Regular Path Queries and Constraints
CSC2428 – Foundations of XML

Pablo Barceló

1 Regular path queries

A *semistructured* database \((I,o)\) is composed by:
- a directed graph that is labeled over a finite alphabet \(\Sigma\), and
- a *source* element \(o\).

Notice that this is not necessarily a tree.

Given a regular expression \(\mathcal{R}\) over \(\Sigma\), the *path query* \(\mathcal{R}\) is the function:
\[
\mathcal{R} : (I,o) \rightarrow 2^I,
\]
such that \(\mathcal{R}(I,o)\) is
\[
\{ o' \in I \mid \text{there is a path labeled } a_1, \ldots, a_m \text{ from } o \text{ to } o', \text{ such that } (a_1, \ldots, a_m) \in L(\mathcal{R}) \}.
\]

Nice way to evaluate path queries in *linear monadic Datalog*. Let \((Q,s,\Sigma,F,\delta)\) be any finite state automaton that computes \(L(\mathcal{R})\). The extensional predicates are source\((x)\) and \(E(x,a,y)\) for each \(a \in \Sigma\). Then path query \(\mathcal{R}\) is computable by:
\[
\begin{align*}
\text{state}_s(x) & : = \text{source}(x) \\
\text{state}_h(x) & : = \text{state}_j(y), \ E(y,a,x) \quad \forall a \in \Sigma, \text{ and } \forall j \in Q \text{ with } \delta(j,a) = h \\
\text{ans}(x) & : = \text{state}_f(x) \quad \forall f \in F
\end{align*}
\]

First, the complexity of evaluating a linear Datalog program is in NC, that is, the small parallel complexity class that contains families of circuits with polynomial number of gates, polylogarithmic depth, and constant fan-in. Second, monadic datalog programs allow nice optimization techniques to be used.

2 Regular path constraints

A *regular path inclusion* is of the form \(\mathcal{R} \subseteq \mathcal{R}'\), for \(\mathcal{R},\mathcal{R}'\) regular expressions over \(\Sigma\). Then
\[
(I,o) \models \mathcal{R} \subseteq \mathcal{R}' \iff \mathcal{R}(I,o) \subseteq \mathcal{R}'(I,o).
\]

If \(\mathcal{R}\) and \(\mathcal{R}'\) are *words*, that is, sequences of symbols in \(\Sigma\), then \(\mathcal{R} \subseteq \mathcal{R}'\) is a *word constraint*. If \(E\) is a set of regular path inclusions, then \((I,o) \models E\) iff \((I,o) \models \mathcal{R} \subseteq \mathcal{R}'\) for each \(\mathcal{R} \subseteq \mathcal{R}'\) in \(E\).

We write \(E \models \mathcal{R} \subseteq \mathcal{R}'\) iff for each \((I,o)\),
\[
(I,o) \models E \implies (I,o) \models \mathcal{R} \subseteq \mathcal{R}'.
\]
Theorem 1 (Abiteboul and Vianu,'97) It is decidable in 2-EXPSPACE (in the number of inclusions in E) whether $E \models \mathcal{R} \subseteq \mathcal{R}'$.

Not very nice complexity, and not known if it can be improved. But,

Theorem 2 (Abiteboul and Vianu,'97) If both E and $\mathcal{R} \subseteq \mathcal{R}'$ contain only word constraints, then it is polynomial to check whether $E \models \mathcal{R} \subseteq \mathcal{R}'$. Also, if E is a set of path constraints and $\mathcal{R} \subseteq \mathcal{R}'$ is a word constraint, then checking whether $E \models \mathcal{R} \subseteq \mathcal{R}'$ is in PSPACE.

3 Extended path constraints

A path is a FO formula $\alpha(x, y)$ of one the following forms:

- $x = y$,
- $E(x, a, y)$ for $a \in \Sigma$, and
- $\exists z (E(x, a, x) \land \beta(z, y))$, where $a \in \Sigma$ and $\beta(z, y)$ is a path.

A path constraint is any expression of the form:

$$\forall x (\alpha(o, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(y, x))) \quad \text{(backward constraint)}$$

$$\forall x (\alpha(o, x) \rightarrow \forall y (\beta(x, y) \rightarrow \gamma(x, y))) \quad \text{(forward constraint)}$$

where o denotes the source of I.

An example of a backward constraint is

$$\forall x (\text{Student}(o, x) \rightarrow \forall y (\text{Taking}(x, y) \rightarrow \text{Enrolled}(y, x))) .$$

Not expressible as a path inclusion constraint!

Theorem 3 (Buneman,Fan,Winston,'98) For E a set of path constraints, and ϕ a path constraint, it is undecidable to check if $E \models \phi$, even when we restrict to the finite case, and even if we restrict to the forward form.

Nevertheless, if we denote by P_β the set of all path constraints such that either $\alpha \equiv \text{true}$, or β is of the form $x = y$ or $E(x, a, y)$, then

Theorem 4 (Buneman,Fan,Winston,'98) For E a set of path constraints in P_β, and ϕ a path constraint in P_β, it is decidable in EXPSPACE to check if $E \models \phi$.

4 Regular path constraints with data values

Idea: Extended keys and extended foreign keys with regular expressions. That is, constraints of the form

\[R.a.l \rightarrow R.a \] (keys) and \[R.a.l \subseteq R'.a'.l' \] (foreign keys)

for \(R, R' \) regular expressions in \(\Sigma \), and \(a, a' \in \Sigma \).

Keys are evaluated on trees as follows:

\[T \models R.a.l \rightarrow R.a \iff \forall s, s' \in R.a(T, \varepsilon), \text{ if } (s.l = s'.l) \text{ then } (s = s') \].

Foreign keys are combinations of inclusion dependencies and foreign keys, that is, \(T \models R.a.l \subseteq R'.a'.l' \) iff \(R'.a'.l' \) is a key and

\[\forall s \in R.a(T, \varepsilon), s.l = s'.l' \text{ for some } s' \in R'.a'(T, \varepsilon) \].

Theorem 5 (Arenas, Fan, Libkin, '02) Checking for a set \(\Sigma \) of keys and foreign keys whether there is a tree \(T \) such that \(T \models \Sigma \) is in \(\text{NEXPTIME} \), and cannot be less than \(\text{PSPACE} \).

This shows that the complexity increases when having extended constraints. From (Fan, Libkin, '01), for usual keys and foreign keys the result is NP-complete.

5 Queries with data values

We consider the following fragment of XPath. Syntax for path queries \(p \) is given by:

\[p ::= \epsilon | a, a \in \Sigma \mid \text{child} \mid \text{desc} \mid \text{parent} \mid \text{ancestor} \mid p/p \mid p \cup p \mid p[q] \]

where \(q \) is a data value expression given as follows:

\[q ::= p \mid p/@a = c \mid p/@a = p/@b \mid q \wedge q \mid \neg q \]

A node \(s \) in a tree \(T \) satisfies a path query \(p \) iff there is \(s' \) such that \(T \models p(s, s') \), where:

- if \(p = \epsilon \) then \(s = s' \),
- if \(p = a \) then \(s' = s \), and \(s \) is labeled \(a \),
- axis are trivial,
- if \(p = p_1/p_2 \) then there is \(s'' \) such that \(T \models p_1(s, s'') \) and \(T \models p_2(s'', s') \),
- if \(p = p_1 \cup p_2 \) then either \(T \models p_1(s, s') \) or \(T \models p_2(s, s') \),
- if \(p = p_1[q] \) then \(T \models p_1(s, s') \) and
 - if \(q = p_2 \) then there is \(s'' \) such that \(T \models p_2(s', s'') \),
 - if \(q = (p_2/@a = c) \) then there is \(s'' \) such that \(T \models p_2(s', s'') \) and \(s''.a = c \),
 - if \(q = (p_2/@a = p_3/@b) \) then there are \(s_1, s_2 \) such that \(T \models p_2(s', s_1) \wedge p_3(s', s_2) \) and \(s_1.a = s_2.b \),
- Boolean combinations are trivial.
We write $\text{SAT}(p, D)$ if there is a tree T that conforms to DTD D, and such that the output of p in T is nonempty.

Theorem 6 (Benedikt,Fan,Geerts,’05) Checking for a DTD D and a path query p that uses neither concatenation / nor negations in data values expressions, whether $\text{SAT}(p, D)$, is NP-complete. The same is true even for the fragment (child,$[]$) without negation on data value expressions (even if DTDs are non-recursive).

What if we admit negation?

Theorem 7 (Benedikt,Fan,Geerts,’05) By admitting negation inside $[]$ we get undecidability. The fragment (child,$\cup, []$) is in NEXPTIME, while (parent,$[]$) is already EXPTIME-hard.

Several improvements can be found depending on simplifications on DTDs. What if we do not have DTDs?

Theorem 8 (Benedikt,Fan,Geerts,’05) For the fragment ($\cup, []$) without negations on data value expressions, $\text{SAT}(p, \emptyset)$ is NP-hard. Furthermore, (parent,$[]$) is EXPTIME-hard.