Course summary

This course introduced the science of computing. We learned tools and techniques affecting all parts of the software lifecycle.

Specifications:

• Writing precise specifications

• Reading precise specifications

Design:

• Looking at a problem abstractly.

• Standard abstractions that have proven useful in computer science — abstract data types.
 – list
 – stack
 – queue
 – tree
Summary (cont’d)

• Some new data structures that offer alternative ways to implement an abstract idea.
 – linked lists
 – circular queues
 – trees
 – binary search trees

You’ll see more of these in CSC 263.

• Analyzing the efficiency of algorithms
 – Big-O notation
 – Reasoning about non-recursive programs
Summary (cont’d)

Implementation

• Properties of a good program.
 – abstraction
 – reuse
 – information-hiding
 – encapsulation
 – design by contract, documentation

• Designing a program to have these properties.
 – interfaces
 – abstract classes
 – exception handling
 – Java memory model
 – Java-specific concepts: IteratorS, Comparable
Summary (cont’d)

• New algorithms
 – merge sort

• A new programming technique: recursion
 – thinking recursively
 – termination, base case
 – recursion vs induction
 – recursion vs iteration
Summary (cont’d)

Code Reviews

Testing

• Choosing a systematic and thorough set of test cases.

• Documenting testing so that it will be convincing.

Documentation

• Design by contract

• Internal comments
 – representation invariants
 – how much to comment and where

• external comments
 – pre- and post-conditions
Final exam

• 3 hours, no aids allowed

• Material from
 – lectures
 – labs
 – assignments
Some possible exam questions

- trace code/test code
- write iterative/recursive code
- write code that deals with trees, linked lists, arrays, stacks, etc.
- do big-O analysis of code
- talk about pros and cons of various implementations for an ADT
- design/implement/use a class
- implement an iterator
- talk about any of the above things
- correct mistakes in examples of any of the above things
How to study for the exam

- Go back over anything you never felt good about; ask us about it.

- Practice! Do the sample exams on the web. Both old midterms and finals will be helpful.

- Go to office hours, even if you do not have specific questions.

- We will be holding additional office hours - watch the announcements on the course web page.
How to write the exam

• Read over the whole exam before you start.

• Budget your time. You could run out of time if you lose track of time (even though the exam isn’t intended to be a speed test).

• Read questions with care, and be sure to do what we asked for!

• If you are at all unsure about what we mean, feel free to ask a question.
End-of-term administrative stuff

- Marks:
 - Watch the web page for announcements when various marks have been posted.
 - Check your marks!
 - You are responsible for ensuring that we have correct marks for you
 - Report errors immediately, by bringing the relevant assignment or test to your instructor.
 Please do this BEFORE the final!
What is ahead?

• System support
 – Operating systems
 – Compilers
 – Programming languages and paradigms
 – Databases

• Communications and security
 – Network protocols
 – Security
 – Concurrent systems (how to write them? how to test them? how to reason about them?)
What is ahead (cont’d)?

• Theory
 – Which things can be computed and which cannot?
 – How to analyze code?
 * Solving recurrence relations
 * Proving algorithms correct
 * Analyzing running times
 * Time/space trade-off
 – New data structures
 – Logic (the centre of it all)

• Creating usable and scalable systems
 – Human-computer interaction
 – Requirements analysis
 – Design patterns, architecture, modeling languages
 – Metrics to access/predict cost, quality, complexity
 – Simulations
What is ahead (cont’d)?

• And much much more...
 – Artificial intelligence (robotics, planning, vision)
 – Graphics
 – Numerical analysis
And in conclusion...

Hope you enjoyed this class!

Hope you will choose computer science as your future career!

And good luck on the final exam!