Women In Technology Workshops

FACILITATOR PACKAGE

Women In Technology

PACKAGE CONTENTS

* Agenda
* Program Objectives
* Characteristics of the Facilitator
* Role of the Facilitator
* Facilitator FAQs
* Technology Quiz (ice-breaker) - Qs & As
* IT Facts and Stats
* Careers in Technology
* Salary Comparison Guide
* Career Options Guide
* Web Sites for Girls
* Suggested Presentation Topics
* Sample Presentation
* Sample student evaluation sheet
* Sample teacher evaluation sheet
Women In Technology Workshops

AGENDA

School Name, Address, Phone no.
Dress Code: Informal

- 09:00 - 09:30 Facilitators meet in Staff Room (Coffee/Tea)
- 09:30 - 09:35 Opening Remarks - Principal (5 mins.)
- 09:35 - 09:45 Facilitators Introduction – each facilitator will stand, introduce herself, and explain what she does at IBM with one personal insight (10 mins.)

- 09:45 - 10:05 Individual Table Discussion [9 students, 1 facilitator] (15 mins.)
 - ice breaker SCAP
 - importance of technology in the new millennium
 - available jobs of the future
 - importance of studying math and science

- 10:00 - 10:55 Prepare Presentation (50 mins.)
 - team name (predetermined)
 - select team presenter(s)
 - develop a presentation pitch
 - format presentations (4-5 slides)
 - Presentation: “Team Name and Members”
 - “Objectives”
 - “Issues”
 - “Solutions”
 - “Conclusion”

- 10:55 - 11:15 Key Presentation in Freestyle (40 mins.)
 - show students use of format, fonts, colours, clip art, etc.
 - encourage all students to use the Thinkpad
 - copy presentation onto diskette
 - label diskettes with team name

- 11:15 - 11:50 Wrap-Up (55 mins.)
 - each group to present their team pitch (max. 4 mins.)

- 11:50 - 11:55 Students fill-out evaluation forms (5 mins.)

- 11:55 - 12:00 Closing Remarks - Principal (5 mins.)

Women In Technology Workshops

PROGRAM OBJECTIVES

- To build awareness of the exciting career opportunities for women in IT.
- To encourage young girls to pursue mathematics and sciences for future careers in IT.
- To give girls access to female role models in the IT Industry.
- To show young girls that technology can be fun.
Women In Technology Workshops

FACILITATOR CHARACTERISTICS

- Ability to lead, motivate, and involve young female students.
- Knowledge of Freelance Graphics '97.
- Relaxed approach towards the students. Have fun!

 - The facilitator must have access to a Thinkpad with external cord, diskdrive, diskette, and an external mouse in order to participate in a WIT Workshop.

Women In Technology Workshops

ROLE OF THE FACILITATOR

- Listen well.
- Be approachable.
- Be a good role model.
- Give constructive feedback.
- Be committed to the role of the mentor and to the person being mentored.
- Give out business cards and e-mail address to the students and encourage them to keep in touch.
Women In Technology Workshops

FACILITATOR FAQs

How much of my time is required? The WIT Workshop is a half-day program and facilitators are generally required to spend 3-4 hours at the school. Preparation time is approximately 2 hours.

How do I prepare for the event? Preparation involves going over the facilitator package prior to the engagement, familiarizing oneself with Freelance Graphics, and having access to a Thinkpad, diskdrive, and diskette.

Is this an appropriate program for earlier grade students? No. The content of this program is designed for students in Grades 7 and 8.

What do I do about students who do not show interest? Although most students are enthusiastic about this experience, some may lose interest and withdraw. As the facilitator, do your best to engage these students without pressuring them to join in. Encourage them to participate in the discussions.

Why don't we have boys attend the workshops? When boys and girls are on the same team, boys may tend to dominate discussion and direct it to their own interests. Similarly, in a mixed group, girls may tend to withdraw.

Women In Technology Workshops

TECHNOLOGY - TRUE OR FALSE

_ 1. The first computer programmers were women.

_ 2. The youngest Canadian, ever in space, was a woman who worked for IBM.

_ 3. The first computers were very small.

_ 4. There will be more than one million new jobs in computer-related fields by 2006.

_ 5. The first computer "bug" was a moth.

_ 6. The Internet was invented in the 1960s.

_ 7. You should believe everything you see on the Internet.

_ 8. You have to get all A's in math to be good with computers.

_ 9. The term "e-mail" stands for "easy mail" because you don't have to use stamps.

_ 10. Computers are a "guy thing."
Women In Technology Workshops

TECHNOLOGY QUIZ - ANSWERS

1. The world’s first programmers were women. — TRUE
 In 1945, six women, all math majors in college, were selected to work on a highly classified project sponsored by the Army and the University of Pennsylvania Moore School of Engineering to “program” the experimental ENIAC to calculate complicated ballistic trajectories in support of the war effort for World War II. Before ENIAC, it took one person 40 hours to calculate the trajectories by hand, but using the powerful capabilities of ENIAC, the same calculation took only seconds. The ENIAC programmers did not have any of the tools which programmers use today, such as PCs or programming languages. Rather, they had to physically program the ballistic calculations by using 3000 switches and dozens of cables and digit trays to physically route the data and program pulses throughout the machine. In 1997, these pioneering women, Kathleen McNulty Manksy Antonelli, Joan Jennings Bartik, Frances Snyder Holberton, Marilyn Wescoff Meltzer, Frances Bilas Spence and Ruth Lichterman Teitelbaum were inducted into the Women in Technology International Hall of Fame in Santa Clara, CA.

2. The youngest Canadian, ever in space, was a woman who worked for IBM. — TRUE
 Before she joined the Canadian space program in 1992, Julie Payette worked as a computer engineer doing research in speech processing and understanding natural language. After receiving a Bachelor of Electrical Engineering degree from McGill University in Montreal, Julie worked as a technical advisor for IBM Canada. After receiving her Master of Applied Science degree from the University of Toronto, Julie worked for a year as a visiting scientist in the Communications and Computer Science Department of the IBM Research Laboratory in Zürich, Switzerland. She is now working toward a Doctoral degree in Electrical Engineering at McGill University. At 35 years of age, Julie Payette is the youngest Canadian ever in space.

3. The first computers were very small. — FALSE
 The first computer, MARK I built in 1944, was the size of half a football field! The ENIAC, the first electronic computer, was 150 feet wide, had 20 banks of flashing lights, forty black panels which stood 8 feet tall, and it’s rumored that the lights of Philadelphia dimmed when ENIAC was doing calculations! It used 18,000 vacuum tubes, had 5 million soldered joints, hundreds of wires, and generated so much heat that the engineers had to build a special protective top. While the first computers were revolutionary for their time, they had less capability than a computer which fits on your desktop today!

4. There will be more than one million new jobs in computer-related fields by 2006. — TRUE
 Our nation currently faces a critical shortage of candidates to fill computer-related jobs, and according to the Bureau of Labor Statistics, by the year 2006, there will be more than a million new jobs in these fields — and a decreasing number of engineers, programmers, computer scientists, and systems analysts to fill them. These jobs will be concentrated in three main occupations, computer scientists and engineers, systems analysts, and computer programmers, and most of them will be with computer systems, services or equipment companies. Encourage students in the group to consider careers in these areas, but even if they choose not to pursue careers in computers, make sure they understand that technology skills are now considered part of the “basics” for any.

5. The first computer “bug” was a moth. — TRUE or FALSE (give credit for both)
 The term “bug” is used to mean an error in hardware or software that causes a computer to malfunction. The first official record of the use of the word “bug” in relation to computers is associated with the Mark II computer while it was in service at the Naval Weapons Center in Dahlgren, Virginia. On September 9th, 1945, a moth flew into one of the relays of the Mark II and jammed it. The offending moth (which was smashed in the process) was taped into the log book alongside the official report, which stated: “First actual case of a bug being found.” In reality, this was not the first error (or bug) in the computer, but the term is still used today to mean a computer problem or flaw.
Women In Technology Workshops

TECHNOLOGY QUIZ - ANSWERS

6. The Internet was invented in the 1960’s. — TRUE

The Internet was first conceived by the Department of Defense to allow government scientists and university researchers to share information and capacity of supercomputers. The first big network, called ARPANET, was very popular but it had a serious problem: when one of the computers in the network went down (broke), none of the others could communicate with each other. In order to get around that problem, engineers devised a way to have several connections or “paths” among the computers in the network, so that when one went down, the others could communicate via alternate routes and bypass the broken link. Alternate paths were an important concern for the Defense Department: if the Army needed to get information from Washington, D.C., to Ft. Huachuca, Arizona, it was necessary to have several routes for transmitting data in case one of the computers in the network went down (or was bombed).

The term “Internet” was first introduced in 1982, and by 1984, the number of Internet hosts reached 1000. The World Wide Web was born in 1991 when users began packaging graphics and creating “links” to other computers on the net. By 1996, more than 10 million computers were online, and it’s estimated that this number doubles every six months!

7. You should believe everything you find on the Internet. — FALSE

This is a good point to discuss Internet safety. Safe Kids Online (www.safekids.com) gives excellent suggestions for safe use of the Net. Some basic safety rules for young people include common sense considerations such as never give your name, address, or phone number to anyone on the Internet, tell an adult immediately if someone sends you a message that makes you uncomfortable or scared, never arrange a face-to-face meeting with someone you met online without talking it over with a parent or other adult.

Help kids understand that no one controls what goes on the Internet, so they need to use good judgment and critical thinking skills. It’s true that rude and tacky people can post offensive material on their computers and make the information available for the world to see. On the other hand, there is a wealth of accurate, useful, and interesting information available on the Internet, too. Some good questions when assessing information from the Internet: who provided this information? why did they make it available on the Internet? can I believe it or should I check with an adult or verify the information by using another source?

Women In Technology Workshops

TECHNOLOGY QUIZ - ANSWERS

8. You have to get all A’s in math to be good with computers. — FALSE

Math is a very important subject which helps develop logical thinking and problem-solving skills, so it’s very important for kids to take and succeed at math classes. This doesn’t mean that you have to get all A’s, and it doesn’t mean that math has to be your best subject. It does mean that you should work hard and keep trying to get better.

9. The term “e-mail” stands for “easy mail” because you don’t have to use stamps. — FALSE

The “e” stands for “electronic.” Likewise for “e-business” and “e-commerce” which refer to doing business electronically. “E-businesses” advertise on the Web, take orders via e-mail, order/ship, and pay electronically. More and more businesses are participating in “e-commerce” today: you can buy books, games, clothes, even cars over the Internet!

10. Computers are a “guy thing.” — FALSE

Of course this is FALSE, but it is a very common misconception. A recent study by the American Association of University Women (AAUW) Foundation shows an emerging technology “gender gap” in our schools: girls use computers less than boys, they display less self-confidence about their computer ability, and they make up only a small percentage of students in high school computer design and computer science classes. Theories about why this is so include lack of encouragement for girls to be involved with computers, too few female role models, and too few computer games which appeal to girls.
Women In Technology Workshops

CAREERS IN TECHNOLOGY

- Computer Animator - graphic designers and illustrating artists create designs, illustrations, and layouts for publications, advertising, films, posters, and signs.
- Computer Engineer - research, plan, design, develop, and test computers. Design and develop software for engineering and industrial applications.
- Computer Programmer - write computer programs by coding sets of instructions into machine language. Used in computer software and consulting firms.
- Computer Scientist - perform many of the same duties as other computer professionals, but their jobs involve a higher level of theoretical expertise that they apply to solve computer problems and create new technology.
- Computer Systems Analyst - analyze information processing or computation needs and then design computer systems which provide solutions to these problems or perform needed computations.
- Database Analyst - develop and maintain complex computer databases.
- Electrical/Electronic Engineer - design and evaluate electrical components and systems, and supervise the development, manufacture, installation, operation, and maintenance of such equipment.
- Internet Specialist - design and maintain World Wide Web sites on the Internet. Job titles include Web Master, Technical Designer, and Internet Technician.
- IT Architect - deliver high quality solutions in response to varying business needs by translating a client's requirements into specific system, application, and/or process design specifications.
- IT Specialist - assists in delivery of high quality solutions to clients in response to specific business requirements. Performs assigned technical tasks including study, analysis, programming, product installation, test and system integration.
- Marketing Specialist - determine marketplace requirements, drive customer needs through the product development cycle, develop solutions and programs to generate revenue and profit.
- Software Developer - design, develop, and test software applications; analyze and resolve customer reported problems; customize and deploy products in customer shops.
- Technical Salesperson - responsible for identifying and capturing key accounts (such as department stores) that have a need for systems management technologies.
- Technical Writer - design and write online help, multimedia tutorials, brochures, books, worldwide web pages, and internet information.

Women In Technology Workshops

SALARY COMPARISON GUIDE

<table>
<thead>
<tr>
<th>Profession</th>
<th>Minimum Annual ($)</th>
<th>Maximum Annual ($)</th>
<th>Average Annual ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail Salesperson</td>
<td>14,450</td>
<td>37,386</td>
<td>21,293</td>
</tr>
<tr>
<td>Tailor/Dressmaker</td>
<td>14,650</td>
<td>31,795</td>
<td>21,946</td>
</tr>
<tr>
<td>Receptionist</td>
<td>18,240</td>
<td>32,602</td>
<td>24,826</td>
</tr>
<tr>
<td>Travel Agent</td>
<td>18,470</td>
<td>42,970</td>
<td>28,301</td>
</tr>
<tr>
<td>Bank Teller</td>
<td>19,200</td>
<td>34,291</td>
<td>20,016</td>
</tr>
<tr>
<td>Chef</td>
<td>19,000</td>
<td>36,103</td>
<td>26,803</td>
</tr>
<tr>
<td>Dental Assistant</td>
<td>21,120</td>
<td>37,440</td>
<td>28,646</td>
</tr>
<tr>
<td>Teacher-Elementary</td>
<td>28,205</td>
<td>58,598</td>
<td>43,181</td>
</tr>
<tr>
<td>Secretary</td>
<td>20,802</td>
<td>40,070</td>
<td>30,624</td>
</tr>
<tr>
<td>Bus Driver</td>
<td>22,176</td>
<td>43,104</td>
<td>32,602</td>
</tr>
<tr>
<td>Graphic Designer</td>
<td>23,635</td>
<td>60,461</td>
<td>39,917</td>
</tr>
<tr>
<td>Legal Secretary</td>
<td>21,636</td>
<td>48,000</td>
<td>35,808</td>
</tr>
<tr>
<td>Registered Nurse</td>
<td>32,006</td>
<td>60,461</td>
<td>39,917</td>
</tr>
<tr>
<td>Computer Programmer</td>
<td>28,265</td>
<td>73,843</td>
<td>48,442</td>
</tr>
<tr>
<td>Social Worker</td>
<td>28,032</td>
<td>57,734</td>
<td>43,526</td>
</tr>
<tr>
<td>Lawyer</td>
<td>29,798</td>
<td>10,618</td>
<td>60,845</td>
</tr>
<tr>
<td>Computer Engineers</td>
<td>36,442</td>
<td>83,078</td>
<td>57,946</td>
</tr>
<tr>
<td>Banking Manager</td>
<td>29,914</td>
<td>67,277</td>
<td>48,883</td>
</tr>
<tr>
<td>Teacher-Secondary</td>
<td>26,592</td>
<td>68,621</td>
<td>45,446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math level</th>
<th>Career Options</th>
</tr>
</thead>
</table>
| Basic - Required to graduate from high school | Nurse’s Aide
Waitress
Factory Worker
Sale’s Clerk
Teacher’s Aid
Bank Teller |
| Algebra I, Geometry | Lab Technician
DialPerson
Bookkeeper
Computer Technician
Dental Hygienist |
| Algebra I & II, Geometry | Nurse
Loan Officer
Dietician
Teacher
Financial Manager
Physical Therapist |
| Algebra I & II, Geometry, Advanced Math | Physician
Engineer
Dentist
Architect
University Professor
Lawyer
Accountant
Pharmacist
Computer Scientist |

Adapted from "Discover your World!"

Women In Technology Workshops

WEBSITES FOR GIRLS

 Designed to introduce girls to female role models in the IT industry. The site features IBM women speaking openly about their career paths, successes, challenges, passions and dreams to illustrate the opportunities that exist for women.

- **Engineer Girl** http://www.nas.edu/nas/nengmain/ref/Engelisse
 Great website from the National Academy of Engineering.

- **TryScience** http://www.triescience.org/
 TryScience is your gateway to experience the excitement of contemporary science and technology through on and off-line interactivity with science and technology centers worldwide. IBM, TryScience and over 400 science centers worldwide invite you to investigate, discover, and try science yourself.

- **Discover Engineering** http://www.discoverengineering.org/week/index.html
 Describes what engineers do, cool engineering applications, games, new idea center, downloads and more.

- **Expect the Best from a Girl** http://www.academic.org
 This web site profiles a number of mental skills and characteristics that girls and boys can share with similar coaching and provides helpful information for parents to help their daughters excel.

- **SmartGirls** http://www.glintnet.org/
 Hip and trendy site for Girls. Geared towards middle school girls. International non-profit whose mission is to educate, and empower young women in math, science & engineering. The site offers career guidance, e-mail, on-line games, SmartGirls chat room, reading lists, parent tips, etc.

- **Club Girl Tech** http://www.girltech.com/
 Award-winning site sponsored by Q3 Tech, Inc., a technology company founded in 1995 to encourage girls in the use of technology by creating products and services. Site offers online games, message boards, links to educational and science sites, activities to earn patches, reviews of software, books and movies for girls, plus research on girls’ play preferences, research and recommendations for parents and educators.

- **Figure This!** http://www.figurethis.org/index.html
 Presents math challenges for families by the National Science Foundation and the U.S. Department of Education. Targets junior high aged girls.

 Creative magazine which encourages girls to listen to their own voices and take their dreams seriously. Site includes excerpts of poetry and essays, ideas to submit for publication, and links to several feminist sites.

- **Color Math Pink** http://www.colormathpink.com
 A great web site designed specifically to help middle school and high school girls excel at math. Site activities are designed to help to remove the mathematical barriers that could prevent girls from achieving specific career goals.
Women In Technology Workshops

WEBSITES FOR GIRLS

- **Binary Girl**: http://www.binarygirl.com
 A web site designed to share knowledge with those interested in learning more about technology through an interactive community of women. The site includes a job profile section, job classifieds, "techie" toy profiles, jargon definitions, tech resources and the latest news.

- **Wired Woman**: http://www.wiredwoman.com
 An online interactive community that encourages women to explore job opportunities in technology and to build successful computer careers.

 An online community for web designers, developers and programmers that publishes new content weekly through its online newsletter.

- **Women of NASA**: http://questdb.arc.nasa.gov/content_search/women.html
 A web site dedicated to helping other women meet and interact with women at NASA who are enjoying successful careers in math, science, engineering and technology. Includes upcoming event postings.

- **Institute for Women and Technology**: http://www.iwit.org
 This site is dedicated to gathering individuals committed to changing the world for women in technology careers. Programs are designed to promote the mission in unique ways that benefit specific communities. The site also features a Virtual Development Center.

- **Center for Women and Information Technology**: http://www.wimtec.umd.edu/
 This web site was established to encourage women to become more involved with information technology. The Center offers many resources on its web site, including extensive news coverage of women and IT, announcements of relevant conferences and calls for papers, a bibliography of books about women and IT, and more.

- **Association for Women in Mathematics**: http://www.aem-math.org/index.html
 This non-profit organization is dedicated to encouraging women and girls in the mathematical sciences. This site includes information about a mentor network.

- **IEEE Women in Engineering**: http://www.iiwee.org/organizations_committees/women/
 This subcommittee of the Institute of Electrical and Electronic Engineers is dedicated to important issues for engineers who are women. Special resources including an online newsletter and discussion forum are available.

 This site offers numerous resources for career-oriented women including a recent "Tech-Savvy" study that addresses educating girls in the new computer age.

Women In Technology Workshops

SUGGESTED PRESENTATION TOPICS

- Topics selected by female students:
 - Pick a component of technology (i.e. computer, internet) Tell us how it’s made our lives easier.
 - Pick an industry (i.e. medicine, accounting) Tell us how computers made work easier/faster.
 - New age learning and technology
 - Peer pressure - making the right choices
 - Education - costs and benefits
 - T.V. and media and their influence on teens
 - Sexism and stereotypes
 - Fashions of yesterday, today, and tomorrow
 - Space exploration
 - Popular music and its effect on society
 - How to find a good part-time job
 - Environmental concerns of the next millennium
 - Racism
 - Internet Safety
 - Female Leaders - What makes them successful
 - Education - Is it worth it?
The Technicalities

Mandy Coz
Mandy Downes
Michelle Villa-Real
Ivania Guzman
Natalia DeLeo
Tania Pereira
Cindy Caceres
Linh Nguyen

Genetic Engineering

The Good and the Bad Side

The Good
- Correct problems
- Get rid of diseases
- Make people less destructive
- Monitor patterns in genetic structure
- Watch health structure
- Program languages
- Program intelligence
- Telekinesis and Telepathy
The Good and the Bad Side

- The Bad
 - No control over your own life
 - Brain damage
 - Manipulate body function
 - Abuse engineering
 - The chip could malfunction
 - Could make you sick (cancer)
 - It could back-fire
 - It could make a mistake

Recommendations

- Smart, well trained people to control
- Start with only a few test
- Be honest about engineering
- Monitor what’s happening
- Put special genetic laws into use
- Special informative classes in schools
Women In Technology

Sample Student evaluation

Do you use computers at school? Yes:___ No:___
Do you use a computer at home? Yes:___ No:___

If you use computers, for what do you use them?
Games: Yes:___ No:___
Homework: Yes:___ No:___
Internet: Yes:___ No:___
E-mail: Yes:___ No:___
Other: Yes:___ No:___ If Yes:__________________

IBM's Involvement:
On a scale of 1 to 5, how would you rate the following statements (please circle):

<table>
<thead>
<tr>
<th>Statement</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. IBM was successful in showing the importance of studying math and science to pursue a career in technology</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Preparing for the presentation showed me how simple it is to work on the computer</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. I learned how to make a presentation for my classmates</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Comments:__

Women In Technology

Sample Teacher evaluation

Do you use a computer at home? Yes:___ No:___

If you use computers, for what do you use them?
Games: Yes:___ No:___
Classwork: Yes:___ No:___
Internet: Yes:___ No:___
E-mail: Yes:___ No:___ If Yes:__________________

Other: Yes:___ No:___ If Yes:__________________

IBM's Involvement:
The WIT Workshop had four objectives. On a scale of 1 to 5, how successful were we in conveying these messages?

<table>
<thead>
<tr>
<th>Objective</th>
<th>Poor</th>
<th>Fair</th>
<th>Good</th>
<th>Very Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. To build awareness of the exciting career opportunities for women in IT</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. To encourage young girls to pursue mathematics and sciences</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. To provide girls access to female role models in the IT Industry</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. To show young girls that technology can be fun</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

What did we do well?__

What could we have done better?___