
Using SAT in QBF

Horst Samulowitz and Fahiem Bacchus
�

Department of Computer Science, University of Toronto, Canada.
[horst

�
fbacchus]@cs.toronto.edu

Abstract. QBF is the problem of deciding the satisfiability of quantified boolean
formulae in which variables can be either universally or existentially quantified.
QBF generalizes SAT (SAT is QBF under the restriction all variables are exis-
tential) and is in practice much harder to solve than SAT. One of the sources of
added complexity in QBF arises from the restrictions quantifier nesting places on
the variable orderings that can be utilized during backtracking search. In this pa-
per we present a technique for alleviating some of this complexity by utilizing an
order unconstrained SAT solver during QBF solving. The innovation of our paper
lies in the integration of SAT and QBF. We have developed methods that allow
information obtained from each solver to be used to improve the performance
of the other. Unlike previous attempts to avoid the ordering constraints imposed
by quantifier nesting, our algorithm retains the polynomial space requirements
of standard backtracking search. Our empirical results demonstrate that our tech-
niques allow improvements over the current state-of-the-art in QBF solvers.

1 Introduction

QBF is the problem of deciding the satisfiability of a quantified boolean formula where
variables can be either universally or existentially quantified. It generalizes SAT in
which all variables are (implicitly) existentially quantified. Constraint satisfaction prob-
lems (CSPs) can be similarly generalized from their purely existential version to QCSP
where some of the variables become universal [5].

Adding universally quantified variables yields a considerable increase in expres-
sive power, and consequently QBF and QCSPs can compactly represent a much wider
range of problems than SAT and ordinary CSPs. These include problems like condi-
tional planning, non-monotonic reasoning, problems in electronic design automation,
scheduling, model checking and verification, see, e.g., [6, 12, 21].

However, this added expressiveness comes with a price. Namely QBF is much
more difficult to solve than SAT. From the point of view of complexity theory QBF
is PSPACE-complete where as SAT is “only” NP-complete [23]. Despite this intrinsi-
cally high complexity the goal of developing practically useful QBF solvers still seems
to be feasible given sufficient conceptual and technical advances. This paper presents
some new techniques that make progress towards this goal.

Most current QBF solvers, e.g., QuBE [15], Semprop [17], Quaffle [25] are adapta-
tions of the classic DPLL backtracking search algorithm originally developed for solv-
ing SAT [10]. There are two main properties of QBF that must be accommodated by

�
This work has been supported by Natural Science and Engineering Research Council Canada.

the search. First, the search must solve both settings of every universal variable, and
second the variable ordering followed during search must respect the ordering imposed
by quantifier nesting. Both of these properties make QBF solving slower than SAT. The
first property is intrinsic to QBF, and must be accommodated in some fashion by any
QBF solver. The second property is, however, somewhat more tractable, and various
attempts have been made to avoid the variable ordering constraint. To date, however,
all techniques for avoiding this constraint require exponential space in general, e.g., the
Skolemization/expansion approach used by the Quantor [4] and Skizzo [3] solvers and
the BDD technique used in [1].

In this paper we develop an algorithm that makes extensive use of order-free SAT
solving in an attempt to alleviate (but not completely remove) the variable ordering con-
straint. Our algorithm retains the important polynomial space property of backtracking
search. It can also use any extra space that can be provided to improve its performance,
but extra space is not required for correctness (this is a common feature with current
SAT and QBF backtracking solvers).

We utilize a backtracking SAT solver in a backtracking QBF solver. Because both
solvers are doing backtracking search we are able to develop techniques to integrate
them very tightly. For example, both solvers search the same tree and share all of their
datastructures, including using the same stack to store the current path. The key inno-
vation of our method lies in techniques for sharing information between the two solvers
so that information computed during SAT solving can be used to improve QBF solving
and vice versa. The result is a QBF solver that is able to improve on current state of the
art on a number of benchmark suites.

In the rest of the paper we first present some necessary background, and set the
context for our algorithm. We then present the details of our algorithm, prove some
results about the algorithm’s formal behavior and provide empirical evidence of its
effectiveness. We close with a discussion of previous work, directions for future work,
and some conclusions.

2 Background

A quantified boolean formula has the form ��� � , where � is a propositional formula
expressed in CNF and � is a sequence of quantified variables (��� or ���). We require
that no variable appears twice in 	 and that the set of variables in � and 	 is identical.

A quantifier block
�� of � is a maximal subsequence of � where every variable
in
�� has the same type of quantifier. We order the quantifier blocks by their sequence
of appearance in � :

����������� iff

��� appears before
�� � in � .

Each variable � in � appears in some quantifier block, which we denote as

������� ,
and the ordering of the quantifier blocks imposes a partial order on the variables. For
two variables � and � we say that ��� �"!�� iff

�������#�$
������%� . Note that the variables
in the same quantifier block are unordered, so we write �'&(�)!*� iff
��+�,���-&.
����,�%� . We
also say that � is universal (existential) if its quantifier in � is � (�).

For example, �0/ � / � � ��1 � 1 � � �0/�2
/
3��4�5/ ��6 1 � 6 /�3��-78�:9;1 � 6 9</�3�� is a QBF with �>=
�0/ � / � � ��1 � 1 � �?�0/�2@/�3 and � equal to the two clauses �,/ ��6 1 � 6 /�3�� and �59;1 � 6 9</
3�� . The

quantifier blocks in order are �0/ � / � , ��1 � 1 � , and �0/�2
/
3 , and we have that, e.g., / � �#�"!
/�2 , 1 � �#�"! /�3 , 1 � is universal, and /�3 is existential.

A SAT model
���

of a CNF formula � is a truth assignment � to the variables of
� that satisfies every clause in � . We denote the value of a variable � in � by � ���0� . In
contrast a QBF model (Q-model)

���
of a quantified formula � � � is a tree of truth

assignments in which the root is the empty truth assignment, and every node � assigns
a truth value to a variable of � not yet assigned by one of � ’s ancestors. The tree

�	�
is subject to the following conditions. (1) For every node � in

�
�
, if � assigns a truth

value to a universal variable � then � has exactly one sibling that assigns the opposite
truth value to � , and if � assigns a truth value to an existential variable then � has no
siblings. For every sequence of truth assignments � from the root to a leaf of

�	�
we

have: (2) � must assign the variables in an order that respects � �"! . That is if � assigns �
and one of � ’s ancestors assigns � then we must have that � & �"! � . And (3) � is a SAT
model of � . A Q-model has a path for every possible setting of the universal variables
of � , and thus has size exponential in the number of universals contained in � . We
say that a QBF ��� � is QSAT if it has a Q-model. The QBF problem is to determine
whether or not � � � is QSAT.

DPLL works on the principle of assigning variables, simplifying the formula to
account for that assignment and then recursively solving the simplified formula. The
reduction of a formula � � � by a literal � (denoted by � � �
� �) is the new formula
�
�5� ��� where ��� is � with all clauses containing � marked as being satisfied (implic-
itly removed) and 9�� marked as falsified in all remaining clauses (implicitly � has been
removed from these clauses), and ��� is � with the variable of � and its quantifier re-
moved. For example, ������� �?����� �59;� 6 � 6 ����7 �59;� 6 �%����� ���#=���� � ��� �:9;� 6 � � , where �59;� 6 �%�
has been marked as satisfied and � has been marked as falsified in �59;� 6 � 6 ��� . An alter-
native view of conditions (2) and (3) on a Q-model given above is that the subtree below
every node � must be a Q-model of the formula � � �
� ��� where �� is the sequence of
literals made true on the path from the root to (and including) � .

From the definition of a Q-model it follows that if �!� is logically equivalent to �
(� � has the same SAT models as �) then � � � is QSAT if and only if �'� � � is QSAT:
condition 3 above is invariant for � and �!� . Thus unit propagation and clause learning
can be performed without changing ��� � ’s QSAT status: both of these transform � to
a logically equivalent �"� . A QSAT preserving (but not SAT preserving) transformation
that can additionally be performed on � � � is universal reduction. The universal re-
duction of a clause # is to remove all universal variables � from # such that for every
other variable � in # we have � & �"!$� . Such universals are called tailing. The intuition
is as follows. Say that �&%'# is a tailing universal, then in any Q-Model, # must be
satisfied along any path prior to � being instantiated. (Thus # with � removed imposes
the same constraint on the set of Q-models as does #). If not then since � is universal,
any path that fails to satisfy # prior to instantiating � must have an extension in which �
is set to false: but then that extension will falsify # and violate condition (3).

We call the application of unit propagation and universal reduction until closure
Q-propagation, and denote by (*)$+-,/. �5��� �#� the new formula that results from Q-
propagation. In Q-propagation any universal reduction steps are always performed prior

1: � bool Result, literal forced, int BTLevel � QBF-DPLL(��� � , Level)
2: if � contains a falsified clause then
3: Compute new clause � by Conflict Analysis
4: forced = deepest literal in � and BTLevel = level � is made unit
5: return � FAIL, forced, BTLevel �
6: if all clauses of � are satisfied then
7: Compute Backtrack Level (BTLevel) by Solution (Cube) Analysis
8: return � SUCCEED, –, BTLevel �
9: Pick � from the first quantifier block and let �
	�� or �
�

10: repeat
11: ��� ��	���������� � ��� � � � �
12: � Result, � , BTLevel � = QBF-DPLL � ��� ��� Level ��� �
13: if BTLevel � Level then
14: return � Result, � , BTLevel �
15: until Result == SUCCEED /* � must be universal for this to happen */
16: let � be � ’s opposite value from line 9.
17: repeat
18: ��� ��	���������� ����� � � � �
19: � Result, � , BTLevel � = QBF-DPLL � ��� ��� Level ��� �
20: if BTLevel � Level then
21: return � Result, � , BTLevel �
22: until TRUE /* line 19 will eventually return BTLevel � Level */

Fig. 1. DPLL for QBF

to any unit propagation steps: a unit clause containing only a universal variable should
yield the empty clause rather than forcing the universal.

The algorithm utilized in modern SAT solvers (e.g., [18]) can be adapted to solve
QBF. A recursive version of this algorithm is shown in Fig. 1. Modern backtracking
QBF solvers employ two non-chronological backtracking schemes: conflict analysis
and solution analysis. Conflict analysis is a standard SAT technique that involves learn-
ing new clauses via a resolution process. A failure deadend (line 2) is reached when �
contains a clause in which all literals have been falsified by some subset of the literals
that reduced � at the previous levels (the prefix). From this falsified clause a new falsi-
fied clause # can be learned via a process of resolution and universal reduction (conflict
analysis). DPLL-QBF will then backtrack to the asserting level of # , which is the level
where all but one of the literals in # have been falsified. This is the level where # is made
unit (line 4). After returning from all levels deeper than BTLevel (line 13-14 or 19-20),
the solver arrives at line 12 or line 19, where we now have that the new clause # is unit
and forces � . Notice that the solver does not actually undo the original decision made at
this level (the setting of the variable � chosen at line 9). Rather it simply augments the
reduction of ��� � by the new unit implicant � (line 11 and 18). Thus the solver might
return to this level on failure a number of times: each time it discovers that another
literal is implied at this level. Eventually, the recursive call at line 12 returns success
at this level or returns to a higher level. (Each failure return sets another variable, so a
failure return to this level at line 12 can only occur a finite number of times.)

Success returns occur as a consequence of solution analysis (line 7). Solution anal-
ysis is a technique particular to QBF that identifies a subset of the assignments that
are sufficient to make the QBF QSAT. This subset of assignments is called a cube. The
solver can then backtrack to the deepest universal in the cube, skipping other universals
not mentioned in the cube and any existentials irrespective of whether or not they are
in the cube. Thus line 16 (success return) can be reached only if � is universal. A cube
containing one setting of a universal can be combined with another cube containing the
other setting to obtain a new cube in a cube resolution process akin to the resolution
of clauses. In particular, if the deepest universal in the cube has already had its other
value solved, the solver will combine these two cubes and remove the deepest universal.
Hence, on success the solver always backtracks to a universal variable whose other side
is not yet solved (line 12), and thus the recursive call on line 19 can never return with
a successful result. We can, however, return from the call at line 19 a number of times
with newly implied literals learned from failures by conflict analysis.

One additional aspect of solution and conflict analysis is that the new clauses and
cubes can be stored (learned), reused along other paths in the search, and combined
together to produce more powerful clauses and cubes. Cube and clause learning is es-
sential in achieving state of the art performance in QBF solving. In Fig. 1 lines 2-4 and
6-7 would be modified to take into account learned clauses and cubes (e.g., at line 2 we
would also fail if any learned clause was falsified, and at line 6 we would also succeed
if any learned cube became true, similarly the backtrack level computed at lines 4 and 7
would take into account the already learned cubes and clauses). Cube and clause learn-
ing is developed in more detail in, e.g., [14, 16, 24, 25]. With the enhancements of cube
and clause learning QBF-DPLL as specified in Fig. 1 is quite close to state of the art
solvers like Quaffle [25] and QuBE [15].

Finally note that QBF-DPLL requires only linear space (in the number of variables
�), and only quadratic space (in �) when it utilizes non-chronological conflict and so-
lution backtracking.1 However, when clause and/or cube learning is employed (i.e.,
the cubes and clauses are stored) the algorithm can consume as much space as can be
provided. Nevertheless, learning clauses and cubes does not affect the soundness or
completeness of the algorithm, it only helps to improve performance. In particular, we
can adopt any strategy for deleting these learned clauses and cubes when we run out of
space, without affecting the correctness of the algorithm. In this sense QBF-DPLL, like
most current SAT solvers, is an “any-space algorithm,” it can utilize any space provided
above and beyond its basic polynomial space requirements, but it can also work under
any fixed space bound (above its basic requirements).

At line 9 we see that QBF-DPLL must always branch on a variable from the out-
ermost quantifier block. This imposes a constraint on the possible variable orderings
the search can use. We now turn to a new algorithm S-QBF that tries to alleviate this
constraint on variable ordering imposed by the quantifier prefix � .

1 In the worst case with conflict and solution backtracking we must store a clause (cube) for ev-
ery failed existential value (successful universal value) along the current path being explored.
These clauses (cubes) have maximum size equal to the number variables � , and the current
path can contain at most � literals.

3 S-QBF

As explained in the introduction there is no escaping the fact that in QBF we have
to ensure that both settings of each universal variable are solvable.2 The constraint on
variable ordering imposed by the quantifier sequencing can also be a significant imped-
iment to performance. In SAT, e.g., it is provable that an inflexible variable ordering can
cause an exponential explosion in the size of the backtracking search tree. That is, there
exist families of UNSAT problems for which any DPLL search tree where each branch
follows a fixed variable ordering is exponential in size, whereas a quasi-polynomially
(
� � ��� ��� �) sized DPLL search tree exists when a dynamic ordering is used [8, 2].

This observation (also bolstered by empirical observations of the tremendous im-
pact variable ordering has on DPLL SAT search), is the underlying motivation for our
approach. In particular, consider a QBF formula � � � in which the body � is UNSAT.
If all of quantifier blocks have size 1, QBF-DPLL will be forced to follow a fixed static
variable ordering in proving � � � to be UNQSAT. On the other hand an order unre-
stricted SAT solver might be able to determine that � is UNSAT very quickly, which
will immediately tell us that ��� � is UNQSAT.

The idea of testing the body of the formula, � , can be used recursively at every in-
vocation of QBF-DPLL, just before line 9 prior to recursively solving the entire formula
(body plus quantifier) with the order constrained QBF search. If the body � is UNSAT,
we can backtrack immediately. If � is SAT, then we still do not know whether or not
� � � is QSAT, so we have to continue recursively solving ��� � with our QBF solver.

Furthermore, if � is SAT our SAT solver will find a satisfying truth assignment for
� . This truth assignment is a sensible candidate for the left-most path in a Q-model. So
after we obtain the SAT solution we can follow this solution in the QBF solver during its
first (left-most) descent. It can, however, be the case that the SAT truth assignment is not
in fact a feasible left-most path for the QBF solver. In particular, this truth assignment
might not survive the stronger Q-propagation performed by the QBF solver. For exam-
ple, if �'� �.=���� 6 ���?� # � ��� 6 #@��7��:� 6 9 #
� , then the SAT solver could return ��=	�:9
� 6 � 6 #��
as SAT truth assignment for � . However, the QBF solver following this solution would
first instantiate 9
� which by Q-Propagation (unit-propagation plus universal reduction)
would reduce � � � to � � �4�:� , i.e., � would contain an empty clause.

Putting these pieces together we obtain the S-QBF algorithm given in Fig. 2. The
algorithm is a modification of QBF-DPLL. S-QBF is first invoked with the input for-
mula � � � , Level equal to 1, and �8=�
�� . Its first task is to find a SAT solution (line
4-8). The SAT solver might discover a number of literals implied at higher levels. Lit-
erals implied at higher levels cause S-QBF to backtrack, assert those literals, and then
proceed downwards again. The SAT solver might also discover literals implied at the
current level. These literals are used to reduce the input formula � � � (line 8) via Q-
propagation: these literals are independent of any choices made by the SAT solver so
their consequences need to be accounted for by the QBF solver. After Q-propagating
these implied literals the SAT solver is called again to see if it can find a SAT solution
in light of these added constraints on � .

2 Cube learning is specifically designed to improve the efficiency of achieving this.

1: � bool Result, literal forced, int BTLevel � S-QBF(��� � , Level, �)
2: if � contains a falsified clause or if all of its clauses are satisfied. then
3: Perform non-chronological backtracking using conflict or solution analysis as in QBF-

DPLL lines 2-8.
4: while � ==

���
do /* No current SAT solution */

5: ��� , � , BTLevel � = SAT � ��� Level �
6: if BTLevel � Level then /* SAT can cause S-QBF to backtrack */
7: return � FAIL, � , BTLevel �
8: ��� � 	���������� � � � � � � �
9: Pick � from the first quantifier block and let �
	���� �	�

10: repeat /* Second and subsequent invocations of S-QBF need to find new SAT solution */
11: ��� ��	���������� � ��� � � � �
12: � Result, � , BTLevel � = S-QBF � � � �
� Level � � �
� �
13: if BTLevel � Level then
14: return � Result, � , BTLevel �
15: � =

���
16: until Result == SUCCEED
17: let � be � ’s opposite value from line 9.
18: repeat /* First and all subsequent invocations of S-QBF need to find new SAT solution */
19: ��� ��	���������� � ��� � � � �
20: � Result, � , BTLevel � = S-QBF � � � �
� Level � � � ��� �
21: if BTLevel � Level then
22: return � Result, � , BTLevel �
23: until TRUE /* line 20 will eventually return BTLevel � Level */

Fig. 2. S-QBF

Eventually, the SAT solver finds a SAT solution (� is returned containing this solu-
tion), or causes a backtrack to a higher level in the QBF solver. If a solution is found, the
QBF solver heuristically tries to follow this solution (in quantifier order) by choosing a
value for � that agrees with � (line 9). The SAT solution � is passed down to the next
recursion where it is followed as far as possible, either to a failure or a Q-solution at
line 2-3.3 Any conflicts encountered will cause a backtrack which will return to line 20
or 12 of some invocation after which the next invocation will call the SAT solver again.
Thus the SAT solver is being used to refute UNSAT subtrees, and more importantly to
compute new conflict clauses that can (a) cause the QBF solver to backtrack and (b)
discover that various literals are implied at previous levels of the search. All of this in-
formation, computed by the SAT solver, is sound for the QBF solver: UNSAT subtrees
are UNQSAT, any new clause learned by the SAT solver is a valid new clause for the
QBF solver, and if a literal � is SAT implied at a previous level of the tree then � is
Q-SAT implied at that level as well.

3 Q-propagation might cause S-QBF to fail while following � even though � is a SAT solution.
Note that Q-Propagation cannot be applied in the SAT solver since Q-Propagation is only
valid when the variables are instantiated in quantifier order whereas the SAT solver is order
unconstrained.

It should be noted that the SAT solver can also make an S-QBF invocation backtrack
from line 20, even though we know that the other side of the universal branched on in
that invocation has already been successfully solved. This might seem strange, since at
this point we already know that the current prefix (above the Level of this invocation)
contains at least one satisfying assignment below it. Thus one might think that the SAT
solver could never then conclude that the prefix is contradictory. However, although
the prefix is not SAT contradictory, it could still be QBF contradictory. For example,
say that the prefix contains the literal � , the body � contains the clauses �59
� 6 9*� 6 # 6�� � ,
�59
� 6 9*� 6 # 6 9 � � , �59
� 6 9*� 6 9 # 6�� � , �:9
� 6 9*� 6 9 # 6 9 � � , � is universal, � � �)! # , and � �#�)! � .
The QBF solver will be able to solve the setting 9*� without difficulty, as this setting
satisfies all of these clauses. However, when at line 20 the setting � is made these four
clauses become contradictory. Q-propagation cannot detect the contradiction so the SAT
solver will be invoked in the next recursive S-QBF call. SAT will be able to learn the
new clause �59
� 6 9*� � , which after universal reduction becomes �:9
�0� . This will cause the
QBF solver to backtrack all the way to the point where � was added to the prefix.

Integration of SAT and QBF. In our implementation of S-QBF we built our own
SAT solver (utilizing all of the modern techniques like 1-UIP clause learning, watched
literals, etc. [18]). In this way we were able to obtain a much tighter integration between
the SAT solver and the QBF solver, e.g., sharing of datastructures.

Clause learning is the basic unit of communication between the two solvers. As
pointed out above, learned clauses are not necessary for correctness, but they are very
helpful for efficiency. In particular, both the QBF solver, via contradictions generated
via Q-propagation, and the SAT solver via contradictions generated via unit propagation
can learn clauses. Universal reduction is applied to these learned clauses to make them
more powerful. All of these learned clauses arise from sequences of Q-resolution steps,
thus as shown in [7] they are all logical consequences of the input QBF. That is, they
do not alter the QSAT status of the input. This means that any clause learned by either
solver can be used by both solvers to prune paths from the search space they explore.

This is useful as each solver is able to learn different kinds of clauses. In partic-
ular, since the SAT solver is order unrestricted it can learn powerful clauses via its
VSIDS heuristic which would never be learned by the order restricted QBF solver.
These clauses can significantly prune the set of paths explored by the QBF solver. On
the other hand the QBF solver is able to employ stronger Q-propagation and so it also
can learn clauses that the SAT solver could never learn. These clauses allow the SAT
solver to prune paths that are fine from the point of view of SAT but which are contra-
dictory with respect to QBF.

Another way that the SAT and QBF solvers are integrated involves techniques for
finding “good” SAT solutions (if any exist) [13]. In particular, a good SAT solution is a
solution that will allow the QBF solver to generate a good cube (at line 3) if the QBF
solver is able to follow the SAT solution down to a leaf. Our technique here is to alter
the SAT heuristic for choosing the next decision literal so as to minimize the number of
clauses satisfied only by universal variables in the solution. In our implementation we
try to branch on existentials that appear in clauses currently only satisfied by universals.

Thus, this heuristic tries to ensure that as many clauses as possible are satisfied by
existentials. This will result in a smaller cube being generated during solution analysis.

Finally, unlike the rigid prescription of Fig.2, our implementation employs some
additional heuristic flexibility in deciding when to invoke the SAT solver. The most
important difference is that on many problems the SAT solver will return a SAT solution
that fails when we try to follow it using the stronger Q-propagation. This failure then
invokes another call to SAT which returns another SAT solution which again fails as
we follow it. This sequence of “SAT-ok”, “QBF-bad” solutions returned by SAT can be
quite long and time consuming. Hence, if this happens more than a certain number of
times (5 in our implementation) we give up on SAT solving for this descent and instead
try to find a solution using the QBF solver and Q-propagation. In most such cases Q-
propagation is able to quickly descend to a leaf from which point we continue with
S-QBF. Otherwise the Q-propagation descent learns a conflict, we backtrack, and again
continue with S-QBF.

Formal Results.

Theorem 1. S-QBF is sound and complete.

A sketch of the proof is as follows. First by relating the operations performed by QBF-
DPLL on failure return to Q-resolution steps [7] it can be shown that QBF-DPLL will
backtrack from the root of the search tree with FAIL only if its input is Q-UNSAT.
Similarly it can be show that any recursive invocation of QBF-DPLL backtracks with
SUCCESS only if its input is QSAT. Thus QBF-DPLL is sound. That it is also complete
follows from the fact that no recursive call has exactly the same prefix of assignments
as another call (after a failure a new literal is added to the prefix, and after a success
the prefix has a different value for one of the universal variables). Since there are only a
finite number of sets of assignments, there can only be a finite number of recursive calls,
and the root QBF-DPLL invocation must eventually return (with the correct answer).

SAT in S-QBF only allows S-QBF to backtrack on failure, it does not affect success
backtracking. Thus, SUCCESS returns continue to correctly prove QSAT. Furthermore,
all operations performed by SAT during failure backtracking are sound Q-resolution
steps, so S-QBF also preserves the property that it backtracks from the root with FAIL
only if its input is Q-UNSAT. That is, S-QBF retains QBF-DPLL’s soundness property.

Observation 1 S-QBF is systematic. That is, it never revisits the same set of assign-
ments.

The previous argument still holds so S-QBF retains the systematic property of QBF-
DPLL. This also means that S-QBF is complete.

4 Empirical Results

4.1 Benchmark Settings

We compared an implementation of our approach with two state of the art search based
QBF solvers—Quaffle [25] (version as of Feb. 2005) and Qube (release 1.3) [15]. We

Solver Blocks Chain Comp Game K Robots Term Toilet Total
S-QBF ��� ����� ����� ��� ����� ��� ��� ��� �����

�
	����

��
��
	�������� �
	��������
�	�������� ���
	�������� ������� �
	�������� ������� �����
Qube ����� ��� ����� ����� ����� ��� ����� ����� �

��
��
	�������� �
	��������
��
	������ ���
	�������� ���
	�������� �
	��������
��
	��������
�
�	�������� �����
Quaffle ����� ����� ��� ��
�� ����� ��� ��� ����� ������
	�������� �
	�������� ����� ���
	��

���� ���
	����

�� ��
���� ������� �
	�������� �����
S � ��� ����� ����� ����� ����� ��� ��� ����� �����

��	��������
��
	��������
��
	�������� ���
	�������� ����	�������� �
	�������� �
	�������� �
	�������� �����

Table 1. Summary of results reported in Table 2. Shown are the percentage of failed runs and the
CPU time used (for each benchmark family and in total).

also ran experiments with the non search based solver Quantor [4] (version as of Jan
2004). Like these solvers our implementation also utilizes techniques for detecting
monotone literals, heuristics for guiding cube resolution, and some other standard im-
provements over the basic algorithm given in Fig.2.

We used the following benchmark families from QBFLib: Adder, FlipFlop, Von-
Neumann, Counter, Toilet c/g, Robots D2, Term, Comp, Z4ml, S1169, S1196, S298
and all instances provided by Pan and Rintanen (��� �"! instances). In addition, we used
a benchmark family introduced in [20] called Game (#
$%! instances).

We excluded the families Mutex, Szymanski and Tree since all of them can be triv-
ially solved by simple preprocessing. Further details will be discussed in a subsequent
paper. We also excluded all of the other families from QBFLib (2004), e.g., Jmc and
Uclid, because only one or two of their instances could be solved by any of the search
based solvers.

Due to space limitations we exclude results on any instance that had one of the
following properties: (1) the difference in solving time between all search based solvers
is small (less than either 200 seconds or within #�!'& of the fastest time); or (2) no search
based solver can solve it in under 5,000 seconds. The remaining results are shown in
Table 2. All experiments were performed on a 2.4 GHz Pentium IV with 3GB of RAM.

A summary of these results is presented in Table 1. In this table we show the total
time used by each solver for all instances in each benchmark family (among those
instances shown in Table 2. The “Total” column show the sum of the time over all
benchmarks. To obtain a time in the presence of failures we added a penalty of � 6 ! !%!
seconds per failure. (Thus the times should be used only for qualitative comparisons). In
addition, the table shows the percentage of failed instances for each benchmark family
and in total.

4.2 Discussion

Table 1 shows that our new approach improves the current state of the art in search
based solvers, in aggregate solving the most problems and taking the least time of any
of the solvers. S-QBF is not always the fastest solver, but it does improve on Quaffle and
Qube on 21 out of the 68 problems reported on in Table 2. In many of the other cases it
is very competitive, being the worst solver of the three search based solvers on only 9

of the 68 problems. As noted above we experimented with many other benchmarks, but
on these the solvers could not be effectively discriminated.

To obtain a more accurate assessment of the benefit provided specifically by our new
techniques for using SAT (vs. differences in implementation and heuristics), we built a
derivative of S-QBF. This derivative (denoted S �) used the same code base, the same
variable ordering heuristic, the same cube learning and clause learning techniques, etc.
S � is simply S-QBF without the SAT solver. This provided us with a much more accu-
rate control against which to assess our new techniques. The summary performance of
S � , shown in Table 1, demonstrates that although our base QBF solver is quite effective,
our new techniques for using SAT yield clear performance advantages. Table 2 shows
in more detail the time taken by the different solvers on individual problems (columns
S � , S-QBF, Quaffle, and QuBE).

It is also useful to examine the effect SAT has on the size of the QBF search tree.
Columns SAT-dec, Q-dec, S � Q-dec of Table 2 show the number of decisions made by
the SAT solver, the number of decisions made by the QBF solver (in S-QBF), and the
number of decisions made by S � (where SAT is not used). In most cases we see that
the SAT solver is able to significantly reduce the number of decisions the QBF solver
needs to make (comparing columns Q-dec and S � Q-dec). In fact, in many cases the
sum of the SAT and QBF decisions in S-QBF is less than the number of QBF decisions
used by the pure QBF solver S � .

QBF decisions are more expensive than SAT decisions as they require extra work
(e.g., triggering of cubes, detecting monotone literals, detecting the empty theory).
Hence reducing the number of QBF decisions has a strong impact on the run-time (e.g,
in the Blocks, Game, and Toilet benchmarks). In our implementation SAT decisions are
made 5 to 10 times faster than QBF decisions depending on the problem instance. This
means that using SAT can yield improvements even when the sum of decisions in SAT
and QBF is higher than the number of decision made by pure QBF (in S �) (e.g., the K
benchmarks).

The SAT solver can, however, sometimes be a waste of time. For example the Chain
benchmarks contain Q-propagation implication chains under which a QBF solver will
never encounter a failure. Thus it is pointless to use a SAT solver to detect failures, and
we see that on chain16v.17 S-QBF performs the same number of Q-decisions as S � .
S � fails on the two larger chain problems, even without the slow down of extraneous
SAT solving. This is because the low-level efficiency of our solver is not as optimized
as Qube or Quaffle. In some cases SAT solving can even be harmful, as following its
solutions can be misleading. For example, on k d4 p-6 S-QBF makes many more QBF
decisions than when SAT is not used (S �). But in the vast majority of the cases SAT is
more informative than misleading.

Quantor is another state of the art QBF solver, but it is not based on backtracking
search. Instead Quantor utilizes a variable elimination scheme based on the original
resolution procedure of Davis-Putnam [11] and an additional scheme of universal ex-
pansion. It falls into the class of worst case space exponential algorithms. Quantor’s
approach often superior on these benchmarks. However, its failure rate is $ � & which
is slightly higher than that achieved by S-QBF. Furthermore, while we expect a few
more problems could be solved by S-QBF given more time, Quantor is exhausting ad-

dressable memory on most of its failures. Overall, space exponential algorithms have
the disadvantage that space is a much less flexible resource than time.

The question of whether space intensive algorithms like Quantor, Skizzo [3], or
QMRES [19] will eventually be the best way to solve QBF remains open. However,
we are more optimistic about search based methods. In particular, the wide variance
in the times achieved by search based solvers shows that there is a lot of room for
improvements in heuristics. Several instances in the Game benchmark family illustrate
this point. Some can be solved in only a few seconds by S-QBF but cause Quantor to
exhaust available memory.

5 Relation to Previous work

A number of other approaches have been proposed for escaping from the ordering con-
straints imposed by the quantifier prefix. Quantor [4], and Skizzo [3] both employ the
device of removing universal variables by adding multiple copies of their scoped exis-
tentials. (A process akin to Skolemization in first-order logic). Once all universals have
been removed the transformed theory becomes an order unconstrained SAT theory.

As our empirical results demonstrate this technique can be very effective, but in
general it requires exponential space. Our empirical results also demonstrate that it is
not difficult to find problems solvable by QBF-DPLL that are unsolvable by Quantor
(Skizzo was not yet available for experimentation).

A more recent order unconstrained approach is based on a BDD representation of
a Q-model [1]. The idea here is to generate arbitrary SAT solutions with a SAT solver,
adding those solutions to the BDD. The BDD will eventually collapses to TRUE if the
set of added SAT solutions suffice to form all paths in a Q-model. However, the BDD
can grow to an exponential size prior to collapsing. Furthermore, the SAT solver can
generate SAT solutions that form paths in disjoint Q-models—thus the BDD might be
even larger as it has to represent multiple distinct Q-models before one collapses to a
solution. The empirical results reported in [1] do not improve on the state of the art.

The idea of utilizing a SAT solver within QBF was first presented in [9]. SAT solv-
ing was employed to determine trivial truth (satisfiability after removing all universals
from every clause) and trivial falsity (unsatisfiability of the subset of clauses that con-
tain only existentials) at every recursive call. Trivial truth is a very strong condition: the
remaining theory can easily be QSAT even though it is not trivially true. Furthermore,
because a different clause set is being used, the satisfiability testing employed in trivial
truth cannot be used to learn clauses for the remaining QBF search. Trivial falsity on
the other hand is strictly weaker than the SAT testing we employ. Trivial falsity tests
SAT on a subset of the clauses, hence whenever it reports UNSAT our SAT testing will
also report UNSAT. Furthermore, our SAT testing can report UNSAT even on formulas
that are not trivially false.

In more closely related work an incomplete SAT solver was used [13]. If a SAT
solution was found it could be heuristically followed in an attempt to reach a successful
leaf in the QBF search. This is quite different from our motivation which is to refute
UNSAT subtree. This requires a complete SAT solver as well as a tighter integration be-
tween the SAT and QBF solvers. Empirically the WalkQSat solver reported in [13] did

Problem Instance QSAT? SAT-dec Q-dec S � Q-dec S � S-QBF Quaffle QuBE Quantor
blocks3i.5.3

� 2�������� � � 3�� � 3 2���	 � � 2 ��
 � � 3
 � 2 � ���
 � � 3�� 2
 ��� �
 2�	
blocks3i.5.4 � 3�� 2 ��� 	 � 3 � 2 � ��� � � � �)�
 ��� 2
 � � �)�
 � � 3�	 � 	
 � � �
 2��
blocks4i.6.4

� � 2�	�� 	"3 2�� � ���)2 � 3���� 2 � � 	
 3�� �
 ��� fail � � 2
 ��� �
 2 �
blocks4ii.6.3

� 	 � ��� ��	����)3 � ������� � � 3 ��
 3�	 �
 � � � �
 � � � �
 � � � ��
 	 2
blocks4ii.7.2

� � � � 3���	 � � 3 3)3 � 2�� � ��	 � 2 � � � � �
 2)3 � ��� �
 	�	 2 � ��
 � � fail 3 2
 � 2
chain16v.17 � 	���� � � � 2 � ��� � � 2 � ��� � 3 2��
 ��� 3�� 2
 2 � � � �
 2 � �
 � 3 �
 � 3
chain19v.20 � - - - fail fail 3��)3��
 2 � � � � 2
 � 2 �
 � �
chain20v.21 � - - - fail fail fail � 2 � 3
 2�� � �
 � �
comp 1 1.0 0 o

� 2)3 � � ����� - fail
�
 � � �
 � � fail

�
 � �
comp 1 1.0 1 o � � 2)3 2)3 � � � � � 2 �
 ��� �
 � 3
comp 1 0.2 1 o � � ��� ��� �
 � � �
 � � �

fail
�
 � 2

comp 1 0.2 0 o
� - - - fail fail 	��
)2 fail

�
 � �
game20 20 40 2 � 2������������ 3)3 � �����)2 � ���)3���� 2 � 	 �
 � 2 3 3 �
 �)3 fail ���
 � 	 �
 � �
game20 25 25 1 � 3�� � ��� ��� �)� � 2������ - fail 2 � �
 3�	 fail 2�	��
 � fail
game20 25 25 2 � � � � � � � � �)� 	�� � � 2 - fail � � �
 � � fail � ���)3
 ��	 fail
game20 25 25 3 � � � � 2 � 3 3 � 2 � � � � � � ���)2 � 2 � 	
)3 3 �
 � 	 fail � � � �
 � � fail
game20 25 25 4 � 2 � ����� � � � 	�� � 3��)2 - fail � �)��
 � 2 fail � 	�� �
 3 2 fail
game20 25 50 1 � 2 � ����� � � � 	�� � 3��)2 - fail � � �
 �)3 fail � 	����
 	 2 fail
game50 25 25 1 � � 3�� � 	�	"3 ���)3 � ��	 � � 2�	����"3�� 3����
 ���)3
 � � fail � ��	��
 � fail
game50 25 25 3 � � �����)3 2 	�	������ 	 � � � � � � � � �
 ��� 3
 � 2 fail fail fail
game50 25 25 4 � � � � � 2 2)3 � � 2 - fail �
 	 2 fail � �
 3�� fail
game100 25 25 2 � 2�	 � 	�� � 3 � � � - fail

�
 � 2 fail fail �
 � 	
game100 25 25 3 � 2 � � � 2 � 	 � �)3 - fail

�
 	 2 3
 � 	 fail
�
 � 3

game150 25 25 1
� � � � � � � � �

fail
�
 � �

game150 25 25 2 � � � ���)3�	 � ��� � 2�� - fail 3
 � � 3
 2)3 fail
�
 � �

game150 25 25 4 � � 3�	 � 3 � 2���	�� 3 � ����� � ��	 � � 	 ��
 ��	 �
 2 � � �
 ��� fail
�
 � �

k branch p-5 � - - - fail fail fail 2����)3
 ��� fail
k d4 p-6

� ���)3 � 	 �)� ��� � 	 � � � � � ��� � �
 3 � � 	����
 � 2 fail �)2��
 3�� �
 3 2
k dum n-6 � � ����	�� � � � 	 2�� � �)2 � 	�� � 	�� � � � �
 � � � � ��
 ��� fail �)� �
 3 � �
 � �
k dum n-8 � - - - fail fail fail � � � 	
 ��� �
 � 	
k dum p-11

� - - - fail fail ��� �
 3)3 � � � 3
 � 2 �
 2 �
k grz n-9 � 2�	�	���	 2 � �)3����"3 �)2�	���� � � � �
 	�� �)��
 2 � 2�� 2"3
 2 � 	��
 � 	 2
 ��	
k grz n-12 � � � 2 � � ��� �)� � 	�� ��� � ���)3�� 2�� 2 � �)2
 � � � ���
 � fail � � �
 �)2 � �
 2
k grz n-13 � � 3 � � 2"3 � � � ���)3 2"3 2 2)2��)2�� � 3 � 3�	
 	�� 2��)2
 2�� fail � � 2
 � � � �
 � �
k grz n-16 � � � � �)2�� 3 � 2 � � � � - fail � �)�
 ��� fail � � � 2
 ��� 2 ��
 � �
k grz n-17 � 	 2 � � ��	 2 � � � � � 2�� - fail � 2���	
 � � fail � 2 � �
 ��� � �
 �
k grz p-10

� - - - fail fail fail �)3
 � � 	
 ���
k grz p-14

� - - - fail fail fail � � � �
 � � � �
 � �
k grz p-16

� - - - fail fail � 3�� �
 ��� � 	��)3
 	�� � �
 � 2
k grz p-17

� - - - fail fail 2 � � �
 � � � � � ��
 ��� � �
 2��
k lin n-7 � � � 2�	����)3 � ��� � 3�� � �)3 � � � 3 � 3
 2 � � �"3
 2)3 � 	��
 � 	 3��
 ��� 3��)3
 2)3
k lin n-14 � 3�� � 2�)2 � � 3 �)� ��	 � - fail 3 � 2 �
 2 � � � � �
 2 � � 2�� 2
 ��	 fail
k lin n-15 � - - fail fail 2 ��� �
 �)2 � � � �
 � 2 fail
k path n-5 � 2�� � 3 3�	�� 2�	�����	 2 � 2 � 2�������� 3�� 2
 2 3�� 2
 � fail � ���
 � � �

k path n-6 � - - - fail fail fail � � � 3
 � � �
 � �
k path p-6

� � �����)3���� � 3�� � 3 � � � � 2�� 2)3 � � �
 ��� 3 � 	
 � � � � �
 3 � 2 �
 � 	 �
 � �
k ph n-15 � - - 3 � � � 	 � � 2�� 2 �
 � � fail � �)2
 � � � ���
 � � � ��	 ��
 ���
k poly n-3 � 3�� � � 2�	�� � �)3���� 2)2 � � ���)3��)3 � 3 3��
 � � 3 � 	
 � 3 fail � � �
 � 	 �

k poly n-4 � - - - fail fail fail � 	�� �
 � �

k poly p-7
� � � 2 � 2 � � �

fail
�
 � �

k poly p-8
� � ��� ��� � � �

fail
�
 � �

k poly p-10
� � � � 2 � � 2 � � �

fail
�
 � 3

k poly p-11
� � � 2 � � 2 � �
 � � �
 � � �

fail
�
 � 2

k poly p-12
� � � 3�� � 3�� �
 � � �
 � � �

fail
�
 � 2

k poly p-14
� � � � � � � � �
 � � �
 � � �

fail
�
 � 2

k poly p-17
� � � � 2 � � 2 �
 � � �
 � � �

fail
�
 � 2

k t4p n-2 � � 3 ��� ���"3 �)� � � � ��� � 3 � � 	���)3��
 � 2 � � �
 ��	 fail �)3
 �)� �
 � �
k t4p p-4

� - - - fail fail fail � �)3
 ��� �
 �
robots1 5 2 72.7 � � � � � � 2 ��� � 3 � 	 2 � 2 � � � 3)3
 � 3 �)� �
 � � �
)3 � 2����
 	�� fail
robots1 5 2 42.7

� � � 2���� ��� � 2 � � � 3 3�������� � � � � �
 � � 	�� ��
 � 3 � ���
 � 	 ��	��
 � � fail
robots1 5 2 61.6

� � ����� � 3�� � � � � � 3�	 � � � � � � 2�	
 3�� � 	��
 � � ���
 2)3 3 � 3
 ��� fail
term1 1 0.2 0 i

� � � � � 2���� � 	���� � 	 � � � �)2 � � 2 � 2��
 � � � �����
 ��� � ��	
 � � fail fail
term1 1 1.0 1 o � � � � ��� � � � �
 � 2 �
 � � �
 � 	 � ��	�	
 ��	 �
 � �
term1 1 1.0 0 o

� 2�	 � � � 	���	�� � � ��	 �
 ��	 � �
 	�� 2
 � � fail �
 ���
toilet6.1.11

� �"3 3�	�� 3 3�� 2 � � � � � � � 3��
 � �)��
 3�� �
 � � 2 � �
 � � �
 � �
toilet7.1.13

� 2)3�� � 	�	 � � 2���� � � �)� ���)3 � 2���� �
 �)3 	 � �
 � � 2��
 ��	 fail �
 � 3
toilet7.1.14 � ����� � � ��� � � � � � 2 ��	��
 � � �
 2 � 3��
 	�� �"3��
 ��� �
 � �
toilet10.1.20 � ��� � 	"3 - fail

�
 � fail fail fail

Table 2. Benchmark Results

not display good performance. Independently to our work [22] utilized a complete SAT
solver (ZChaff [18]). It allows the pruning of UNSAT subtrees and the computed reason
for this conflict is used in the QBF solver to apply backtracking. However, the integra-
tion of the two solvers is not as tight as it is in our approach. For instance, the solvers
operate on two distinct representations of the formula so that except for backtracking
no exchange of learned clauses takes place between the SAT and QBF solvers. Further-
more, operations like the propagation of variable (un)assignments has to be performed
twice.

6 Conclusions

We have presented an approach for integrating order unconstrained SAT solving within
an order constrained QBF solver. By utilizing clause learning techniques, and the fact
that a SAT learned clause is valid for QBF, we have been able to achieve a tight integra-
tion between the SAT solver and the QBF solver so that information computed in each
part can be used to improve the performance of the other part.

A number of natural questions remain, most of which center around the issue of
obtaining more information from the SAT solving computations. Our techniques mainly
take advantage of failure information computed by the SAT solver, and we have shown
that this can make a tremendous difference in performance. We have also found that the
heuristic technique of guiding the SAT solver to find a “good cube” solution can have
a large impact on performance. In general, however, there is considerable room for
improvement in the whole area of heuristics for QBF, and an intriguing open question
is whether or not useful heuristic information could be gathered during SAT solving.

References

1. G. Audemard and L. Saïs. A symbolic search based approach for quantified boolean formu-
las. to be published at SAT 2005.

2. P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing the potential
of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.

3. M. Benedetti. skizzo: a qbf decision procedure based on propositional skolemization and
symbolic reasoning. Technical Report TR04-11-03, 2004.

4. A. Biere. Resolve and expand. In Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), pages 238–246, 2004.

5. Lucas Bordeaux and Eric Monfroy. Beyond np: Arc-consistency for quantified constraints.
In Principles and Practice of Constraint Programming, pages 371–386, 2002.

6. R. Bryant, S. Lahiri, and S. Seshia. Convergence testing in term-level bounded model check-
ing. Technical Report CMU-CS-03-156, Carnegie Mellon University, 2003.

7. H. K. Büning, M. Karpinski, and A. Flügel. Resolution for quantified boolean formulas. Inf.
Comput., 117(1):12–18, 1995.

8. Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements.
In IEEE Symposium on Logic in Computer Science, pages 138–147, 2003.

9. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified boolean
formulae. In Proceedings of the AAAI National Conference (AAAI), pages 262–267, 1998.

10. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 4:394–397, 1962.

11. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201–215, 1960.

12. Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced reasoning
tasks using quantified boolean formulas. In AAAI/IAAI, pages 417–422, 2000.

13. I.P. Gent, H.H. Hoos, A.G.D. Rowley, and K. Smyth. Using stochastic local search to solve
quantified boolean formulae. In Principles and Practice of Constraint Programming —
CP’2003, pages 348–362, 2003.

14. E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for quantified boolean logic
satisfiability. In Proceedings of the International Joint Conference on Artifical Intelligence
(IJCAI), pages 275–281, 2001.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding quantified
boolean formulas satisfiability. In International Joint Conference on Automated Reasoning
(IJCAR), pages 364–369, 2001.

16. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean logic satis-
fiability. In Eighteenth national conference on Artificial intelligence, pages 649–654, 2002.

17. Reinhold Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. In TABLEAUX ’02: Proceedings of the International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, pages 160–175, 2002.

18. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient
sat solver. In Proc. of the Design Automation Conference (DAC), 2001.

19. G. Pan and M. Y. Vardi. Symbolic decision procedures for qbf. In Principles and Practice of
Constraint Programming, number 3258 in Lecture Notes in Computer Science, pages 453–
467. Springer-Verlag, New York, 2004.

20. A. Remshagen and K. Truemper. An effective algorithm for the futile questioning problem.
Journal of Automated Reasoning, to be published.

21. Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal of Artificial
Intelligence Research, 10:323–352, 1999.

22. A.G.D. Rowley. Forthcoming. PhD thesis, University of St. Andrews, 2005.
23. L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. Journal of the

ACM, pages 1–9, 1973.
24. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict driven learning

in a Boolean satisfiability solver. In International Conference on Computer-Aided Design
(ICCAD’01), pages 279–285, November 2001.

25. L. Zhang and S. Malik. Towards symmetric treatment of conflicts and satisfaction in quan-
tified boolean satisfiability solver. In Principles and Practice of Constraint Programming
(CP2002), pages 185–199, 2002.

