transformations on the documents can be im-
plemented in XML query languages [13, 32].



7 Reasoning about FDs

In the previous section we saw that 1t is possible to loss-
lessly convert a DTD into one in XNF. The algorithm
used FD implication. We now show that for most classes
of DTDs used in practice, this problem is tractable. We
assume, without loss of generality, that all FDs have a
single path on the right-hand side.

Typically, regular expressions used in DTDs are rather
simple. We now formulate a criterion for simplicity
that corresponds to the usual practice of writing reg-
ular expressions in DTDs. Given an alphabet A, a reg-
ular expression over A is called trivial if it of the form
51,5 Sn, where for each SZ there 1s a letter a; € A such
that s; is either a; or ;7 (which abbreviates a;|¢), or
ai or a}, and for i # j, a; # a;. We call a regular ex-
pression s simple if there is a trivial regular expression
s’ such that any word w in the language denoted by s
is a permutation of a word in the language denoted by
s', and vice versa.

For example, (a|blc)* is simple: a*, b*, ¢* is trivial, and

every word in (a|ble)* is a permutation of a word in
a*,b*, c¢* and vice versa. A DTD is called simple if all
productions in it use simple regular expressions over
E U {s}. Simple regular expressions are prevalent in
DTDs. For instance, the Business Process Specification
Schema of ebXMT [10], a set of specifications to conduct
business over the Internet, 1s a simple DTD. Part of this
schema is showed in figure 5

Theorem 3 The wmplication problem for FDs over
stmple DTDs s solvable in quadratic time.

In a simple DTD, disjunction can appear in expressions
of the form (ale) or (alb)*, but a general disjunction
(alb) is not allowed. We now show that the implica-
tion problem remains tractable if the number of such
unrestricted disjunctions is small.

A regular expression s over an alphabet A is a simple
disjunction if s = ¢, s = a, where a € A, or s = s1|s2,
where s1, s are simple disjunctions over alphabets Ay,
Ag and Ay NAs = 0. ADTD D= (E, A, P, R, r) is
called disjunctive if for every 7 € E, P(7T) = s1,...,8m,
where each s; is either a simple regular expressron or a
simple disjunction over an alphabet A; (i € [1,m]), and
A;nNA; =0 (i,j € [1,m] and ¢ # j). This generalizes
the concept of a simple DTD.

With each disjunctive DTD D, we associate a num-
ber Np that measures the complexity of unrestricted
disjunctions in D. Formally, for a simple regular ex-
pression s, Ny = 1. If s is a simple disjunction,
then N is the number of symbols | in s plus 1. If
P(1) = s1,...,8n, then Ny is 1, if s1,...,s, is a sim-
ple regular expressmn N, = |{p € paths(D) | last(p) =
T} x N, x- - -x Ny, otherwise. Finally, Np = [[, .5 N-

Theorem 4 For any fizred k > 0, the FD implication
problem for disjunctive DTDs D wzth Np <k- log(|D|)
s solvable in polynomial time.

There are some classes of DTDs for which the implica-
tion problem is not tractable. One such class consists
of arbitrary disjunctive DTDs. Another class is that of
relational DTDs. We say that D is a relational DTD if
for each XML tree T' = D, if X is a non-empty subset
of tuplesp(T), then treesp(X) = D.

This class contains regular expressions like the one be-
low, from a DTD for Frequently Asked Questions [17]:

<!ELEMENT section (logo*, title, (gna+ | g+ |
(p | div | section)+))>

There exist mnon-relational DTDs (for example,
<!ELEMENT a (b,b)>). However:

Proposition 9 Every disjunctive DTD is relational.

Theorem 5 The FD implication problem over rela-
tional DTDs and over disjunctive DTDs is coNP-
complete. a

Relational DTDs have the following useful property
that lets us establish the complexity of testing XNF.

Proposition 10 Given a relational DTD D and a set
Y of FDs over D, (D,X) is in XNF iff for each non-
trivial FD of the form S — p.@l or S — p.S in X,
S—pe(DX)t. O

From this, we immediately derive:

Corollary 1 Testing if (D,X) is in XNF can be done
n cubic time for stmple DTDs, and s coNP-complete
for relational DTDs. a

8 Future Research

The decomposition algorithm can be improved in vari-
ous ways, and we plan to work on making it more effi-
cient. We also would like to find a complete classifica-
tion of the complexity of the FD implication problem
for various classes of DTDs.

As prevalent as BONF is, it does not solve all the prob-
lems of relational schema design, and one cannot expect
XNF to address all shortcomings of DTD design. We
plan to work on extending XNF to more powerful nor-
mal forms, in particular by taking into account multi-
valued dependencies which are naturally induced by the
tree structure.



<!ELEMENT ProcessSpecification (Documentation*, SubstitutionSet#*, (Include | BusinessDocument
ProcessSpecification | Package | BinaryCollaboration | BusinessTransaction |
MultiPartyCollaboration)*)>

<I1ELEMENT Include (Documentation*)>

<!ELEMENT BusinessDocument (ConditionExpression?, Documentation*)>

<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution | Documentation)*>

<!'ELEMENT BinaryCollaboration (Documentation*, InitiatingRole, RespondingRole, (Documentation |
Start | Transition | Success | Failure | BusinessTransactionActivity | CollaborationActivity

Fork |

Join) *)>

<!ELEMENT Transition (ConditionExpression?, Documentation*)>

Figure 5: Part of the Business Process Specification Schema of ebXML.
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