
The Hyperion Project:
From Data Integration to Data Coordination

Marcelo Arenas1 Vasiliki Kantere1 Anastasios Kementsietsidis1

Iluju Kiringa2 Renée J. Miller1 John Mylopoulos1

1 Dept. of Computer Science 2 School of Inf. Technology
University of Toronto and Engineering

University of Ottawa

ABSTRACT
We present an architecture and a set of challenges for
peer database management systems. These systems team
up to build a network of nodes (peers) that coordinate
at run time most of the typical DBMS tasks such as
the querying, updating, and sharing of data. Such a
network works in a way similar to conventional mul-
tidatabases. Conventional multidatabase systems are
founded on key concepts such as those of a global schema,
central administrative authority, data integration, global
access to multiple databases, permanent participation
of databases, etc. Instead, our proposal assumes total
absence of any central authority or control, no global
schema, transient participation of peer databases, and
constantly evolving coordination rules among databases.
In this work, we describe the status of the Hyperion
project, present our current solutions, and outline re-
maining research issues.

1. INTRODUCTION
The concept of peer-to-peer (P2P) computing is be-

ing touted as an architecture for Internet networking
that favors a direct and dynamic node-to-node model
of communication. Peers use a dedicated naming space,
act as both clients and servers, and have primary re-
sponsibility for the content provided over the network.
Peers are also autonomous with respect to the control
and structuring of the network. New peers may join or
leave the network at any time. Once a peer joins the
network, it can establish acquaintances with other peers.
Acquainted peers can then share and coordinate data.
Of course, acquaintances are transient too. Though the
P2P paradigm has found popular applications, mainly
for file sharing (e.g., Gnutella [1] and Kazaa [2], to name
just the most celebrated), P2P applications generally
treat the shared item, e.g. a file, as a unit and do not
manage its content. More specifically, existing P2P ap-
plications still largely ignore data management issues.

In this paper, we present an architecture for peer data-
base management systems (in the sequel: PDBMSs).

This architecture instantiates the vision of logical P2P
data coordination laid out in [4]. We envision a PDBMS
as a conventional DBMS augmented with a P2P interop-
erability layer. This layer implements the functionality
required for peers to share and coordinate data with-
out compromising their own autonomy. Elements of
this functionality may be incorporated into conventional
DBMS, but for conceptual clarity we present it here as
a separate layer. The P2P layer allows a PDBMS to es-
tablish or abolish an acquaintance (semi-)automatically
at runtime, thereby inducing a logical peer-to-peer net-
work.

Our focus in this work is on the specification and man-
agement of the logical meta-data that enables data shar-
ing and coordination between independent, autonomous
peers. Key elements of our vision include the following.

• We consider data coordination in which each source
behaves as an access point for both local and shared
data. Unlike more traditional data integration
systems [11], we are not considering the problem of
providing uniform access to a collection of hetero-
geneous data. Rather, each peer defines an inde-
pendent access interface, and we consider the spec-
ification and management of meta-data required
to coordinate and share data. Data coordination
may involve the reconciliation and integration of
data at query time or the maintenance of con-
sistency in data contained within different peers.
To support the former, we present new techniques
that enable each peer to define its own view of
shared data using constraints placed not on the
content of acquainted peers, but on the way in
which peers exchange data. To support the lat-
ter, we present new techniques for specifying data
propagation and coordination policies.

• We consider data sharing both within and across
domains. While views and GLAV (global-and-
local-as-view) mappings have been used to inte-
grate and exchange data within a common do-
main [5, 11, 15], we consider what meta-data is

required to share data across multiple worlds [9,
12]. We present new solutions for specifying and
managing mapping tables [9]. A mapping table as-
sociates values residing in different peers and pro-
vides a lightweight mechanism for sharing data.

• We propose a distributed active rule mechanism
which uses mapping tables and mapping expres-
sions. Unlike similar proposals for the conven-
tional multi-database setting (e.g., [18]), we do not
deal with a setting that is static. Instead, we have
a highly dynamic and scalable setting. Very few
of the existing solutions can cope with this ex-
treme requirement imposed on the peer network
in terms of event detection, condition evaluation,
and action propagation.

In this paper, we present an architecture that per-
mits lightweight coordination between peers as their
data evolve. We also identify the challenges encoun-
tered in fleshing out the main components of the archi-
tecture. In addition, we outline techniques for some of
these challenges, namely for query answering and data
coordination.

2. MOTIVATING EXAMPLE
We consider an example drawn from the domain of

airline-ticket reservations. In such a setting, peer data-
bases belong to travel agencies and airlines. Acquain-
tances are established between affiliated travel agencies,
between travel agencies and airlines, and between part-
ner airlines or subsidiaries thereof. In the example, we
consider two databases that belong to two partner air-
lines. Their schemas are shown below.

AA Passenger (pid, name)
AA Flight (fno, date, dest, sold, cap)
AA Ticket (pid, fno, meal)

(a) Schema for the Alpha-Air Airline

BA Fleet (aid, type, capacity)
BA Passenger (pid, name)
BA Flight (fno, date, to, sold, aid)
BA Reserve (pid, fno)

(b) Schema for the Beta-Air Airline

Alpha-Air stores for each passenger her identifier and
name. For each flight it stores the flight number, date,
destination city, number of tickets sold, and the capacity
of the flight. For simplicity, we assume that all flights
shown have the city of Toronto as their origin. Finally,
for each ticket sold, the airline stores the passenger
identifier, the flight number, and the passenger’s meal
preference. Beta-Air stores information about its fleet,
namely, the identifier of each plane along with its type
and capacity. In addition, it stores the identifier and
name of each passenger, and the flight number, date,
code of destination airport, tickets sold and identifier of
the airplane used for each flight. Again, for simplicity
we assume that all flights leave from the Toronto air-
port. Finally, for each reservation, Beta-Air stores the

passenger identifier and the corresponding flight num-
ber. Figure 1 shows instances of the two databases.

The two airlines can start their interaction by estab-
lishing an acquaintance. Through this acquaintance,
the airlines aim to both exchange general flight and
passenger information and to coordinate their flights to
common destinations. However, since their two schemas
differ, some form of integration or reconciliation is nec-
essary before any data is exchanged. Traditionally, data
integration and exchange between heterogeneous sources
is provided mainly through the use of views that map
and restructure data between different schemas [11]. As
such, views have been effectively used as constraints on
the contents of sources where the contents of one source
determines the virtual or materialized contents of an-
other. However, in a peer-to-peer setting we assume
that the contents of sources are independent of one an-
other and each source brings into the system its own
data. In our example, each airline has its own clientele
and its own schedule of flights. Thus, what is needed
are mechanisms that support the meaningful exchange
of information between independent sources. Moreover,
such mechanisms should impose constraints on the ex-
change of information between sources instead of on the
sources themselves.

In Hyperion, we propose to use mapping expressions
and mapping tables [9] to support information exchange
between peers. Figure 2 shows examples of both con-
structs. Specifically, Figure 2(a) shows an example of
a schema mapping expression. Schema mapping ex-
pressions are generalizations of GLAV expressions that
can be constructed manually or by automated tech-
niques [15]. However, we do not use these expressions to
define or restrict the set of valid instances of the peers.
Rather, we use these expressions as constraints on the
exchange of data. For example, the expression shown
in the figure states that, at query time, every passenger
of Beta-Air is also considered a passenger of Alpha-Air.
This is not to say that every passenger in an instance
of the former schema must also appear in the latter.
Instead, it means that in the event of a query in the
Alpha-Air database that asks for all its passengers a
query must also be executed in the Beta-Air database
to retrieve all the passengers that reside there.

Our previous work has shown the benefits of using
mapping tables [9]. In brief, mapping tables respect
peer autonomy and can be used for the integration of
seemingly unconnected databases, referred to as medi-
ation across multiple worlds [12]. Moreover, although
mapping tables provide elementary schema-level associ-
ations, their primary use is in defining correspondences
between values in different peers. This is of particular
importance in P2P systems where there are no naming
standards, as peers depend on the use of internal nam-
ing conventions. Our example illustrates these charac-
teristics. Figures 2(b), (c) and (d) show three mapping
tables between the two airline databases. Mapping ta-
ble 2(b) associates city names in the Alpha-Air database
to airport codes in the Beta-Air database, while table
2(c) associates flight numbers of the two databases when
the corresponding flights have the same destination city.

AA Passenger AA Ticket
pid name
1 Renee
2 Verena
3 Iluju

pid fno meal
1 AA210 Meat
2 AA378 Veg.

AA Flight
fno date dest sold cap
AA210 01/05/03 L.A. 120 256
AA341 01/15/03 N.Y. 160 160
AA378 01/21/03 S.F. 90 124

BA Passenger BA Fleet
pid name
1 John
2 Renee

aid type capacity
B-1 Boeing 747 340
B-2 Boeing 737 130
B-3 Boeing 737 107

BA Flight BA Reserve
fno date to sold aid
BA1023 01/07/03 LAX 67 B-3
BA1078 01/15/03 JFK 118 B-2
BA1109 01/15/03 ORD 164 B-1

pid fno
1 BA1023
2 BA1078
2 BA1109

(a) Alpha-Air Database Instance (b) Beta-Air Database Instance

Figure 1: Instances for the two airline databases

AA Passenger(p, n) ⊇ BA Passenger(p, n)

Mapping expression 2(a)

dest to
N.Y. JFK
N.Y. LGA
L.A. LAX
L.A. ONT

fnoAA fnoBA

AA210 BA1023
AA341 BA1078
AA341 BA1080

Mapping table 2(b) Mapping table 2(c)

dateAA dateBA

X X

Mapping table 2(d)

Figure 2: Mapping tables and expressions

Finally, table 2(d) uses a variable (X) to represent the
identity function, i.e., each date value of the first data-
base is mapped to itself in the second. Currently, the
creation of mapping tables is primarily a manual pro-
cess. However, we can envision settings where the tables
are created semi-automatically by employing techniques
from data-mining. In our own work [9], we are able,
given an initial set of tables, to automatically create
new tables that are inferred from this initial set.

Once the two databases are acquainted, and mapping
tables or expressions are in place, the peers can use each
other’s contents during query answering. For example,
assume that a user of the Alpha-Air database intends
to retrieve the dates of flights destined for Los Angeles
with a query such as the following:

q: select date
from AA Flight
where dest = “L.A.”

In our framework, query q is translated into a query
q′ that is then executed in the context of the Beta-Air
database to retrieve semantically relevant information.

The translation is guided by any available mapping ex-
pressions and mapping tables. The translated query q′

may have the following form:

q′: select date
from BA Flight
where to = “LAX” OR to = “ONT”

Note that we can also use these mapping tables to sup-
port scenarios where a query in Beta-Air concerning
dates of flights to “LAX” retrieves dates of flights to
“L.A.” from the Alpha-Air database.

Apart from querying, peers are also able to coordi-
nate their data with those of their acquaintances. For
some applications, run-time reconciliation will not be
sufficient and we will want to reconcile the data as it
is updated. In this example, suppose the two partner
airlines wish to reconcile their data to conform to the
mapping expression of Figure 2(a). Using this map-
ping expression, we can derive a rule to ensure the two
databases stay consistent as new passengers are entered
into the Beta-Air peer. To enforce this rule, and other
similar business rules, we propose a mechanism which
uses event-condition-action (ECA) rules with the dis-
tinctive characteristic that events, conditions and ac-
tions in rules refer to multiple peers. An example of
such an ECA rule is given below (expressed for conve-
nience as an SQL trigger).

create trigger passengerInsertion
after insert on BA Passenger

referencing new as NewPass
for each row
begin

insert into AA Passenger values NewPass
in Alpha-Air DB;

end

Notice that an event that is detected in the Beta-Air
database causes an action to be executed in the Alpha-
Air database. Specifically, each passenger insertion in
the BA Passenger relation generates an event which trig-
gers the above rule. The rule has no condition while
its action causes the insertion of an identical passenger

.
.

. acquaintances

query
local

global

A
M

RM

QM

P
2
P

A
P

Ianswer

Local
DB

Mapping
Tables

Mapping

P
eer

D
B

P2P Layer

Expressions

Figure 3: Architecture for a PDBMS

tuple in the AA Passenger relation. In this work, we
consider rule evaluation and decomposition techniques
amenable to P2P environments.

3. P2P INFRASTRUCTURE
In this section, we present the components that form

the backbone for information sharing in our architec-
ture. This section also summarizes our past work in the
Hyperion project. Then, in the next section, we show
how the existing system components are to be used to
support higher-level services, namely, query answering
and active peer coordination.

3.1 Peer Architecture
Figure 3 depicts the architecture of a PDBMS with its

main functionalities. A PDBMS consists of three main
components: an interface (P2P API), a P2P layer, and
a DBMS. The latter component contains the local data
and the set of mapping tables and expressions that are
used to exchange data with other peers, while the P2P
API is the user interface to the whole system. Through
the P2P API the user is able, among other things, to
pose queries and specify whether these are to be exe-
cuted only locally or they should also consider the data
residing in other peers. The P2P layer in Figure 3 is the
key component of the whole system. Its basic modules
and their roles have as follows:
Acquaintance manager (AM): This module is re-
sponsible for semi-automatically establishing acquain-
tances among PDBMSs. In more detail, we say that an
acquaintance is established between two PDBMSs when
a set of mapping tables or expressions is created between
them. To create these constructs, the AM relies both
on user input and on automated tools for the creation of
mapping tables [9]. Using similar functionality, the AM
also manages mapping tables and expressions since we
do not assume that these are static. Indeed, through-
out the lifetime of an acquaintance, mapping tables and
expressions change, contributing to the dynamic nature
of the system.

Query manager (QM): An important assumption in
our approach is that each query is defined with respect
to the schema of a single peer. Our thesis is that a user
need only be aware, and knowledgeable, of the local
schema. In terms of execution, however, queries are
classified into two categories. A local query is executed
using only the data in the local peer, while a global query
uses the P2P network to complement or reconcile locally
retrieved data with data that reside in other peers.

In the case of global queries, the QM rewrites a query
posed in terms of the local schema to a query over the
schema of acquainted peers. To do so, the QM uses the
services of the AM. Specifically, the AM provides the
mapping tables and expressions that are to be used for
the rewriting.
Rule manager (RM): The objective of the RM is to
enforce consistency policies between peers. The policies
are declaratively specified through the P2P API and
have the form of ECA rules.

3.2 Mapping tables
Mapping tables and mapping expressions are the ba-

sic tools for exchanging information between peers. In
what follows we offer an overview of our work on map-
ping tables [9, 10].

Consider two peers that expose attributes U and V
respectively. A mapping table is then a relation over
the attributes X ∪ Y , where X ⊆ U and Y ⊆ V are
non-empty sets of attributes from the two peers [9]. For
example, a mapping table from a set of attributes X =
{fnoAA} to a set of attributes Y = {fnoBA} is shown in
Figure 2(c). A vertical double line is used to separate
the two sets of attributes.

To represent different semantics for mapping tables
and values within, we follow the standard convention
of using variables. For instance, Figure 2(d) shows a
mapping table containing variables. Every valuation of
these variables gives us a value of dateAA that can be
mapped to a value of dateBA. Since this mapping table
contains the same variable in its two columns, every
valuation gives us a tuple of the form (a, a), where a is
a constant in the domains of dateAA and dateBA. Thus,
in this case variables offer a compact and convenient
way of representing the identity mapping table.

Mapping tables do not restrict the content of peer
databases. Instead, they restrict the ways in which in-
formation can be exchange between them. Consider re-
lations r1 and r2 residing in peers P1 and P2 respec-
tively, and also consider a mapping table m from X to
Y , where X and Y are subsets of the set of attributes
exposed by P1 and P2, respectively. Given a valuation
ρ of the variables of m, a value x ∈ πX(ρ(m)) is asso-
ciated with a certain set of values in the domain of Y ,
namely, with the set πY (σX=x(ρ(m))). As a result, a
tuple t1 ∈ r1 such that t1[X] = x can be mapped, with
respect to table m and valuation ρ, only to tuples t2 ∈ r2

for which t2[Y] ∈ πY (σX=x(ρ(m))). In general, to know
whether a value in the domain of X can be mapped to
a value in the domain of Y we need to considered all
possible valuations of the variables of m.

By treating mapping tables as constraints on the ex-

change of information between peers, we are able to
automatically check the consistency of a set of map-
ping constraints and infer new constraints. These func-
tionalities have been shown to be of practical interest
in a number of situations including the establishment
of new acquaintances [9]. Even more importantly, we
have shown that the above functionalities can be im-
plemented efficiently by algorithms whose running time
scales gracefully as the number of peers or mapping ta-
bles increases.

4. P2P SERVICES
In this section we offer an overview of the higher-level

services provided to peers, in the context of Hyperion.
We also outline the future research directions of Hype-
rion and identify some of the main research issues.

4.1 P2P Querying
Querying constitutes the most important service pro-

vided in a P2P network. For file-sharing systems, like
Gnutella [1] and Kazaa [2], querying involves simple key-
word search. So, queries are of the form: “Retrieve all
files named X (or containing the phrase X)”. This sim-
ple form has proven so effective that there has been a
flurry of research on making this kind of search more
efficient and scalable [16; 17, and others].

In our work, the emphasis is on offering a finer-grain
query facility that is comparable to that of conventional
DBMS. As illustrated by our example, to accomplish
this we query translation or rewriting. In the literature,
view expressions between heterogeneous schemas consti-
tute the main vehicle for rewriting queries [11]. We are
investigating mechanisms for query rewriting that rely
on both mapping tables and expressions. The work re-
ported in [14] is similar in spirit to our proposal. There,
the rewriting of queries relies on the use of descriptive
keywords which are the only meta-data available be-
tween different schemas. Unlike our approach, however,
the assumption made is that keywords are used consis-
tently throughout the P2P network to describe relations
of the same type (e.g. flight relations). Aberer et al.
[3] introduce a formal framework where the quality of
peer mappings is assessed by measuring the quality of
query rewritings that are obtained from these mappings.
There, peer mappings are functions that map the val-
ues of attributes belonging to acquainted peers. Their
emphasis is more on the assessment of the quality of the
mappings, and less on the mappings themselves and how
these can be used to perform the rewriting. Our work,
on the other hand, gives emphasis on these latter issues.
Thus, the two approaches are complimentary.

A P2P network is generally open-ended and constantly
changing. Accordingly, it makes sense to employ two
different semantics for queries. A query under the open-
world semantics follows traditional P2P query semantics
where the information fetched represents a possible an-
swer that is supported by some (though not necessar-
ily all) peers. On the other hand, a query under the
closed-world semantics only fetches information that is
semantically consistent with information that is locally
stored. Our intention is to investigate how the different

semantics influence the rewriting of a query.

4.2 P2P Coordination
Active functionality is used in centralized DBMSs to

express automatic system reactivity to events raised in
a database. We propose to use such functionality in a
P2P setting to implement coordination rules [4]. This
functionality is necessary to automatically manage con-
sistency and data exchange between peers. We express
active functionality with ECA rules that reside in the
P2P layer of a PDBMS and involve a peer and some
of its acquaintances. Rules make use of mapping tables
and expressions to coordinate data and meta-data (for
example, the mapping tables themselves) between peers.
Our work extends the distributed ECA rule language of
Kantere [8].

Consider the following example. Assume that Alpha-
Air and Beta-Air have agreed that whenever an Alpha-
Air flight is oversold, a new flight should be created by
Beta-Air to accommodate new passengers. The follow-
ing rule captures this behavior.

create trigger AAOverSold
before update of sold on AA Flight

referencing new as New
old as Old

in Alpha-Air DB
when New.sold >= New.cap
begin

for each row
insert into BA Flight values
(map(New.fno), date, map(New.dest), 0, null)
in Beta-Air DB

end

Notice that the action part of the rule specifies an
insertion of a new tuple which is a transformation of the
updated Alpha-Air flight tuple. This transformation is
accomplished using the mapping tables.

In Hyperion, we envision two sets of rules. The first
set includes ones that manage consistency between the
data of two peers. These rules are automatically created
during the acquaintance phase and enforce the consis-
tency expressed by mapping expressions created during
the acquaintance process. Such rules comprise a sim-
ple event part and no condition part. Their action part
propagates a consistency-restoring update to the appro-
priate peer database.

The second set of rules is created at query time, af-
ter an acquaintance has been established. Such rules
support a broad range of automated data exchange. In
general, rules of this sort comprise a composite event,
condition and action, all of them involving several peers.
Query-time rules can be either generic, with suitable pa-
rameters, or ad hoc user-defined rules. Parameterized
rules maybe be made available from an interest group
during the establishment of an acquaintance.

The execution model of the rule language outlined
above has to respect the execution autonomy of peers.
We propose an execution model that supports distributed
evaluation of rules in order to avoid overloading the P2P
network with exchanged messages. Our mechanism de-

composes each rule into sub-rules, one for each peer
involved in the rule’s event expression. For each peer
database, the event part of its sub-rule comprises the
part of the original event that refers to operations re-
lated to that peer database. Similarly, the condition
part of the sub-rule describes checks to be performed.
Finally, the action part of a sub-rule propagates the in-
stance of the event and the condition of the sub-rule
back to the peer database that is responsible for the
management of the parent rule.

5. RELATED WORK
The local relational model for relational P2P data-

base applications has inspired much of this work [4]. In
this framework, as in ours, peers in a P2P network are
viewed as local relational databases which establish ac-
quaintances to define a P2P network. Moreover, each
acquaintance is characterized both by a mapping be-
tween the peer databases involved (both at the schema
and value level) and by a first-order theory defining the
semantic dependencies between the peer databases. In
Gribble et al. [7], the focus is on the problem of select-
ing views to materialize, and then selecting where to
place these views within a P2P network. The authors
show that this problem, which is intractable in general,
has some tractable instances. To the best of our knowl-
edge, PeerDB [14] is the first implementation of a P2P
database management system. PeerDB is a P2P data
sharing system built on top of BestPeer [13], a generic
and self-configurable P2P architecture developed at the
University of Singapore. PeerDB is a DBMS that sup-
ports fine-grain and content-based searching, integrates
mobile agents, and provides a front-end for searching
data. Finally, there is a proposal for a preliminary ar-
chitecture for peer DBMSs [6]. Like ours, it is inspired
by the theoretical foundations of [4]. Unlike ours, the
focus there is on more user-oriented issues such as com-
munities of interest.

6. CONCLUSIONS
We have described key elements used in the Hype-

rion project for specifying and managing logical meta-
data that enable data sharing and coordination between
peer DBMSs. First, we considered data coordination
where peers are used as access points for both local
and shared data. Second, we considered data sharing
both within and across domains using mapping tables.
Third, we presented a vision for a query and distributed
active rule mechanisms which use mapping tables and
mapping rules to coordinate data sharing. Ultimately,
we envision a P2P database technology that can be
used on-the-fly by end-users to establish and exploit
acquaintances in support of lightweight, flexible, and
cost-effective data coordination in a densely populated
database universe.

7. REFERENCES
[1] Gnutella. http://www.gnutelliums.com/.

[2] Kazaa. http://www.kazaa.com/.

[3] K. Aberer, P. Cudr-Mauroux, and M. Hauswirth.
The chatty web: emergent semantics through
gossiping. In WWW, pages 197–206, 2003.

[4] P. Bernstein, F. Giunchiglia, A. Kementsietsidis,
J. Mylopoulos, L. Serafini, and I. Zaihrayeu. Data
Management for Peer-to-Peer Computing: A
Vision. In WebDB, 2002.

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and
L. Popa. Data Exchange: Semantics and Query
Answering. In ICDT, pages 207–224, 2003.

[6] F. Giunchiglia and I. Zaihrayeu Making peer
databases interact - a vision for an architecture
supporting data coordination. In Cooperative
Information Agents (CIA), pages 18–35, 2002.

[7] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and
D. Suciu. What can databases do for
peer-to-peer? In WebDB, 2001.

[8] V. Kantere. A rule mechanism for p2p data
management. Technical report, University of
Toronto, 2003. CSRG-469.

[9] A. Kementsietsidis, M. Arenas, and R. J. Miller.
Mapping data in peer-to-peer systems: Semantics
and algorithmic issues. In SIGMOD, pages
325-336, 2003.

[10] A. Kementsietsidis, M. Arenas, and R. J. Miller.
Managing data mappings in the Hyperion Project
In ICDE, pages 732–734, 2003.

[11] M. Lenzerini. Data Integration: A Theoretical
Perspective. In PODS, pages 233–246, 2002.

[12] B. Ludäscher, A. Gupta, and M. E. Martone.
Model-based mediation with domain maps. In
ICDE, pages 81–90, 2001.

[13] W. S. Ng, B. C. Ooi, and K. L. Tan. Bestpeer: A
self-configurable peer-to-peer system. In ICDE,
page 272, 2002.

[14] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou.
Peerdb: A p2p-based system for distributed data
sharing. Technical report, University of
Singapour, 2002.

[15] L. Popa, Y. Velegrakis, R. J. Miller,
M. A. Hernández, and R. Fagin. Translating Web
Data. In VLDB, pages 598–609, 2002.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content addressable
network. In SIGCOMM, pages 161–172, 2001.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable Peer-To-Peer
lookup service for internet applications. In
SIGCOMM, pages 149–160, 2001.

[18] C. Turker and S. Conrad. Towards maintaining
integrity in federated databases. In Basque
International Workshop on Information
Technology (BIWIT), pages 93–100, 1997.

