Introduction to Deep Learning

A. G. Schwing & S. Fidler

University of Toronto, 2015
Outline

1. Universality of Neural Networks
2. Learning Neural Networks
3. Deep Learning
4. Applications
5. References
What are neural networks?

Let’s ask

• Biological

• Computational
What are neural networks?

...Neural networks (NNs) are computational models inspired by biological neural networks [...] and are used to estimate or approximate functions... [Wikipedia]
What are neural networks?

Origins:
- Traced back to threshold logic [W. McCulloch and W. Pitts, 1943]
- Perceptron [F. Rosenblatt, 1958]
What are neural networks? Use cases

- Classification
- Playing video games
- Captcha
- Neural Turing Machine (e.g., learn how to sort) Alex Graves

What are neural networks?
Example:
- input x
- parameters w_1, w_2, b
What are neural networks?

Example:

- input x
- parameters w_1, w_2, b

$$x \in \mathbb{R}$$

$$w_1 \quad h_1 \quad w_2$$

$$b \in \mathbb{R}$$

$$f$$
How to compute the function?

Forward propagation/pass, inference, prediction:

- Given input x and parameters w, b
- Compute (latent variables/) intermediate results in a feed-forward manner
- Until we obtain output function f

![Diagram](attachment:image.png)
How to compute the function?

Forward propagation/pass, inference, prediction:
- Given input x and parameters w, b
- Compute (latent variables/) intermediate results in a feed-forward manner
- Until we obtain output function f
How to compute the function?

Example: input x, parameters w_1, w_2, b

$$x \in \mathbb{R}$$

$$h_1 = \sigma(w_1 \cdot x + b)$$

$$f = w_2 \cdot h_1$$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$x = \ln 2$, $b = \ln 3$, $w_1 = 2$, $w_2 = 2$
How to compute the function?

Example: input x, parameters w_1, w_2, b

\[h_1 = \sigma(w_1 \cdot x + b) \]
\[f = w_2 \cdot h_1 \]

Sigmoid function:
\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
How to compute the function?

Example: input x, parameters w_1, w_2, b

$x \in \mathbb{R}$

w_1 \rightarrow h_1

w_2 \rightarrow f

$h_1 = \sigma(w_1 \cdot x + b)$

$f = w_2 \cdot h_1$

Sigmoid function:

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$x = \ln 2$, $b = \ln 3$, $w_1 = 2$, $w_2 = 2$

$h_1 =$?

$f =$?
How to compute the function?

Given parameters, what is f for $x = 0$, $x = 1$, $x = 2$, ...

$$f = w_2 \sigma (w_1 \cdot x + b)$$
How to compute the function?

Given parameters, what is f for $x = 0, x = 1, x = 2, \ldots$

$$f = w_2 \sigma (w_1 \cdot x + b)$$
Let’s mess with parameters:

\[x \in \mathbb{R} \]

\[w_1 \]

\[h_1 \xrightarrow{w_2} f \]

\[b \in \mathbb{R} \]

\[h_1 = \sigma(w_1 \cdot x + b) \]

\[f = w_2 \cdot h_1 \]

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]
Let’s mess with parameters:

\[
x \in \mathbb{R} \\
\sigma(z) = \frac{1}{1 + \exp(-z)}
\]

\[
w_1 = 1.0, \ b \text{ changes}
\]
Let’s mess with parameters:

\[x \in \mathbb{R} \]

\[h_1 = \sigma(w_1 \cdot x + b) \]

\[f = w_2 \cdot h_1 \]

\[\sigma(z) = \frac{1}{1 + \exp(-z)} \]

\[w_1 = 1.0, \ b \text{ changes} \]
Let’s mess with parameters:

\[x \in \mathbb{R} \]
\[w_1 \]
\[h_1 \]
\[w_2 \]
\[f \]
\[b \in \mathbb{R} \]

\[h_1 = \sigma(w_1 \cdot x + b) \]
\[f = w_2 \cdot h_1 \]
\[\sigma(z) = 1/(1 + \exp(-z)) \]

\[w_1 = 1.0, \ b \text{ changes} \]
\[b = 0, \ w_1 \text{ changes} \]
Let’s mess with parameters:

\[x \in \mathbb{R} \]

\[h_1 = \sigma (w_1 \cdot x + b) \]

\[f = w_2 \cdot h_1 \]

\[\sigma (z) = \frac{1}{1 + \exp (-z)} \]

\[w_1 = 1.0, \ b \text{ changes} \]

\[b = 0, \ w_1 \text{ changes} \]
Let’s mess with parameters:

\[x \in \mathbb{R} \]

\[b \in \mathbb{R} \]

\[w_1 = 1.0, \text{ } b \text{ changes} \]

\[b = 0, \text{ } w_1 \text{ changes} \]

\[h_1 = \sigma(w_1 \cdot x + b) \]

\[f = w_2 \cdot h_1 \]

\[\sigma(z) = 1/(1 + \exp(-z)) \]

Keep in mind the step function.
How to use Neural Networks for binary classification?

Feature/Measurement: x

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Feature/Measurement: x

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Feature/Measurement: x

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Feature/Measurement: x

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Shifted feature/measurement: x

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Shifted feature/measurement: \(x \)

Output: How likely is the input to be a cat?
How to use Neural Networks for binary classification?

Shifted feature/measurement: x

Output: How likely is the input to be a cat?

Learning/Training means finding the right parameters.
So far we are able to scale and translate sigmoids.

- How well can we approximate an arbitrary function?
- With the simple model we are obviously not going very far.
So far we are able to scale and translate sigmoids.

- How well can we approximate an arbitrary function?
- With the simple model we are obviously not going very far.

<table>
<thead>
<tr>
<th>Features are good</th>
<th>Features are noisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple classifier</td>
<td>More complex classifier</td>
</tr>
</tbody>
</table>

![Graph showing comparison between good and noisy features with simple and complex classifiers](image-url)
So far we are able to scale and translate sigmoids.

- How well can we approximate an arbitrary function?
- With the simple model we are obviously not going very far.

<table>
<thead>
<tr>
<th>Features are good</th>
<th>Features are noisy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple classifier</td>
<td>More complex classifier</td>
</tr>
</tbody>
</table>

How can we generalize?
Let’s use more hidden variables:

\[
\begin{align*}
 h_1 &= \sigma(w_1 \cdot x + b_1) \\
 h_2 &= \sigma(w_3 \cdot x + b_2) \\
 f &= w_2 \cdot h_1 + w_4 \cdot h_2
\end{align*}
\]
Let’s use more hidden variables:

\[h_1 = \sigma(w_1 \cdot x + b_1) \]
\[h_2 = \sigma(w_3 \cdot x + b_2) \]
\[f = w_2 \cdot h_1 + w_4 \cdot h_2 \]

Combining two step functions gives a bump.

\[w_1 = -100, \ b_1 = 40, \ w_3 = 100, \ b_2 = 60, \ w_2 = 1, \ w_4 = 1 \]
So let’s simplify:

We simplify a pair of hidden nodes to a “bump” function:

- Starts at x_1
- Ends at x_2
- Has height h
Now we can represent “bumps” very well. How can we generalize?
Now we can represent “bumps” very well. How can we generalize?

More bumps gives more accurate approximation.
Corresponds to a single layer network.
Universality: theoretically we can approximate an arbitrary function
So we can learn a really complex cat classifier
Where is the catch?
Universality: theoretically we can approximate an arbitrary function
So we can learn a really complex cat classifier
Where is the catch?

Complexity, we might need quite a few hidden units
Overfitting, memorize the training data
Generalizations are possible to include more input dimensions, capture more output dimensions, and employ multiple layers for more efficient representations. See 'http://neuralnetworksanddeeplearning.com/chap4.html' for a great read!
Generalizations are possible to
- include more input dimensions
- capture more output dimensions
- employ multiple layers for more efficient representations

See ‘http://neuralnetworksanddeeplearning.com/chap4.html’ for a great read!
How do we find the parameters to obtain a good approximation? How do we tell a computer to do that?
How do we find the parameters to obtain a good approximation? How do we tell a computer to do that?

Intuitive explanation:
- Compute approximation error at the output
- Propagate error back by computing individual contributions of parameters to error
Example for backpropagation of error:

- Target function: $5x^2$
- Approximation: $f(x, w)$
- Domain of interest: $x \in \{0, 1, 2, 3\}$
- Error:
 \[
e(w) = \sum_{x \in \{0, 1, 2, 3\}} (5x^2 - f(x, w))^2\]
Example for backpropagation of error:

- Target function: $5x^2$
- Approximation: $f(x, w)$
- Domain of interest: $x \in \{0, 1, 2, 3\}$
- Error:
 \[
 e(w) = \sum_{x \in \{0,1,2,3\}} (5x^2 - f(x, w))^2
 \]
- Program of interest:
 \[
 \min_w e(w) = \min_w \sum_{x \in \{0,1,2,3\}} (5x^2 - f(x, w))^2
 \]

How to optimize?
Example for backpropagation of error:

- Target function: $5x^2$
- Approximation: $f(x, w)$
- Domain of interest: $x \in \{0, 1, 2, 3\}$
- Error:

$$e(w) = \sum_{x \in \{0, 1, 2, 3\}} (5x^2 - f(x, w))^2$$

- Program of interest:

$$\min_w e(w) = \min_w \sum_{x \in \{0, 1, 2, 3\}} (5x^2 - f(x, w))^2$$

How to optimize? **Gradient descent**
Gradient descent

$$\min_w e(w)$$
Gradient descent

\[\min_w e(w) \]

Algorithm: start with \(w_0, t = 0 \)
1. Compute gradient \(g_t = \frac{\partial e}{\partial w} \big|_{w=w_t} \)
2. Update \(w_{t+1} = w_t - \eta g_t \)
3. Set \(t \leftarrow t + 1 \)
Chain rule is important to compute gradients:

\[
\min_w e(w) = \min_w \sum_{x \in \{0, 1, 2, 3\}} (5x^2 - f(x, w))^2 \ell(x, w)
\]
Chain rule is important to compute gradients:

$$\min_{w} e(w) = \min_{w} \sum_{x \in \{0, 1, 2, 3\}} \left(\frac{(5x^2 - f(x, w))^2}{\ell(x, w)} \right)$$

Loss function: $\ell(x, w)$
Chain rule is important to compute gradients:

\[
\min_w e(w) = \min_w \sum_{x \in \{0,1,2,3\}} (5x^2 - f(x, w))^2 \ell(x, w)
\]

Loss function: \(\ell(x, w) \)

- Squared loss
- Log loss
- Hinge loss
Chain rule is important to compute gradients:

\[
\min_w e(w) = \min_w \sum_{x \in \{0, 1, 2, 3\}} \left(\frac{5x^2 - f(x, w)}{\ell(x, w)} \right)^2
\]

Loss function: \(\ell(x, w) \)
- Squared loss
- Log loss
- Hinge loss

Derivatives:

\[
\frac{\partial e(w)}{\partial w} = \sum_{x \in \{0, 1, 2, 3\}} \frac{\partial \ell(x, w)}{\partial w}
\]
Chain rule is important to compute gradients:

\[
\min_w e(w) = \min_w \sum_{x \in \{0,1,2,3\}} (5x^2 - f(x, w))^2 \ell(x, w)
\]

Loss function: \(\ell(x, w) \)
- Squared loss
- Log loss
- Hinge loss

Derivatives:
\[
\frac{\partial e(w)}{\partial w} = \sum_{x \in \{0,1,2,3\}} \frac{\partial \ell(x, w)}{\partial w}
\]
\[
= \sum_{x \in \{0,1,2,3\}} \frac{\partial \ell(x, w)}{\partial f} \frac{\partial f(x, w)}{\partial w}
\]
Slightly more complex example:
Composite function represented as a directed a-cyclic graph

\[\ell(x, w) = f_1(w_1, f_2(w_2, f_3(\ldots))) \]

Repeated application of chain rule for efficient computation of all gradients
Back propagation doesn’t work well for deep sigmoid networks:

- Diffusion of gradient signal (multiplication of many small numbers)
- Attractivity of many local minima (random initialization is very far from good points)
- Requires a lot of training samples
- Need for significant computational power
Back propagation doesn’t work well for deep sigmoid networks:

- Diffusion of gradient signal (multiplication of many small numbers)
- Attractivity of many local minima (random initialization is very far from good points)
- Requires a lot of training samples
- Need for significant computational power

Solution: 2 step approach

- Greedy layerwise pre-training
- Perform full fine tuning at the end
Why go deep?

- Representation efficiency (fewer computational units for the same function)
- Hierarchical representation (non-local generalization)
- Combinatorial sharing (re-use of earlier computation)
- Works very well

[Fig. from H. Lee]
To obtain more flexibility/non-linearity we use additional function prototypes:
To obtain more flexibility/non-linearity we use additional function prototypes:

- Sigmoid
- Rectified linear unit (ReLU)
- Pooling
- Dropout
- Convolutions
Convolutions

What do the numbers mean?

See Sanja’s lecture 14 for the answers...

[Fig. adapted from A. Krizhevsky]
\(f_{\text{conv}}(\cdot, \cdot) \)
\(f_{\text{conv}}(\quad , \quad) \)
Max Pooling

What is happening here?

[Fig. adapted from A. Krizhevsky]
Rectified Linear Unit (ReLU)
Rectified Linear Unit (ReLU)

- Drop information if smaller than zero
- **Fixes the problem of vanishing gradients to some degree**
Rectified Linear Unit (ReLU)
- Drop information if smaller than zero
- **Fixes the problem of vanishing gradients to some degree**

Dropout
Rectified Linear Unit (ReLU)

- Drop information if smaller than zero
- **Fixes the problem of vanishing gradients to some degree**

Dropout

- Drop information at random
- Kind of a regularization, enforcing redundancy
A famous deep learning network called “AlexNet.”

- The network won the ImageNet competition in 2012.
- How many parameters?
- Given an image, what is happening?
- Inference Time: about 2ms per image when processing many images in parallel on the GPU
- Training Time: a few days given a single recent GPU

[Fig. adapted from A. Krizhevsky]
Demo
Neural networks have been used for many applications:

- Classification and Recognition in Computer Vision
- Text Parsing in Natural Language Processing
- Playing Video Games
- Stock Market Prediction
- Captcha

Demos:

- Russ website
- Antonio Places website
Classification in Computer Vision: ImageNet Challenge

Since it’s the end of the semester, let’s find the beach...
Classification in Computer Vision: ImageNet Challenge

http://deeplearning.cs.toronto.edu/

A place to maybe prepare for exams...
Links:

- Toronto Demo by Russ and students: http://deeplearning.cs.toronto.edu/
- MIT Demo by Antonio and students: http://places.csail.mit.edu/demo.html
Videos:

- Video games: https://www.youtube.com/watch?v=mARt-xPablE
- https://www.youtube.com/watch?v=lge-dI2JUAM#t=27
- Stock exchange: