Week 5: Embedded SQL

Update Statements

Embedded SQL

Traditional applications often need to “embed” SQL statements inside the instructions of a procedural programming language (C, COBOL, etc.)

Programs with embedded SQL use a pre-compiler to manage SQL statements. Embedded statements are preceded by `$` or `EXEC SQL` or some distinguished token.

Program variables may be used as parameters in the SQL statements (preceded by `:`).

Select statements producing a single row and update statements can be embedded easily.

The SQL environment offers a predefined variable `sqlcode` which describes the execution status of an SQL statement (=0 if it executed successfully).

Interactive vs. Non-Interactive SQL

Non-interactive SQL: Statements are included in an application program written in a host language — such as C, Java, COBOL

Interactive SQL: Statements input from terminal; DBMS outputs to screen

Interactive SQL is inadequate for most uses:

✓ It may be necessary to process the data before output;
✓ Amount of data returned not known in advance;
✓ SQL has limited expressive power — note: not Turing-complete.

Application Program

Host language: A conventional programming language (e.g., C, Java) that supplies control structures, computational capabilities, interaction with physical devices.

SQL: supplies ability to interact with database.

Using the facilities of both: the application program can act as an intermediary between the user at a terminal and the DBMS.
Preparation

→ Before any SQL statement is executed, it must be **prepared** by the DBMS:
 ✓ What indices can be used?
 ✓ In what order should tables be accessed?
 ✓ What constraints should be checked?
→ Decisions are based on schema, table sizes, etc.
→ Result is a *query execution plan*.
→ Preparation is a complex activity, usually done at run time, justified by the complexity of query processing.

Introducing SQL Into the Application

→ SQL statements can be incorporated into an application program in two different ways.
→ **Statement Level Interface** (SLI): Application program is a mixture of host language statements and SQL statements and directives.
→ **Call Level Interface** (CLI): Application program is written entirely in host language.
→ SQL statements are values of string variables that are passed as arguments to host language (library) procedures.

Statement Level Interface

→ SQL statements and directives in the application have a *special syntax* that sets them off from host language constructs e.g., EXEC SQL SQL_statement
→ *Pre-compiler* scans program and translates SQL statements into calls to host language library procedures that communicate with DBMS.
→ *Host language compiler* then compiles program.
Call Level Interface

- Application program written entirely in host language (no precompiler)
 Examples: JDBC, ODBC
- SQL statements are values of string variables constructed at run time using host language
 Similar to dynamic SQL
- Application uses string variables as arguments of library routines that communicate with DBMS
 e.g. `executeQuery(“SQL query statement”)`

Static SQL

```sql
EXEC SQL BEGIN DECLARE SECTION;
  unsigned long num_enrolled;
  char crs_code;
  char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;
```

- Declaration section for host/SQL communication.
- Colon convention for value (WHERE) and result (INTO) parameters.

```sql
EXEC SQL SELECT C.NumEnrolled INTO :num_enrolled
FROM Course C
WHERE C.CrsCode = :crs_code;
if ( !strcmp(SQLSTATE, “00000”)) {
  printf( “statement failed” )
};
```

Connections

- To connect to an SQL database, use a connect statement
  ```sql
  CONNECT TO database_name AS connection_name USING user_id
  ```

Transactions

- No explicit statement is needed to begin a transaction: A transaction is initiated when the first SQL statement that accesses the database is executed.
- The mode of transaction execution can be set with

 \[\text{SET TRANSACTION READ ONLY ISOLATION LEVEL SERIALIZABLE}\]

- Transactions are terminated with COMMIT or ROLLBACK statements.

Example: Course Deregistration

```sql
EXEC SQL CONNECT TO :dbserver;
if (! strcmp(SQLSTATE, "00000")) exit (1);
....
EXEC SQL DELETE FROM Transcript T
  WHERE T.StudId = :studid AND T.Semester = 'S2000'
  AND T.CrsCode = :crscode;
if (! strcmp(SQLSTATE, "00000")) EXEC SQL ROLLBACK;
else {
  EXEC SQL UPDATE Course C
    SET C.Numenrolled = C.Numenrolled - 1
    WHERE C.CrsCode = :crscode;
  if (! strcmp(SQLSTATE, "00000")) EXEC SQL ROLLBACK;
  else EXEC SQL COMMIT;
}
```

Buffer Mismatch Problem

- **Problem:** SQL deals with tables (of arbitrary size); host language program deals with fixed size buffers
 - How is the application to allocate storage for the result of a SELECT statement?
- **Solution:** Fetch a single row at a time
 - Space for a single row (number and type of \textit{out} parameters) can be determined from schema and allocated in application

Cursors

- **Result set** – set of rows produced by a SELECT statement
- **Cursor** – pointer to a row in the result set.
- **Cursor operations:**
 - **Declaration**
 - **Open** – execute SELECT to determine result set and initialize pointer
 - **Fetch** – advance pointer and retrieve next row
 - **Close** – deallocate cursor
Embedded SQL

Cursors (cont’d)

| Application | Cursor | SELECT | Result set (or pointers to it) | Base table |

Example of Cursor Use

```sql
EXEC SQL DECLARE GetEnroll INSENSITIVE CURSOR FOR
SELECT T.StudId, T.Grade  -- cursor is not a schema element
FROM Transcript T
WHERE T.CrsCode = :crscode AND T.Semester = 'S2000';
EXEC SQL OPEN GetEnroll;
if (!strcmp (SQLSTATE, "00000")) {... fail exit...);

EXEC SQL FETCH GetEnroll INTO :studid, :grade;
while (SQLSTATE = "00000") {
    ... process the returned row...
    EXEC SQL FETCH GetEnroll INTO :studid, :grade;
} if (!strcmp (SQLSTATE, "02000")) {... fail exit...};
EXEC SQL CLOSE GetEnroll;
```

Cursor Types

- **Insensitive cursor**: Result set (effectively) computed and stored in a separate table at OPEN time
 - Changes made to base table subsequent to OPEN (by any transaction) do not affect result set
 - Cursor is read-only
- **Cursors that are not insensitive**: Specification not part of SQL standard
 - Changes made to base table subsequent to OPEN (by any transaction) can affect result set
 - Cursor is updatable

Insensitive Cursor

Changes made after opening cursor not seen in the cursor

<table>
<thead>
<tr>
<th>Key1</th>
<th>Key2</th>
<th>Key3</th>
<th>Key4</th>
<th>Key5</th>
<th>Key6</th>
</tr>
</thead>
<tbody>
<tr>
<td>tttttttttt</td>
<td>xxxxxxxxxx</td>
<td>yyyyyyyyyy</td>
<td>zzzzzzzzzz</td>
<td>uuuuuuuuu</td>
<td>vvvvvvvvv</td>
</tr>
</tbody>
</table>

Result Set

<table>
<thead>
<tr>
<th>Key1</th>
<th>Key2</th>
<th>Key3</th>
<th>Key4</th>
<th>Key5</th>
<th>Key6</th>
</tr>
</thead>
<tbody>
<tr>
<td>tttttttttt</td>
<td>xxxxxxxxxx</td>
<td>yyyyyyyyyy</td>
<td>zzzzzzzzzz</td>
<td>uuuuuuuuu</td>
<td>vvvvvvvvv</td>
</tr>
</tbody>
</table>

Base Table

Tuples added after opening the cursor
Keyset-Driven Cursor

- Example of a cursor that is not insensitive.
- Primary key of each row in result set is computed at open time.
- UPDATE or DELETE of a row in base table by a concurrent transaction between OPEN and FETCH might be seen through cursor.
- INSERT into base table, however, not seen through cursor.
- Cursor is updatable.

Cursor

```sql
DECLARE cursor-name [INSENSITIVE] [SCROLL] CURSOR FOR table-expr
[ ORDER BY column-list ]
[ FOR { READ ONLY | UPDATE [ OF column-list ] } ]
```

For updatable (not insensitive, not read-only) cursors

- UPDATE table-name — base table
 SET assignment
 WHERE CURRENT OF cursor-name
- DELETE FROM table-name — base table
 WHERE CURRENT OF cursor-name

Restriction — table-expr must satisfy restrictions of updatable view

Scrolling

- If SCROLL option not specified in cursor declaration, FETCH always moves cursor forward one position.
- If SCROLL option is included in DECLARE CURSOR section, cursor can be moved in arbitrary ways around result set:
  ```sql
  FETCH PRIOR FROM GetEnroll INTO :studid, :grade;
  ```
 - Also: FIRST, LAST, ABSOLUTE n, RELATIVE n
Stored Procedures

- **Procedure** – written in a conventional algorithmic language
 - Included as schema element (stored in DBMS)
 - Invoked by the application
- **Advantages:**
 - Intermediate data need not be communicated to application (time and cost savings)
 - Procedure’s SQL statements prepared in advance
 - Authorization can be done at procedure level
 - Added security since procedure resides in server
 - Applications that call the procedure need not know the details of database schema – all database access is encapsulated within the procedure

Dynamic SQL

- **PREPARE** names SQL statement `st` and sends it to DBMS for preparation
- **EXECUTE** causes the statement named `st` to be executed

Parameters for Static SQL

For Static SQL:

- Names of (host language) parameters are contained in SQL statement and available to pre-compiler.
- Address and type information in symbol table.
- Routines for fetching and storing argument values can be generated.
- Complete statement (with parameter values) sent to DBMS when statement is executed.

```sql
EXEC SQL SELECT C.NumEnrolled
           INTO :num_enrolled
           FROM Course C
           WHERE C.CrsCode = :crs_code;
```
Parameters for Dynamic SQL

Dynamic SQL: SQL statement constructed at run time when symbol table is no longer present

Case 1: Parameters are known at compile time

- Parameters are named in `EXECUTE` statement: `in` parameters in `USING`; `out` parameters in `INTO` clauses
- `EXECUTE` statement is compiled using symbol table
- `strcpy(tmp, "SELECT C.NumEnrolled FROM Course C \nWHERE C.CrsCode = ?")`;
- `EXEC SQL PREPARE st FROM :tmp;`
- `EXEC SQL EXECUTE st INTO :num_enrolled USING :crs_code;`
- `fetch()` and `store()` routines generated

Parameters in Dynamic SQL

Case 2: Parameters not known at compile time

Example: Statement input from terminal
- Application cannot parse statement and might not know schema, so it does not have any parameter information
- `EXECUTE` statement cannot name parameters in `INTO` and `USING` clauses

Parameters in Dynamic SQL

Case 2: Parameters supplied at runtime

- DBMS determines number and type of parameters after preparing the statement
- Information stored by DBMS in a *descriptor* – a data structure inside the DBMS, which records the name, type, and value of each parameter
- Dynamic SQL provides directive `GET DESCRIPTOR` to get information about parameters (e.g., number, name, type) from DBMS and to fetch value of `out` parameters
- Dynamic SQL provides directive `SET DESCRIPTOR` to supply value to `in` parameters
Descriptors

temp = “SELECT C.NumEnrolled, C.Name FROM Course C \ WHERE C.CrsCode = ‘CS305’ ”

application

Descriptor

DBMS

GET DESCRIPTOR

Value

Name

Type

1. Application uses GET DESCRIPTOR to fetch name, type, value
2. Then gets value into appropriate host variable
3. Then processes value

Dynamic SQL Calls when Descriptors are Used

... construct SQL statement in temp ... // prepare statement
EXEC SQL PREPARE st FROM :temp;
EXEC SQL ALLOCATE DESCRIPTOR ‘desc’; // create descriptor
EXEC SQL DESCRIBE OUTPUT st USING SQL DESCRIPTOR ‘desc’; // populate desc with info
EXEC SQL EXECUTE st INTO SQL DESCRIPTOR AREA ‘desc’; // store out values in desc
EXEC SQL GET DESCRIPTOR ‘desc’ ... // get out values

... similar strategy is used for in parameters ...

Example: Nothing Known at Compile Time

sprintf(my_sql_stmt, “SELECT * FROM %s WHERE COUNT(*) = 1”, table); // table – host var; even the table is known only at run time!
EXEC SQL PREPARE st FROM :my_sql_stmt;
EXEC SQL ALLOCATE DESCRIPTOR ‘st_output’;
EXEC SQL DESCRIBE OUTPUT st USING SQL DESCRIPTOR ‘st_output’
 The SQL statement to execute is known only at run time
 At this point DBMS knows what the exact statement is (including the table name, the number of out parameters, their types)
 The above statement asks to create descriptors in st_output for all the (now known) out parameters
EXEC SQL EXECUTE st INTO SQL DESCRIPTOR ‘st_output’;

Example: Getting Meta-Information from a Descriptor

// Host var colcount gets the number of out parameters in
// the SQL statement described by st_output
EXEC SQL GET DESCRIPTOR ‘st_output’ :colcount = COUNT;

// Set host vars coltype, collength, colname with the type,
// length, and name of the colnumber’s out parameter in
// the SQL statement described by st_output
EXEC SQL GET DESCRIPTOR ‘st_output’ VALUE :colnumber,
 :coltype = TYPE, // predefined integer constants,
 // such as SQL_CHAR, SQL_FLOAT,...
 :collength = LENGTH,
 :colname = NAME;
Example: Using Meta-Information to Extract Attribute Value

```c
char strdata[1024];
int intdata;
...
switch (coltype) {
case SQL_CHAR:
    EXEC SQL GET DESCRIPTOR 'st_output' :VALUE :colnumber strdata=DATA;
    break;
case SQL_INT:
    EXEC SQL GET DESCRIPTOR 'st_output' :VALUE :colnumber
        :intdata=DATA;
    break;
case SQL_FLOAT:
    ...
}
```

JDBC

→ Call-level interface (CLI) for executing SQL from a Java program
→ SQL statement is constructed at run time as the value of a Java variable (as in dynamic SQL)
→ JDBC passes SQL statements to the underlying DBMS. Can be interfaced to any DBMS that has a JDBC driver
→ Part of SQL:2003

JDBC Run-Time Architecture

```
import java.sql.*; // import all classes in package java.sql
Class.forName (driver name); // static method of class Class
    // loads specified driver
Connection con = DriverManager.getConnection (Url, Id, Passwd);
    // Static method of class DriverManager, attempts to connect to DBMS
    // If successful, creates a connection object, con, for managing the connection
Statement stat = con.createStatement ();
    // Creates a statement object stat
    // Statements have executeQuery() method
```

Executing a Query
Executing a Query (cont’d)

String query = “SELECT T.StudId FROM Transcript T” +
 “WHERE T.CrsCode = ‘cse305’ “ +
 “AND T.Semester = ‘S2000’ “;
ResultSet res = stat.executeQuery(query);
• Creates a result set object, res.
• Prepares and executes the query.
• Stores the result set produced by execution in res (analogous to opening a cursor).
• The query string can be constructed at run time (as above).
• The input parameters are plugged into the query when the string is formed (as above)

Preparing and Executing a Query

String query = “SELECT T.StudId FROM Transcript T” +
 “WHERE T.CrsCode = ? AND T.Semester = ?”;
PreparedStatement ps = con.prepareStatement (query);
• Prepares the statement
• Creates a prepared statement object, ps, containing the prepared statement
• Placeholders (?) mark positions of in parameters; special API is provided to plug the actual values in positions indicated by the ?’s

Preparing and Executing a Query (cont’d)

String crs_code, semester;
lar....
ps.setString(1, crs_code); // set value of first in parameter
ps.setString(2, semester); // set value of second in parameter
ResultSet res = ps.executeQuery ();
• Creates a result set object, res
• Executes the query
• Stores the result set produced by execution in res

ResultSets and Cursors

⇒ Three types of result sets in JDBC:
 ✔ Forward-only: not scrollable
 ✔ Scroll-insensitive: scrollable; changes made to underlying tables after the creation of the result set are not visible through that result set
 ✔ Scroll-sensitive: scrollable; updates and deletes made to tuples in the underlying tables after the creation of the result set are visible through the set
Result Set

Statement stat = con.createStatement (
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

→ Any result set type can be declared read-only or
updatable – CONCUR_UPDATABLE (assuming SQL
query satisfies the conditions for updatable views)

→ Updatable: Current row of an updatable result set can
be changed or deleted, or a new row can be inserted.
Any such change causes changes to the underlying
database table

res.updateString (“Name”, “John”); // change the attribute “Name” of
// current row in the row buffer.
res.updateRow (); // install changes to the current row buffer
// in the underlying database table

Handling Exceptions

try {
 ...Java/JDBC code...
} catch (SQLException ex) {
 ...exception handling code...
}

→ try/catch is the basic structure within which an SQL
statement should be embedded
→ If an exception is thrown, an exception object, ex, is
created and the catch clause is executed
→ The exception object has methods to print an error
message, return SQLSTATE, etc.

Transactions in JDBC

→ Default for a connection is
 ✓ Transaction boundaries
 ▪ Autocommit mode: each SQL statement is a
 transaction.
 ▪ To group several statements into a transaction use
 con.setAutoCommit (false)
 ✓ Isolation
 ▪ default isolation level of the underlying DBMS
 ▪ To change isolation level use
 con.setTransactionIsolationLevel
 (TRANSACTION_SERIALIZABLE)

→ With autocommit off:
 ✓ transaction is committed using con.commit().
 ✓ next transaction is automatically initiated (chaining)
→ Transactions on each connection committed separately

SQLJ

→ A statement-level interface to Java
 ✓ A dialect of embedded SQL designed
 specifically for Java
 ✓ Translated by precompiler into Java
 ✓ SQL constructs translated into calls to an
 SQLJ runtime package, which accesses
 database through calls to a JDBC driver

→ Part of SQL:2003
SQLJ

- Has some efficiencies of embedded SQL
 - Compile-time syntax and type checking
 - Use of host language variables
 - More elegant than embedded SQL
- Has some of the advantages of JDBC
 - Can access multiple DBMSs using drivers
 - SQLJ statements and JDBC calls can be included in the same program

SQLJ Example

```sql
#SQL {
  SELECT C.Enrollment INTO :numEnrolled
  FROM Class C
  WHERE C.CrsCode = :crsCode
       AND C.Semester = :semester
};
```

Example of SQLJ Iterator

- Similar to JDBC’s ResultSet; provides a cursor mechanism

```sql
#SQL iterator GetEnrolledIter (int studentId,
    String studGrade);
GetEnrolledIter iter1;

#SQL iter1 = {
  SELECT T.StudentId as “studentId”,
      T.Grade as “studGrade”
  FROM Transcript T
  WHERE T.CrsCode = :crsCode
       AND T.Semester = :semester
};
```

Iterator Example (cont’d)

```java
int id;
String grade;
while ( iter1.next() ) {
  id = iter1.studentId();
  grade = iter1.studGrade();
  … process the values in id and grade
  …
};
iter1.close();
```
ODBC

→ Call level interface that is database independent
→ Related to SQL/CLI, part of SQL:1999
→ Software architecture similar to JDBC with driver manager and drivers
→ Not object oriented
→ Low-level: application must specifically allocate and deallocate storage

Sequence of Procedure Calls Needed for ODBC

```
SQLAllocEnv(&henv);  // get environment handle
SQLAllocConnect(henv, &hdbc);  // get connection handle
SQLConnect(hdbc, db_name, userId, password);  // connect
SQLAllocStmt(hdbc, &hstmt);  // get statement handle
SQLPrepare(hstmt, SQL statement);  // prepare SQL statement
SQLExecute(hstmt);  // free up statement space
SQLFreeStmt(hstmt);  // free up environment space
SQLDisconnect(hdbc);
SQLFreeEnv(henv);  // free up environment space
```

ODBC Features

→ Cursors
 ✓ *Statement handle* (for example hstmt) is used as name of cursor
→ Status Processing
 ✓ Each ODBC procedure is actually a function that returns status
    ```
    RETCODE retcode1;
    Retcode1 = SQLConnect ( ...)
    ```
→ Transactions
 ✓ Can be committed or aborted with
    ```
    SQLTransact (henv, hdbc, SQL_COMMIT)
    ```

Cursors

→ Fundamental problem with database technology: **impedance mismatch** — traditional programming languages process records one-at-a-time (tuple-oriented); SQL processes tuple sets (set-oriented).
→ Cursors solve this problem: A cursor accesses the result of a query in a set-oriented way, returns tuples for the program to process one-by-one.
→ Syntax of cursor definition:
  ```
  declare CursorName [ scroll ]
cursor for SelectSQL
  [ for < read only | update [ of Attribute {, Attribute} ] ]
  ```
Operations on Cursors

→ To execute the query associated with a cursor:

 open CursorName

→ To extract one tuple from the query result:

 fetch [Position from] CursorName into FetchList

→ To free the cursor, discarding the query result:

 close CursorName

→ To access the current tuple (when a cursor reads a relation, in order to update it):

 current of CursorName
 (in a where clause)

Example of Embedded SQL

```c
void DisplayDepartmentSalaries(char DeptName[20])
{
  char FirstName[20], Surname[20];
  long int Salary;
  $ declare DeptEmp cursor for
  $ select FirstName, Surname, Salary
  $ from Employee
  $ where Dept = :DeptName;
  $ open DeptEmp;
  $ fetch DeptEmp into :FirstName, :Surname, :Salary;
  printf("Department %s
", DeptName);
  while (sqlcode == 0)
  {
    printf("Name: %s %s
", FirstName, Surname);
    printf("Salary: %d
", Salary);
    $ fetch DeptEmp into :FirstName, :Surname, :Salary;
  }
  $ close DeptEmp;
}
```

Dynamic SQL

→ When applications do not know at compile-time the SQL statement to execute, they need **dynamic SQL**.

→ Major problem: managing the transfer of parameters between the program and the SQL environment.

→ For direct execution:

 execute immediate SQLStatement

→ For execution preceded by the analysis of the statement:

 prepare CommandName from SQLStatement

 followed by:

 execute CommandName [into TargetList] [using ParameterList]

Procedures

→ SQL-2 allows for the definition of procedures, also known as **stored procedures**.

→ Stored procedures are part of the schema

 procedure AssignCity
 (:Dep char(20), :City char(20))
 update Department
 set City = :City
 where Name = :Dep

→ SQL-2 does not support the definition of complex procedures

→ Most systems offer SQL extensions that support complex procedures (e.g., Oracle PL/SQL).
Procedure in Oracle PL/SQL

```sql
Procedure Debit(ClientAcct char(5), Withdr int) is
    OldAmount integer;
    NewAmount integer;
    Threshold integer;
begin
    select Amount, Overdraft into OldAmount, Thresh
    from BankAcct where AcctNo = ClientAcct
    for update of Amount;
    NewAmount := OldAmount - WithDr;
    if NewAmount > Thresh
        then update BankAcct
            set Amount = NewAmount
            where AcctNo = ClientAcct;
        else insert into OverDraftExceeded
            values(ClientAcct, Withdr, sysdate);
    end if;
end Debit;
```