Anchoring and Adjustment in Software Estimation

Jorge Aranda
February, 2005
University of Toronto

Outline

- Fundamentals, Related Work
 - Software Estimation
 - Judgmental Biases, Anchoring and Adjustment
- Software Estimation Experiment
 - Plan, Execution
 - Results
 - Follow-up Study
- Conclusions
Software Estimation
What is it?

- Project completion probability distribution

![Graph showing project completion probability distribution over time]

Software Estimation
What is it?

- Estimate: Prediction of effort needed to complete a project
 - Prediction has a probability p of being above real effort
 - Researchers aim for balance ($p = 50\%$)
 - Estimators fall in optimism (p just above 0\%)
 - Managers assume certainty ($p = 100\%$)
Software Estimation Techniques

- **Model-based techniques**
 - COCOMO, SLIM, ESTIMACS, Checkpoint
 - Default academic idea of what estimation should do
 - Assumption: Software development fits into a general model; model’s equation can be found
 - Core: Size-effort correlation
 - Note: People are better at estimating effort than size
 - Results: Poor, although calibration is helpful

- **Learning-oriented techniques**
 - Analogies, neural networks
 - Assumption: Past performance is good indication of future performance
 - Results: Good for known territory, bad otherwise

- **Expert-based techniques**
 - Individual estimation, Delphi
 - Assumption: Humans handle uncertainty better than models/tools
 - Bad reputation in academia
 - Frequently thought of as mere “guessing”
 - Boehm doesn’t even consider freeform individual expert estimation as an estimation technique
 - Widespread use in industry
 - Surveys indicate 62%-85% use expert estimation primarily (compare to <10% primary use of models)
Software Estimation

Techniques

- Isn’t all estimation expert-based?
 - Models require human judgment for input
 - Estimated size of application
 - Relevance of situational parameters (team experience, familiarity with problem domain, etc.)
 - Analogy-based estimation requires picking sources for analogy
 - Humans are currently better than tools at choosing analogies
 - Model and analogy-based estimates are normally adjusted if they don’t “feel” right

- If human judgment is always required, we should connect to research in psychology

Software Estimation

- Brown & Siegler: “Psychological research on real-world quantitative expert estimation has not culminated in any theory of estimation, not even in a coherent framework for thinking about the process”.

- But there are results from human judgment research we can use
Software Estimation and Human Judgment

- Some results linking software estimation and human judgment:
 - Estimators do not distinguish between 50%, 75%, 90% and 99% confidence in their estimates
 - Managers prefer estimators that give narrow estimation ranges, even if they are wrong
 - Customer expectations play a role in the outcome of an estimation process
 - Experience is not a good indicator of accuracy
 - Estimates are a factor in actual effort of projects (self-fulfilling prophecies)

Judgmental Biases

- Judgmental bias: Deviation from reality that prevents the objective consideration of a situation

- Hogarth’s conceptual model of judgment
Judgmental Biases

- Acquisition biases
 - Availability
 - Does the letter R appear more frequently in the first or in the third position of English words?
 - Selective perception
 - We perceive information we expected to perceive, and disregard conflicting evidence
 - Concrete information
 - Direct advice is given more thought than abstract information

- Information processing biases
 - Inconsistency
 - Difficulty to apply the same criterion to a repetitive set of cases
 - Representativeness
 - When classifying a piece of information, we assign it to the class on which it typically belongs, not in which it statistically belongs
 - Worthless data
 - No specific data at all is better than worthless data
Judgmental Biases

- Output biases
 - Scale effects
 - Probabilities are assigned differently when required as percentages than as x:y odds
 - Illusion of control
 - Planning and forecasting induce feelings of control over the uncertain future
- Feedback biases
 - Overconfidence
 - Practice (and lack of proper feedback) causes an increase in confidence, without an increase in actual performance
 - Hindsight bias
 - In retrospect people are rarely surprised of the outcome of a previously uncertain situation

- Information processing biases (cont.)
 - Law of small numbers
 - Which sequence of coin tosses is more likely; six heads in a row or H-T-T-T-H-T?
 - Regression
 - "Student performance improves after a reprimand, and worsens after a reward"
 - Groupthink
 - Groups may take decisions no group member would have taken individually
 - Anchoring and adjustment
 - (We'll come back to it in a moment!)
Anchoring and Adjustment

- Tversky & Kahneman’s roulette experiment
 - Low anchor (10) leads to low estimate (25%)
 - High anchor (65) leads to high estimate (45%)

- If judgment is difficult we appear to grasp an anchor (a tentative, even if unlikely, answer) and adjust it up or down according to our intuition

- Adjustment is frequently insufficient to compensate anchor

Evidence exists for anchoring and adjustment in wide variety of activities
- General knowledge issues
- Probability estimates
- Legal judgment (ask for large compensations!)
- Real estate pricing decisions
- Negotiation

Anchor does not need to be related to solution
- However, semantic anchoring effects are more potent than purely numeric anchoring
Anchoring and Adjustment

- No thorough explanation for phenomenon, but:
 - It occurs if people pay sufficient attention to anchor
 - Knowledgeable people are less susceptible
 - Anchoring appears to operate unintentionally (it is difficult to avoid even when people are forewarned)

Anchoring and Adjustment in Software Estimation

- Software estimation is a prime candidate for anchoring effects:
 - Judgment under lots of uncertainty
 - Quantitative estimates
 - Anchors are happily tossed among managers and developers
 - “Do you think you’ll finish by mid February?”
 - Lack of solid framework for software development makes it easy to justify biased estimates
Anchoring and Adjustment in Software Estimation

- Relevant recent research
 - Customer expectations may play a role in estimates
 - Anchoring and adjustment biases assignment of work hours to Work Breakdown Structure analyses

Software Estimation Experiment Research Questions

- Does the phenomenon of anchoring and adjustment influence software estimation processes?
- Is the influence of anchoring and adjustment stronger for estimators that rely solely on expert estimation?
- Does the confidence (or lack thereof) estimators have in their answers compensate for possible anchoring and adjustment biases?
- Is the anchor effect stronger around anchors that naturally attract estimates due to business cycles –such as “12 months”?
Software Estimation Experiment

Experiment Design

- Experiment consisted of a software estimation exercise
 - Problem: Estimate how long will it take to deliver a software application based on:
 - Initial requirements specification
 - Client and development team situational information
 - Approximately 10 pages of material
 - Participants work on problem individually
 - Can take as long as they desire
 - Can use estimation technique(s) of their choice
 - Required answers:
 - Estimate in months
 - Justification
 - Confidence range (in percentage)

In documentation, future user of system is quoted as saying one of (emphasis added here):

- “I’d like to give an estimate for this project myself, but I admit I have no experience estimating. We’ll wait for your calculations for an estimate.”

- “I admit I have no experience with software projects, but I guess this will take about 2 months to finish. I may be wrong of course, we’ll wait for your calculations for a better estimate.”

- “I admit I have no experience with software projects, but I guess this will take about 12 months to finish. I may be wrong of course, we’ll wait for your calculations for a better estimate.”

- I admit I have no experience with software projects, but I guess this will take about 20 months to finish. I may be wrong of course, we’ll wait for your calculations for a better estimate.”

- All other data were equal among conditions
Software Estimation Experiment
Experiment Design

- Note that:
 - Difference among extreme anchors is an order of magnitude
 - Difference is large, but plausible considering range of estimates at early project stages
 - Anchor is semantically linked to problem
 - User does not push his guess as a starting point for negotiation
 - He labels his own estimate as a guess
 - Participants read the quote, did not hear it coming from a customer
 - Less likelihood of attempting to please user (social bias)

Software Estimation Experiment
Execution

- 29 participants
 - 62% graduate students, 38% software professionals
 - 62% with previous experience
 - 34% with experience in medium to large projects (self-assessed)

- Intended even distribution among conditions
 - 9 responses for "2 months" condition
 - 6 responses for "12 months" condition
 - 8 responses for "20 months" condition
 - 6 responses for control condition
Software Estimation Experiment
General Results

- Very wide range of estimates
 - Shortest estimate: 3 months
 - Longest estimate: 28 months
 - Average estimate: 12.1 months

- Confidence limits increase range to:
 - Minimum: 2 months
 - Maximum: 44.8 months

- Average +/- confidence percentage: 31%
 - Minimum: 10%
 - Maximum: 100%

Software Estimation Experiment
General Results

- Primary estimation techniques used:
 - Expert-based estimation (72%)
 - WBS analysis: 45%
 - Intractable process: 27%
 - Model-based estimation (28%)
 - Lines of code: 18%
 - Function points: 10%
Software Estimation Experiment
General Results

<table>
<thead>
<tr>
<th></th>
<th>“2 months”</th>
<th>Control</th>
<th>“12 months”</th>
<th>“20 months”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.8</td>
<td>8.3</td>
<td>16.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Median</td>
<td>6</td>
<td>7</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.7</td>
<td>4.4</td>
<td>4.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Software Estimation Experiment
General Results

- Estimates from the “2 months” condition are significantly different from those in the “20 months” condition ($p<0.001$)

- Estimates from the control condition are significantly different from those in the “20 months” condition ($p<0.01$)

- Estimates from the “2 months” condition were not found to be significantly different from those in the control condition ($p>0.1$)

- Estimates from the “12 months” condition are significantly different from those in the “2 months” condition ($p<0.01$) and from those in the control condition ($p<0.05$), but not from those in the “20 months” condition ($p>0.1$)

Software Estimation Experiment
Experienced Participants Results
Software Estimation Experiment
Experienced Participants Results

<table>
<thead>
<tr>
<th></th>
<th>“2 months”</th>
<th>Control</th>
<th>“12 months”</th>
<th>“20 months”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.8</td>
<td>9.0</td>
<td>17.8</td>
<td>17.8</td>
</tr>
<tr>
<td>Median</td>
<td>6</td>
<td>9</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.2</td>
<td>3.3</td>
<td>4.02</td>
<td>5.5</td>
</tr>
</tbody>
</table>

- Estimates from the “2 months” condition are significantly different from those in the “20 months” condition ($p < 0.02$).
- Estimates from the control condition are significantly different from those in the “20 months” condition ($p < 0.05$).
- Estimates from the “2 months” condition were not found to be significantly different from those in the control condition ($p > 0.1$).
- Estimates from the “12 months” condition are significantly different from those in the “2 months” condition ($p < 0.01$) and in the control condition ($p < 0.05$), but not from those in the “20 months” condition.
Software Estimation Experiment
Expert-based Techniques Results

<table>
<thead>
<tr>
<th></th>
<th>“2 months”</th>
<th>Control</th>
<th>“12 months”</th>
<th>“20 months”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>5.1</td>
<td>7.8</td>
<td>17.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Median</td>
<td>4</td>
<td>7</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>2.3</td>
<td>3.6</td>
<td>4.7</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Software Estimation Experiment
Expert-based Techniques Results

- Estimates from the “2 months” condition are significantly different from those in the “20 months” condition ($p<0.001$)

- Estimates from the control condition are significantly different from those in the “20 months” condition ($p<0.02$)

- Estimates from the “2 months” condition were not found to be significantly different from those in the control condition ($p>0.1$)

- Estimates from the “12 months” condition are significantly different from those in the “2 months” condition ($p<0.001$) and from those in the control condition ($p<0.05$), but not from those in the “20 months” condition

Software Estimation Experiment
Model-based Techniques Results
Software Estimation Experiment
Model-based Techniques Results

<table>
<thead>
<tr>
<th></th>
<th>“2 months”</th>
<th>Control</th>
<th>“12 months”</th>
<th>“20 months”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>12.5</td>
<td>9.5</td>
<td>14</td>
<td>20.7</td>
</tr>
<tr>
<td>Median</td>
<td>12.5</td>
<td>9.5</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.5</td>
<td>5.5</td>
<td>n/a</td>
<td>7.7</td>
</tr>
</tbody>
</table>

No comparison between conditions was found to be statistically significant ($p>0.05$ in all cases)
Consider the maximum (pessimistic) values on the “2 months” condition and the minimum (optimistic) values on the “20 months” condition...

Software Estimation Experiment
Maximum-Minimum Results

<table>
<thead>
<tr>
<th></th>
<th>“2 months” maximums</th>
<th>Control</th>
<th>“20 months” minimums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>8.7</td>
<td>8.3</td>
<td>12.8</td>
</tr>
<tr>
<td>Median</td>
<td>7</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>4.8</td>
<td>4.4</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Software Estimation Experiment
Maximum-Minimum Results

- **Maximum** values of estimates from the “2 months” condition are significantly different from **minimum** values of estimates in the “20 months” condition ($p<0.05$)

- Estimates from the control condition are significantly different from **minimum** values of estimates in the “20 months” condition ($p<0.1$)

- Maximum estimates from the “2 months” condition were not found to be significantly different from those in the control condition ($p>0.1$)

Software Estimation Experiment
Estimate Ranges Results Concentrated

The figure to the right shows the percentage of agreement that participants in each condition had with each other.

From bottom-up, the groups are “2 months”, control, “12 months” and “20 months” conditions.

The “12 months” condition had higher ranges than usual, achieving the highest intra-group agreement, with 83%
All estimators worked on the same problem

- Maximum agreement was 48%
- Therefore, for any outcome of project, at least 52% of estimates will be wrong
Conclusions

- Anchoring and adjustment does take place in software estimation processes
 - Strength of bias too high to be ignored
 - Results from low anchors are statistically different from high anchors
 - Results from estimates without anchors are statistically different from high anchors

- No statistical difference found between low anchors and control condition
 - Estimators optimistic/attempting to please by default?
 - Incorrect choice for low anchor?
 - More participants necessary to discover effect?

- No statistical difference found between “12 months” and “20 months” anchors
 - Both anchors high enough for project?
 - “12 months” group was extracted differently (same company, possibly same business values) than the other three
 - “12 months” had an average range of error of 53%, against 23-33% on other groups

- No effect of “12 months” natural attractor was apparent.
Conclusions

- Anchoring and adjustment effects unchanged with experienced estimators
- Stronger effect for estimators using expert-based techniques
- Model-based estimations scarce (28%), bias effect inconclusive
 - Use of model-based techniques in line with surveys
 - 55% of inexperienced estimators chose a model-based technique
 - 11% of experienced estimators chose a model-based technique

Conclusions

- What to do?
 - Shield estimators from anchors
 - Not always possible
 - Give estimates with wide min-max ranges
 - However, management will think you are inexperienced
 - Choose a development lifecycle in which estimates are less relevant and risk is managed
 - Spiral model better than waterfall