A binary search tree is either empty, or it consists of a node with two binary search trees as subtrees. Each node holds an integer. The elements in a binary search tree are arranged so that smaller elements appear in the left subtree of a node and larger elements appear in the right subtree.

Let atom empty represent an empty binary search tree and let a term node(K, S, T) represent a tree with an integer value K at the root, left subtree S and right subtree T.

1) Define a relation min to extract the minimum element in a tree. The two arguments of min are the tree and an integer representing the smallest element in the tree.

2) Define a relation max to extract the maximum element in a tree. The two arguments of max are the tree and an integer representing the largest element in the tree.

3) Define a relation height to calculate the height of a tree. The two arguments of height are the tree and an integer representing the height of the tree.

4) Define a relation nodecount to calculate the number of nodes in a tree. The two arguments of nodecount are the tree and an integer representing the number of nodes in the tree.

5) Define a relation member to test whether an integer appears at some node in a tree. The two arguments of member are an integer and a tree.

6) Define a relation insert to insert an element e into a tree T. The three arguments of insert are an integer, the original tree and the tree after the insertion.

7) Define a relation delete to delete an element e from the tree T. The three arguments of delete are an integer, the original tree and the tree after the deletion.

8) Define a relation inorder to perform an inorder traversal of a tree. The two arguments of inorder are the tree and a list whose elements are the elements of the tree in sorted order.

To make your lives easier, assume that the max of an empty tree is 0 and the min of an empty tree is 1000. As such, valid tree elements are between 1 and 999.
Submission:

To facilitate automatic testing of your program, you should name the file containing your program “a3.pl”. **Only the code needs to be submitted electronically.** Use the following command:

```
submit -c csc324h -a A3 a3.pl
```

Your code should be well documented with comments. In addition, you need to submit a test report that shows the tests you performed on your program. A rationale should be provided for the test cases and these should be exhaustive. **A hardcopy of the code and test report must be submitted in the drop box in BA2220.** For the sake of readability (and as a matter of good coding style), you should implement your solution using a number of helper predicates. Keep checking the course web page to become aware of any late-breaking information about the assignment as it becomes available.

Tentative Marking Scheme

50% Correctness
30% Thoroughness of test report
10% Comments
10% Coding Style