Question 1. (20 marks) We can find the distance between two vertices \(s \) and \(t \) in an undirected graph \(G \) in \(O(n + m) \)-time by building a BFS starting at \(s \). In some cases we can do better by starting a BFS from both \(s \) and \(t \) simultaneously. This is what the following algorithm does. Each vertex will have a “status,” which can have integer values from \(-2\) to \(2\). A status of \(0\) means the vertex is undiscovered (not yet visited), \(-1\) or \(1\) means discovered (discovered from \(s \), respectively \(t \)), and \(-2\) or \(2\) means finished (examined from \(s \), respectively \(t \)). The algorithm terminates when a vertex \(u \) wants to examine a vertex \(v \) of opposite sign (the two BFS meet) by returning the distance from \(s \) to \(t \).

TWO-SIDED-BFS(\(G, s, t \)):

```
if \( s = t \) then return 0
for each \( v \in V[G] - \{s, t\} \) do // initialization
    status[v] ← 0
    d[v] ← ∞
    π[v] ← nil
status[s] ← −1; d[s] ← 0; π[s] ← nil
status[t] ← +1; d[t] ← 0; π[t] ← nil
Q ← \{s, t\} // initialize queue
while Q ≠ ∅ do // main loop
    u ← DEQUEUE(Q)
    for each \( v \in \text{Adj}[u] \) do
        if status[v] = 0 then
            status[v] ← status[u]
            d[v] ← d[u] + 1
            π[v] ← u
            ENQUEUE(Q, v)
        else if status[v] · status[u] < 0 then
            return d[u] + d[v] + 1
    status[u] ← 2 · status[u]
return ∞
```

a. (5 marks) Prove that the algorithm returns the correct distance and that it does so in \(O(n + m) \) time.

b. (5 marks) Modify this algorithm so that it returns a shortest path from \(s \) to \(t \) in \(O(n + m) \) time.

c. (5 marks) For \(k \geq 1 \), let graph \(T_k \) be the complete (rooted) binary tree on \(2^k − 1 \) vertices. Explain why the worst-case running time for determining the distance between two vertices in \(T_k \) using BFS is \(\Theta(n) = \Theta(2^k) \). Explain why \(\Theta(n) \) is the worst-case running time even if we ignore the initialization steps and count only the main loop of the BFS algorithm.
d. (5 marks) Show that when TWO-SIDED-BFS is used to find the distance between the root \(s \) and a leaf \(t \) of \(T_k \), the time to execute the while loop is \(\Theta(\sqrt{n}) \).

e. (no marks) [This question will not be graded. It is given as an interesting problem you may want to think about.] Show that the worst-case time to execute the while loop is \(\Theta(n^{2/3}) \) when TWO-SIDED-BFS\((T_k, s, t)\) is called for arbitrary vertices \(s \) and \(t \).

Question 2. (20 marks) A bipartite graph \(G = (V, E) \) is a graph where \(V \) can be partitioned into two sets \(V_1 \) and \(V_2 \) (one of which may be empty) such that there are no edges between any two nodes in \(V_1 \) or between any two nodes in \(V_2 \) (that is, all edges of \(G \) have one endpoint in each set). There are many fast algorithms on bipartite graphs, so it is important to be able to recognize whether a given graph is bipartite.

a. (8 marks) Prove that a graph is bipartite if and only if it does not contain an odd cycle. Recall that an odd cycle is a simple cycle that contains an odd number of vertices.

b. (12 marks) Show how to modify DFS so that, given any graph \(G \), it proves in \(\Theta(n + m) \) time whether the graph is bipartite or not. If the graph is bipartite, your algorithm should return two sets \(V_1 \) and \(V_2 \) as described above, but if the graph is not bipartite, your algorithm should return an odd cycle in \(G \).

Question 3. (20 marks) A unicyclic graph is a connected graph with exactly one simple cycle. Give an efficient algorithm that, given a connected undirected non-tree graph \(G = (V, E) \) (represented by its adjacency lists) and a weight function \(w : E \to \mathbb{R} \), finds a unicyclic spanning subgraph of \(G \) of minimum weight. Prove that your algorithm is correct and analyze its worst case time complexity as a function of \(n = |V| \) and \(m = |E| \). (A portion of your mark will be devoted to efficiency, with more marks awarded to more efficient algorithms.)

Question 4. (40 marks) This question is a programming assignment. To see its description follow the link given in the “Assignments” section of the course web page.