Due: By 12:00 noon on Thursday, December 7.

You must complete and sign an assignment cover page, and attach it (with a staple) to the front of your assignment. Assignments should be handed into the drop box in BA 2220.

1. Consider the following program, where A is an array of n integers:

m = A[0] + 1;
 for (i = 0; i < A.length; i++) {
 if (A[i] < m) {
 m = A[i];
 s = A[i];
 for (j = i+1; j < A.length; j++)
 s = s + A[j];
 }
 }

(a) Describe an array of length n that is a worst-case input for this algorithm (in terms of number of lines executed). Explain why your answer is a worst-case input.

(b) Let $T(n)$ be the worst-case number of lines executed by this program over all arrays of length n. Prove that $T(n) \in \Theta(n^2)$.

2. Consider the normalized floating point system F with $\beta = 2$, $t = 6$, $e_{\text{max}} = 7$, $e_{\text{min}} = -8$ that uses round-to-nearest.

(a) How many real numbers are representable exactly in F? Justify your answer.

(b) Give the decimal (base 10) representation of the largest and smallest positive real numbers representable in F.

(c) Give an example of a decimal number that will cause overflow in F. Explain.

(d) Give an example of a decimal number that will cause underflow in F. Explain.

(e) Suppose a real number x is represented in F by $x' = 1.01101 \times 2^1$. What range of decimal values could x have been? Justify your answer.

3. Computing the expression $x^2 - 4$ is susceptible to error for certain values of x.

(a) Explain what kind of error can occur here and for what values of x it occurs. Illustrate your claim with an example.

(b) Reformulate the expression to avoid this error. Explain why this error is avoided.

4. Suppose we need to compute the expression $(x - 1)^3$ for $x = 0.85$ in the normalized floating point system with $\beta = 10$, $t = 3$, $e_{\text{max}} = 2$, $e_{\text{min}} = -3$ that uses round-to-nearest.

(a) Evaluate $x^3 + -3x^2 + 3x + -1$ by performing the addition operations in this system from left to right. (Remember order of operations says to do the multiplications first!) Show your work.

(b) Evaluate $x^3 + -3x^2 + 3x + -1$ by performing the addition operations in this system from right to left. Show your work.

(c) Which computation is more stable for this value of x? Why?