CSC 384 – Introduction to Artificial Intelligence
Winter 2015

Instructor: Dr. Jing (Lisa) Yan

Class Information:
LEC0101 F 3-5pm DV1142
TUT0101 M 5-6pm DH2020 / TUT0102 M 6-7pm DH2020

Contact information:
Email: lyan@cs.toronto.edu
Office: DH-3097C

Office hours:
Friday 5-7pm DH-3097C, or by appointment

Course website: www.cs.toronto.edu/~lyan/csc384/
Lecture slides will be posted on weekly basis**.

** All announcements will be made through the course web page and it is your responsibility to visit it frequently.

Course Materials:
Recommended Textbook:
Artificial Intelligence: A Modern Approach

Prerequisites:
• STA247H/STA255H/STA257H: Some background in probability or statistics
• CSC324H: Some knowledge of functional programming and logic programming is useful.

Syllabus tentative topics:
• Search
• Logical Representation and Reasoning
• Probabilistic Representation and Reasoning
• Learning

Evaluation:
45%: 3 Assignments worth 15% each (programming language: Python or MATLAB)
15%: in-class midterm exam.
40%: 3 hour written final exam. You must obtain at least 40% on the final exam to pass the course.
Assignment late policy & re-marks:
15% per day of lateness, to a maximum of 3 days, except for documented unusual circumstances.

If you feel a piece of your work has been graded unfairly, please submit a written re-mark form within a week of receiving the work back.

Email policy:
Contact TA for questions related to assignments, instructor for other things. Please put 384 in the subject line.
Email response may be 24 hrs or longer; if you do not hear back as your expectation, come to the weekly office hour.

Plagiarism:
Plagiarism—or simply, cheating—is taken to be the handing in of work not substantially the student’s own. It is usually done without reference, but is unacceptable even in the guise of acknowledged copying. It is reprehensible, and the penalty will be severe.

It is not cheating, however, to discuss ideas and approaches to a problem, nor is it cheating to seek or accept help with a program or with writing a paper. Indeed, a moderate form of collaboration is encouraged as a useful part of any educational process. Nevertheless, good judgment must be used, and students are expected to present the results of their own thinking and writing. Never copy another student’s work—it is plagiarism to do so, even if the other student “explains it to you first.” Never give your written work to others. Sharing work with others for the purposes of plagiarism is also a violation. Do not work together to form a collective solution, from which the members of the group copy out the final solution. Rather, walk away and recreate your own solution later. If you are really stuck on a problem, don’t panic...just come and talk to the instructor or one of the TAs. For details on the meaning of plagiarism and how it is dealt with at this university, see:

Important Administrative Dates:
• Feb. 17-20: Reading week
• Mar. 8: Last day to drop S course
• Apr. 2: Classes end. All term work due.
• April 13-27: Final exam period
Tentative course weekly plan and due date: ¹

Lectures:

January:
Week 1: Introduction (ch 1 & 2)
Week 2: Problem solving (ch 3,5): search
 (A1 out, Jan. 16)
Week 3: Problem solving (ch 3,5)
Week 4: Problem solving (ch 6): CSP
 (A1 due, Jan 30, Friday noon)

February:
Week 5: KR (ch 7-10): agents, logic, planning
Week 6: KR (ch 7-10)
 (A2 out, Feb 13)
Week 7: Reading week
Week 8: makeup class (TBD), Midterm (Feb 27)

March:
Week 9: Uncertainty (ch 13 & 14): Bayes Nets representation, reasoning
 (A2 due, Mar 13, Friday noon)
Week 10: Uncertainty (ch 13 & 14)
Week 11: Learning (ch 18-21): techniques, models, applications
 (A3 out, Mar 20)
Week 12: Learning (ch 18-21) & Final Review

April:
Week 13-14: No class
 (A3 due, Apr 2, Thursday noon)
Week 15-16: Final exam

Tutorials:
Week 1: No tutorial
Week 2,3,4: Tutorials, Search - A1 prep
Week 5,6,8,9: Tutorials, CSP/Game – A2 prep
Week 10,11,12: Tutorials, learning – A3 prep

Summary:
Lectures are Fridays 3-5.
There will be ten 1-hr tutorials for you to work through published exercises with your teaching assistant.

¹ I reserve the right to change or amend this document and the course outline at any time when needed.
Course work includes the following:

- 11 lectures
- 10 tutorials
- 3 assignments (15% each) 45% subtotal (Tentative dates)
 - A1: search (python) - Jan 30, Friday noon
 - A2: CSP/Game (python/matlab) - Mar 13, Friday noon
 - A3: Bayes Nets/Learning (python/matlab) - Apr 2, Thursday noon
- 1 mid-term tests (15% each) 15% subtotal – Feb 27
- and a 3-hr final examination (40%) - TBD

In order to pass the course, you need to pass the final examination (obtain 40% or more of the final marks).

Getting to know you:
To help the instructor learn your name, your interests, and your expectations of the course, please:

1. Bring a “name tent” (i.e., an A4 sheet folded in half length-wise with your first and last names clearly written with a dark marker) and place it on your desk during each class.

2. Submit a one-page summary of yourself. Include your name, student number, email address, a picture of yourself or a good photocopy, your interests, your expectations of the course, etc.

Due by next class.