1. [Proving negation: \(\exists \ a \in \mathbb{R} : \forall \ b \in \mathbb{R} : a \neq 2b/(b+1) \).]

Let \(a = 2 \in \mathbb{R} \).

[Proving \(\forall \ b \in \mathbb{R} : 2 \neq 2b/(b+1) \)]

Let \(b \in \mathbb{R} \).

Assume for contradiction that \(2 = 2b/(b+1) \).

\(2(b+1) = 2b \).

\(2 = 0 \), which is a contradiction.

2. Let \(n \in \mathbb{N} \) such that \(n \geq 19 \) and \(\exists a, b \in \mathbb{N} : n = 5a + 6b \).

Let \(a_0, b_0 \in \mathbb{N} \) such that \(n = 5a_0 + 6b_0 \).

Case \(a_0 = 0 \).

\(n = 5a_0 + 6b_0 = 5 \cdot 0 + 6b_0 = 6b_0 \).

\(6b_0 = n \geq 19 > 18 = 6 \cdot 3 \).

\(b_0 \geq 3 \).

\(b_0 \geq 4 \). # Since \(b_0 \geq 3 \) and \(b_0 \in \mathbb{N} \).

Let \(a_1 = 5 \in \mathbb{N} \), and \(b_1 = (b_0 - 4) \in \mathbb{N} \). # Since \(b_0 \in \mathbb{N} \) and \(b_0 \geq 4 \).

\(n + 1 = n - 24 + 25 = 6b_0 - 6 \cdot 4 + 5 \cdot 5 = 6(b_0 - 4) + 5 \cdot 5 = 5a_1 + 6b_1 \).

Case \(a_0 \neq 0 \).

\(a_0 \geq 1 \). # Since \(a_0 \in \mathbb{N} \).

Let \(b_1 = b_0 + 1 \in \mathbb{N} \), and \(a_1 = a_0 - 1 \in \mathbb{N} \). # Since \(a_0 \geq 1 \) and \(a_0 \in \mathbb{N} \).

\(n + 1 = n + 6 - 5 = 5a_0 + 6b_0 + 6 \cdot 1 + 5 \cdot (-1) = 5(a_0 - 1) + 6(b_0 + 1) = 5a_1 + 6b_1 \).

3. a) Let \(l, m \in \mathbb{Z} \) such that \(l < m \).

\(0 < m - l \).

\(m - l \in \mathbb{Z} \).

\(m - l \geq 1 \). # By question's 1st assumption.

\(m - 1 \geq l \).

b) Let \(l \in \mathbb{Z} \), and \(r \in \mathbb{R} \) such that \(0 \leq r < 1 \).

\(l = l + 0 \leq l + r \).

[Proving \(\forall z \in \mathbb{Z} : z \leq l + r \rightarrow z \leq l \)]

Let \(z \in \mathbb{Z} \) such that \(z \leq l + r \).

\(z \leq l + r \leq l + 1 \).

\(z \leq (l + 1) - 1 \). # From part (a) for \(z \in \mathbb{Z} \) and \(l + 1 \in \mathbb{Z} \).

\(z \leq l \).

\(l = l + r \.) # By question's 5th assumption, since \(l + r \in \mathbb{R} \), \(l \in \mathbb{Z} \), and

\(# l \leq l + r \wedge \forall z \in \mathbb{Z} : z \leq l + r \rightarrow z \leq l \).

\(l \leq l + r \).

[Proving \(\forall z \in \mathbb{Z} : z \leq l + r \rightarrow z \leq l + 1 \)]

Let \(z \in \mathbb{Z} \) such that \(z \geq l + r \).

\(z \geq l + r \geq l + \theta = l \).

\(z \geq l + 1 \). # From part (a) for \(l \in \mathbb{Z} \) and \(z \in \mathbb{Z} \).

\(l \leq l + r \). # By question's 6th assumption, since \(l + r \in \mathbb{R} \), \(l + 1 \in \mathbb{Z} \), and

\(# l \leq l + r \wedge \forall z \in \mathbb{Z} : z \geq l + r \rightarrow z \geq l + 1 \).

\(l \leq l + r \).

[Proving \(\forall z \in \mathbb{Z} : z \geq l + r \rightarrow z \geq l + 1 \)]

Let \(q_0 \in \mathbb{Z} \), and \(k_0 \in \mathbb{N} \) such that \((l - 1) = q_0 \cdot n + k_0 \) and \(k_0 < n \). # By question's 2nd assumption.

\(\theta \leq k_0 < n - 1 \). # Since \(k_0 < n \) and \(k_0 \in \mathbb{Z} \).

\(l/n = (l-1)/n + 1/n = q_0 + k_0/n + 1/n = q_0 + (k_0 + 1)/n \).

\(\theta < (k_0 + 1)/n \leq (n-1 + 1)/n = 1 \).

\(\lfloor l/n \rfloor = \lfloor q_0 + (k_0 + 1)/n \rfloor

= q_0 + 1 \). # Since \(q_0 \in \mathbb{Z} \) and \(\theta < (k_0 + 1)/n \leq 1 \) and part (c).

\(l/n = (l-1)/n + 1/n = q_0 + k_0/n + 1 = (q_0 + 1) + k_0/n \).

\(\theta \leq k_0 < n \).

\(\lfloor l/n \rfloor = \lfloor q_0 + 1 \} + k_0/n \rfloor

= q_0 + 1 \) # Since \(q_0 + 1 \in \mathbb{Z} \) and \(\theta \leq k_0 < n \) and part (b).

\(= \lfloor l/n \rfloor \).

Part (d) was also naturally doable by cases (whether \(k_0 = 0 \) or not), but after doing so I looked at whether the cases could be unified and found the above "l - 1" idea.