CSC2512
Types Resolution Proofs and their Complexity

Fahiem Bacchus
Department of Computer Science
University of Toronto

1 Types of Resolution Proofs

General resolution is the proof system we discussed before.

A general resolution proof from a CNF formula F is a sequence of clauses c_1, c_2, \ldots, c_m where for each c_i in this sequence we either have

1. $c_i \in F$ (c_i in an input clause) or
2. $c_i = R(c_j, c_k)$ with $j, k < i$ (the result of resolving two prior clauses in the sequence).

From this sequence we can draw a DAG. The input clauses are the source nodes in this DAG (no incoming arcs, and each clause that arises from a resolution step (each resolvant) has two incoming arcs, one from each clause used in the resolution step. The empty clause is a sink node.

Often in the latter case the incoming arcs are labeled by the literals x and $\neg x$ that were resolved away.

Negative Resolution A resolution step $R[(A, x), (B, \neg x)]$ is **negative** whenever B contains only negative literals. Negative resolution requires all resolution steps to be negative.

Semantic Resolution Given a truth assignment π for the input CNF F, a π-resolution of F is a resolution in which for every resolution step $R[(A, x), (B, \neg x)]$ one of (A, x) or $(B, \neg x)$ must be **falsified** by π (note it is impossible for both clauses to be falsified by π). A refutation is called **semantic** if it is a π-resolution for some truth assignment π.

1
Linear Resolution The refutation has a linear underlying DAG. That is, the proof \(c_1, c_2, \ldots, c_m = () \) has the property that when \(c_i \) is a resolvant it is the result of resolving \(c_{i-1} \) and some prior \(c_j \) (\(j < i \)). (We always use the prior clause in ever resolution step.

Regular Resolution In the DAG each path from the empty clause to an input clause has the property that no arc variable label is repeated.

Ordered Resolution In the DAG the sequence of variable labels along any path from the empty clause to an input clause respects some total ordering of the variables.

Tree Like Resolution The DAG is a tree except that input clauses can participate in multiple resolution steps. Clauses produced by resolution can only be used once.

2 Complexity of These Refinements

If we restrict resolution to only consider proofs with these properties we end up with a resolution refinement proof. Each of these refinements is by itself a sound and (refutation) complete proof system.

In the paper “The Complexity of Resolution Refinements” by Joshua Buresh-Oppenheim and Toniann Pitassi, Journal of Symbolic Logic, volume 72, number 4, pages 1336–1352, 2007. The complexity of these refinements was investigated in terms of which system can p-simulate which other system.
<table>
<thead>
<tr>
<th></th>
<th>Neg</th>
<th>Sem</th>
<th>Lin</th>
<th>Order</th>
<th>Reg</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neg</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sem</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Lin</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Order</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Reg</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Tree</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1: P-Simulation results from Oppenheim and Pitassi